
Design of an 8192-point Sequential I/O FFT Chip
Yun-Nan Chang, Member, IEEE

Abstract—This paper presents an efficient VLSI design of 8k-
point pipeline fast Fourier transform (FFT) processor capable
of producing the sequential order output. The proposed FFT
architecture is derived based on the modified delay feed-forward
data commutator, and processes the internal dual data streams
in the real and imaginary alternate approach. Compared with
the general pipeline FFT designs, ours can achieve full butterfly
hardware efficiency such that the required number of adders
can be reduced by a half. In order to generate the sequential
output order sequence, this paper also proposes an efficient
reorder buffer design which can be used to replace the last
stage’s commutator module for the saving of internal buffer. The
FFT decomposition method for the proposed design is based on
a new radix-22 × 22 FFT algorithm such that only two and a
half general complex-number multipliers are used. Finally, by
proper data partition and allocation, the data storage required
for data commutators and the output reorder buffer can
both be efficiently realized by multi-bank single-port memory
modules. The proposed FFT processor has been implemented
and fabricated by 0.18µm CMOS process technology. The
core size is about 8.74mm2. This chip is suitable for digital
video broadcasting (DVB) applications not only because it
can perform the sequential input/output order 8k FFT, but
it also consumes low power. To satisfy the DVB throughput
requirement, this chip can run under the clock rate of 8MHz
and the supply voltage of 1.33V, and only dissipates 20.6 mW.

Index Terms—FFT, DVB.

I. INTRODUCTION

IN recent years, due to the widespread use of the orthog-
onal frequency division multiplexing (OFDM) commu-

nication systems, how to design an efficient dedicated FFT
circuit especially for the emerging OFDM applications is a
very important issue. Many FFT designs have been proposed
in the last decade [1]-[14], which can be categorized into
non-pipeline and pipeline architectures. The non-pipeline
FFT designs [1]-[3] utilize some centralized multiplier and
butterfly arithmetic units to iteratively perform one stage of
the computation after the other, and the intermediate results
are stored in the central memory unit. This approach can
achieve compact design but since the level of parallelism
of this approach is restricted such that it is not suitable
for high-throughput applications. On the other hand, the
pipeline FFT processors [4]-[14] allocate dedicated data-path
for each FFT stage such that it can achieve better throughput,
and particularly suitable for the processing of continuous
streaming input data.

The pipeline FFT designs can be further divided into two
different classes. The first class is based on the so-called
multi-path delay feed-forward (MDF) data commutator [4]-
[8] which suffers both low hardware utilization and high
storage space unless parallel input data streams are available.
The other class of FFT designs is called single-delay feed-
back (SDF) FFT [9]-[14] which requires less internal buffer

Manuscript received July 23, 2012; revised August 15, 2012.
Y.-N. Chang is with the Department of Computer Science and Engineer-

ing, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.

by circulating partial computed results back to the original
stage to reuse the buffer space. They can also fully utilize
the multiplier units although the utilization of their adder
units that can be achieved is at most 50%. In addition to
the data commutator style, the FFT algorithm which most
of the early FFT designs adopt is based on the conventional
radix-2 FFT algorithm. In order to reduce the silicon cost
for the realization of the twiddle factor multiplication in FFT
algorithm, several modified FFT algorithms including radix-4
[6],[9], radix-8, radix-22[10], and radix-23 [11] are proposed.
These modified algorithms explore those trivial factors in the
FFT algorithm such that their multiplications can be realized
by dedicated constant multipliers instead of the general
ones. In [15], a decimated dual-path delay fed-forward data
commutator unit has been proposed. Combined with the new
re-order buffer design, the resulted FFT architecture cannot
only achieve fully butterfly unit utilization, but also support
the normal input-output data order.

This paper presents an efficient implementation of a 8k-
point FFT processor based on [15]. In addition, a new
radix-22 × 22 FFT algorithm is also proposed to reduce the
number of general multipliers required. The remainder of this
paper is organized as follows. Section II first presents the
overall architecture of the proposed FFT design. In Section
III, the detailed implementation of each FFT sub-module
is addressed. Section IV presents the implementation and
comparison results. Finally, some conclusion is given in
Section V.

II. THE PROPOSED 8K-POINT FFT ARCHITECTURE

One of the main drawbacks of pipeline FFT designs com-
pared with the non-pipeline is the low hardware utilization
of the butterfly units. For the 8k-point pipeline FFT design,
it will require 13 butterfly stages based on any radix-2n

decomposition. Therefore, it will require 52 real-number
adders which represent a big portion of the entire FFT circuit.
In order to reduce the adder cost, a new MDF design shown
in Fig. 1 has been proposed [15]. Here the incoming data
(dj) are first divided into real (drj) and imaginary (dij) parts.
Then they pass through two data commutator (DC) stages
to form dual data streams which consist of even-index data
followed by odd-index data. The real and imaginary parts
of data are present in the stream in the alternate order. The
remaining part of the FFT circuit is similar to the MDC
FFT design with the exception that the data commutator and
the arithmetic units will operate the real and imaginary data
alternately. The function of data commutator, as shown in
Fig. 2 is used to permute the data sequence in order to be
fit for different stages of butterfly operation.

In Fig. 1, two twiddle factor multipliers are inserted
between every two radix-2 stages; however, the actual imple-
mentation of these multipliers may be able to be simplified
depending on what factors they involve. Furthermore, what

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

DC

L=N/4

1st stage logN stagelogN-1 stage

BFU

DC

L=1

BFU
output

reorder

buffer

BFU↓2D

↓2

Fig. 1. The block diagram of the proposed pipeline FFT design which
generates the normal order output sequence.

Dual-port

Feedforward

Data

Commutator

Length (L) = D

01112 aaaaa DDD LL −−

01112 bbbbb DDD LL −−

012101 aaaabb DD LL −−

DDDDD aaabb 11212 +−− LL

Fig. 2. The function of the data commutator (DC) with a depth of L.

twiddle factors are involved for each stage depends on the
decomposition order applied to the DFT computation. For
example, if the traditional decimation-in-frequency radix-2
FFT decomposition is applied for the 8k-point FFT, almost
every stage requires general factor multipliers. The only
exception will be the last several radix-2 stages which involve
the multiplication of only few simple factors which can be
realized by some dedicated constant multipliers. In order to
reduce the multiplication strength, the trivial factors should
be gathered to the same stages such that they can be realized
by some dedicated constant multipliers. In the past, the idea
of so-called radix-2n FFT has been widely adopted in the
past. In this paper, an extended method called radix-22 × 22

FFT is proposed for the implementation of 8k-point FFT.
Fig. 3 shows the data flow diagram of the simplified DFT
after one stage of decomposition assuming N equals N1×N2.

N1

DFT

0
NW

2Nx
0x

0
NW

22Nx

21)1(NNx −

0
NW

0
NW

N1

DFT

1
NW

12 +Nx
1x

0
NW

12 2 +Nx

1)1(21 +− NNx
11−N

NW

2
NW

N1

DFT

)1(2 −N
NW

12 2 −Nx
12 −Nx

0
NW

13 2 +Nx

121 −NNx
)1)(1(21 −− NN

NW

)1(2 2 −N
NW

N2

DFT

N2

DFT

N2

DFT

N1-point DFT N2-point DFTtransposition
factor

multiplication

Fig. 3. The flow diagram of N-point DFT transformation after one-stage
of decomposition asssuming N equals N1 ×N2.

A 8k pipeline FFT architecture can be divided into 13
stages. The detailed decomposition order for 8k-point FFT
based on the proposed radix-22×22 FFT approach is shown
in Table I where each decomposition step is represented by

three parameter N , N1 and N2 according to Fig. 3. The
first level of decomposition is to recursively decompose the
original DFT algorithm based on the function of 16-point
DFT. After the first level, the function of each 16-point
DFT will be further decomposed based on the 4-point DFT.
Finally each of 4-point DFT computation is decomposed
into two 2-point DFT operations which is equal to the basic
butterfly function. Fig. 4 shows the block diagram of the
resulted 8k-point pipeline FFT architecture. There are four
types of multipliers being used in Fig. 4. The blocks labeled
m-I and m-II denote two different general complex-number
multipliers. The multiplier type m-IV involves the factors 1,
−1, j and −j such that it can be efficiently realized by simple
multiplexer circuits. The multiplier type m-III involves the
factors Wn

16, and can be realized by dedicated constant
multipliers built by about 16 adders. The proposed radix-
22 × 22 FFT is superior to the radix-24 FFT [12] because
the number of the constant multipliers can be reduced. For
example, for 8k-point DFT, the radix-24 FFT requires six
dedicated W 2

16 multipliers while the radix-22 × 22 FFT only
needs three.

TABLE I
PROPOSED DECOMPOSITION ORDER FOR 8K-POINT FFT.

Level Level-1 Level-2 Level-3
Step N N1 N2 N N1 N2 N N1 N2

Step 1 8k 2 4k 16 4 4 4 2 2
Step 2 4k 16 512
Step 3 512 16 16

DC

L=4k

BFU m

II

1st stage

DC

L=2k

BFU

2nd stage

m

IV
DC

L=1k

BFU

3rd stage

m

III
DC

L=512

BFU

4th stage

m

IV
DC

L=256

BFU m

I

5th stage

DC

L=128

BFU

6th stage

m

IV
DC

L=64

BFU

7th stage

m

III
DC

L=32

BFU

8th stage

m

IV
DC

L=16

BFU m

I

9th stage

DC

L=8

BFU

10th stage

m

IV
DC

L=4

BFU

11th stage

m

III
DC

L=2

BFU

12th stage

m

IV

13th stage

output

reorder

buffer

BFU

iii
ddd 012L

rrr
ddd 012L

012 dddL

riri
dddd 0022L

DC

L=1

riri
dddd 1133L

rirririr
dddddddd 00240944094113 LL

rirririr
dddddddd 40964096409881908190113 LL

Fig. 4. The overall block diagram of the proposed 8k-point FFT architec-
ture.

In the first level decomposition of 8k-point DFT, since the
value of 8k is not the power of 16, we have to decompose
it to the 4k-point DFT first by choosing either N1 or N2 to
2. Here we prefer the former choice due to the following
reasons. First, the location of the general multipliers (stage
1, 5, and 9 for 8k-point FFT) will be closer to the input
side compared with the other approach (stage 4, 8 and 12).
Therefore, the cost of multipliers can be reduced since the
word-length requirement for the stages closer to the input
side will be generally shorter. The other reason is that for the
resulted FFT flow chart, half of the first stage of butterfly unit
outputs are multiplied by trivial factor W 0

16 which is equal

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

to one. Based on this feature, the first stage multiplier can be
further simplified as discussed in the following subsections.

III. DETAILED FFT IMPLEMENTATION

In the following, the implementation of each module
shown in Fig. 4 is discussed in details.

A. The arithmetic units

There are three general complex-number multipliers re-
quired for 8k-point FFT architecture shown in Fig. 4. The
second and third multipliers are used to multiply two butterfly
operation results with associated twiddle factors in two
cycles. Therefore, these type m-I multipliers blocks can be
realized by one single complex-number multiplier to provide
one factor multiplication each cycle. The details circuit is
shown in Fig. 5(a) where the complex-number multiplier
is implemented by three real-number multipliers with some
extra adders based on

(Wr + jWi)× (ir + jii)
= (Wrir −Wiii) + j(Wrii +Wiir)
= [(Wr −Wi)× ir + (ir − ii)×Wi]

+j[(Wr +Wi)× ii + (ir − ii)×Wi]

. (1)

The other type of multiplier m-II shown in Fig. 4 can be
realized even more simplified since one of the two outputs
of the first stage butterfly unit is multiplied by the unity.
Therefore, the multiplication of the other output can be
realized by two real-number multipliers in time-multiplexing
way as shown in Fig. 5(b).

Twiddle

Factor

ROM

r
W

i
W

r
a

r
b

i
a

i
b

r
o

i
o

r
i

i
i

(a)

Twiddle

Factor

ROM

+/-

r
W

i
W

r
b

i
b

(b)

Fig. 5. The detailed circuit diagram of the multiplication unit used in the
proposed FFT design: (a) type m-I multiplier, and (b) type m-II multiplier.

The butterfly unit is the fundamental building block of
the pipeline FFT processors. In general, a basic radix-2
butterfly unit consists of one complex-number adder and one
complex-number subtractor. However, for our pipeline FFT
architecture shown in Fig. 4, the butterfly units just need to
finish one butterfly operation for every two cycles. Therefore,
except for the last stage, the butterfly unit architecture will be
quite different from the common one. Fig. 6 shows the circuit
diagram of two types of butterfly units used in our design.
The first type of butterfly unit consisting of one real-number
adder and subtractor, is used for the ordinary stages which
do not need general multipliers. The real part of operation
takes place alternatively with the imaginary part in the same
hardware. On the other hand, the second type of butterfly unit
is suitable for those stages equipped with multipliers. Since

the multiplier is set to multiply one butterfly operation result
with the factor each cycle, therefore, the entire complex-
number result has to be generated at the same time. The use
of different types of butterfly units can help reducing some
flip-flops and multiplexors.

D

inpAr

inpAi

inpBr

DinpBi

D

D

outAr

outAi

outBr

outBi

(a)

inpAr

inpAi

inpBr

D

inpBi

outAr

outAi

D

+/-

+/-

D

D

(b)

Fig. 6. The detailed circuit diagram of (a) type BFU-I and (b) type BFU-II
butterfly unit.

B. The data commutator design

The function of the data commutator shown in Fig. 2 can
be simply realized by some shift registers. However, this
approach can only be suitable for the last several stages
of commutators which do not buffer lots of data. For the
first several stages, however, our design will implement the
data commutator based on the use of two memory blocks
of size 2L with some multiplexor control circuits. For the
first L input data pairs, the switch is set to allow the data to
pass through. Therefore, those inputs from the upper path
are stored in memory block 0, and those from the other
path are stored in block 1. The previous stored data in both
memory blocks will be fetched, and sent to the output. For
the next L input data pairs, the switch will be altered to
allow the data flow change. Therefore, the inputs from the
upper path are transmitted to the bottom output. The inputs
from the bottom path are stored into the block 0. and those
previous stored data in this block will be sent out. This same
operation pattern will repeat again for next input sequence
with length of 2L. Since for each memory block, at most
one read and write operations are required for every two
cycles, the memory block can be efficiently realized by the
single-port on-chip SRAM.

Memory

Block 1

Size L

switch
Memory

Block 0

Size L

Fig. 7. The block diagram of data commutator with depth L based on two
single-port memory banks.

C. Design of twiddle factor ROM

In addition to the design of the butterfly unit, factor
multiplier, data commutator, and the reorder buffer, the
twiddle factor ROM is another major part of the pipeline
FFT processors. By exploring the symmetric properties of
trigonometric functions, the original ROM which contains 8k
sampling cosine and sine values between the angle 0◦ and
360◦ can now be simplified to contain only the sampling

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

values between 0◦ and 45◦. This reduction ratio of ROM is
up to 1

8 with only slight overhead of three adders and several
multiplexors [16].

D. Design of the last radix-2 stage

The output order of transformed data produced by the
pipeline FFT designs follows a special order called bit-
reversed order. To reverse the output sequence back to the
sequential order, the extra output reorder buffer that can hold
all the entire 8192-point outputs has to be included. In order
to reduce the buffer overhead, this paper proposes a new
reordering approach by relocating the reorder buffer back to
the input of the last radix-2 unit as shown in Fig. 4 such that
the function of the reorder buffer can be integrated with the
DC of the last stage. The detailed operation of the reorder
buffer is described as follows. First, it will first store the
entire set of 8k-point data generated by 12th stage. Next,
when it continues receiving the next 8k-point data set at the
sample rate of two complex-number data every two cycles,
simultaneously, it also fetches the previous set of data at the
rate of two data per cycle and sends them to the butterfly unit.
The data should be fetched in such an order that the butterfly
unit can produce the sequential order of outputs. For the first
4096 cycles, the last-stage butterfly unit will generate a pair
of outputs per cycle. One of the outputs belongs to the last
half 4096-point results. Therefore, it has to be stored back
to the reorder buffer in order to be output later. In summary,
there will be at most eight buffer accesses including two
input data write, four buffer data read (to provide the data
operands for the butterfly unit), and two output data write-
back operations for every two cycles.

TABLE II
THE DATA STORED AT THE ADDRESS j FOR EACH MEMORY BANK.

Bank Data set
number even symbol odd symbol

A0 e4×j+0 obr(2×j)

A1 e4×j+1 obr(2×j)+1

B0 e4×j+2 obr(2×j+1)

B1 e4×j+3 obr(2×j+1)+1

C0 e
4×j+N

2
o
br(2×j+N

4
)

C1 e
4×j+1+N

2
o
br(2×j+N

4
)+1

D0 e
4×j+2+N

2
o
br(2×j+1+N

4
)

D1 e
4×j+3+N

2
o
br(2×j+1+N

4
)+1

Therefore, direct implementation of this last stage may
require double buffers, and each buffer requires multi-port
on-chip SRAM with size of 8k words. To prevent the use
of double buffer with large port count, multi-bank mem-
ory organization plus a minimum-conflict data distribution
scheme is a very popular circuit design approach used to
optimize the buffer implementation. Since the number of
memory operations taking place in this buffer for each
cycle is four, theoretically at least four banks of single-port
memory modules will be required. This paper proposes one
of a high efficient reorder buffer circuit based on eight banks
of single-port memory. The size of each memory bank is 1K-
word, and each bank will store the input data according to the
allocation scheme shown in Table II. For the even symbol and
odd symbol data set, the input samples are represented by ej
and oj respectively. They have to be distinguished because

they are written into the memory by different strategies. The
even data sets are written sequentially while the odd data
sets are written in an order similar to bit-reverse. In Table II,
the function br(j) is defined as the binary value of the bit-
reverse representation of the 13-bit j. Since the even symbol
and odd symbol enter the system alternately, a single buffer
can be used and the input data will not overwrite the previous
stored data that have yet to be processed.

The data placement scheme shown in Table II can not only
avoid the use of double buffer, but also help distributing
the memory operations equally into different banks. The
memory read-write operations of the buffer can be illustrated
in Table III. Here the symbol yj represents the jth output of
the transformed sequence. It can be found that the all the read
and write operations of each cycles take place in different
banks such that the single port of memory is sufficient. Fig. 8
shows the overall architecture for the last radix-2 stage.

Bank A0

Read address generator

(normal/bit-reverse mode)

BFU
outinput

Write address generator

(normal/bit-reverse mode)

Bank B0

Bank C0

Bank D0

Bank A1

Bank B1

Bank C1

Bank D1

DC

L=1 012 yyyL

rir ddd 004L

rir ddd 226L

Fig. 8. The block diagram of the last stage of radix-2 unit.

IV. EXPERIMENTAL RESULTS

Based on the proposed design methodology presented in
the previous section, a pipeline 8k FFT processor has been
implemented using 0.18µm CMOS technology. Fig. 9 shows
the microphotography of the complete FFT chip. The gate
count of this design excluding the memory blocks is about
124k and the core size of the layout is equal to 7.48mm2.
Taking the finite word-length effect into account, our design
can achieve the signal-to-quantization-noise ratio (SQNR)
over 96dB. The synthesis result shows the speed of our
initial design can run up to 80MHz which is sufficient for
the requirement of our target DVB applications. Therefore,
no aggressive timing optimization techniques are further
applied. As shown in this layout, since the required arith-
metic units have been greatly reduced based the proposed
methodology, the memory blocks has now become the major
part of the entire chip. Especially, the reorder buffer of the
last radix-2 stage occupied more than 35% of the silicon area
not only because it has stored the entire 8k-point of data but
its required word-length compared with other stages is also
the largest. Fig. 10 shows the shmoo plot of this chip. This
chip can run up to 33MHz. To meet the DVB specification,
our chip can run at 8MHz under the supply voltage of 1.33V,
and only dissipate 20.6 mW.

Table IV compares the proposed fabrication results with
other published designs. The gate count number may vary
a lot because many designs do not take their use of on-
chip SRAM blocks into account. The frequency shown in

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

TABLE III
ILLUSTRATION OF THE MEMORY OPERATIONS IN DIFFERENT MEMORY BANKS.

IN: odd symbol, OUT: even symbol
Cycle 0 1 2 3 · · · 2047 2048 2049 · · · 8191
RD1 e0 e4096 e2048 e6144 · · · e8188 e2 e4098 · · · y8190
bank A0 C0 A0 C0 · · · C0 B0 D0 · · · B1
RD2 e1 e4097 e2049 e6145 · · · e8189 e3 e4099 · · ·
bank A1 C1 A1 C1 · · · C1 B1 D1 · · ·
WT1 o0 o2 o4 · · · o8188 o8190 o1 · · · o8189
bank A0 C0 A0 · · · A0 C0 B0 · · · B0
WT2 y4096 y4097 y4098 · · · y6142 y6143 y6144 · · ·
bank A1 C1 A1 · · · A1 C1 B1 · · ·
out y0 y1 y2 · · · y2046 y2047 y2048 · · · y8190

IN: even symbol, OUT: odd symbol
Cycle 0 1 2 3 · · · 2047 2048 2049 · · · 8191
RD1 o0 o4096 o2048 o6144 · · · o8188 o2 o4098 · · · y8190
bank A0 B0 A0 B0 · · · B0 C0 D0 · · · C1
RD2 o1 o4097 o2049 o6145 · · · o8189 o3 o4099 · · ·
bank A1 B1 A1 B1 · · · B1 C1 D1 · · ·
WT1 e0 e2 e4 · · · e8189 e8190 e1 · · · e8189
bank A0 B0 A0 · · · A0 B0 C0 · · · C0
WT2 y4096 y4097 y4098 · · · y6142 y6143 y6144 · · ·
bank A1 B1 A1 · · · A1 B1 C1 · · ·
out y0 y1 y2 · · · y2046 y2047 y2048 · · · y8190

TABLE IV
COMPARISON RESULTS OF DIFFERENT 8K-POINT FFT DESIGNS. (*: THE REDUCED CORE SIZE BY OMITTING THE REORDER BUFFER.)

Proposed [2] [5] [9] [11] [8] [13] [14]
Gate count 124k NA 1.5M 139k 1.3M 700k 988k 600k
Technology 0.18 0.18 0.5 0.35 0.6 NA NA NA
FFT method radix-22 × 22 radix-8 radix-4 radix-4 split-radix radix-4 radix-2/4/8 NA
Architecture MDC non-pipeline MDC SDF SDF MDC SDF pipeline
Area (mm2) 8.74 (4.5∗) 4.84 100 33.75 107 NA NA NA

Normalized area 8.74 4.84 11.57 8.92 12.54 NA NA NA
Power(mW) 20.6 25.2 600 535 650 NA NA NA

Frequency for DVB 8MHz 20MHz 20MHz 16MHz 20MHz NA NA NA
Output order natural either reverse reverse reverse reverse reverse reverse

Additional buffer (word) 0 8k ×2 8k 8k 8k 8k 8k reverse

the table represents the operating clock rate suited for DVB
applications. As shown in Table IV, our proposed design is
the smallest with the exception of some non-pipeline FFT
designs. It should be noted that all pipeline FFT designs
in the literature generate the transformation sequence with
the bit-reverse order. To obtain the normal sequential output-
order sequence, they will require an additional buffer with
size of 8k words. As for those non-pipeline designs, since
they store all the transformation results on the memory
block, the output order can be set for any form. However,
for continuous streaming data input, they will require two
additional buffers with 8k words as mentioned before. The
issue of additional buffer requirement is often neglected in
the past. Since these buffers are used to store the final
transformation outputs which usually have larger word-length
compared with the input data, the actual silicon size of these
buffers can be very huge. Therefore, by considering the extra
overhead, the cost of the proposed design can outperform all
the past FFT designs. The reorder buffer of the last radix-2
stage occupied more than 35% of the silicon area, and the
core size of our chip can be reduced to 4.5mm2 by excluding
the last-stage reorder buffer.

V. CONCLUSION

This paper proposed an efficient 8k-point pipeline FFT
design which can generate the sequential order output se-

S1

S2
S3

S4
S5 S6

S7

S8

S9

S10S11
S12

S13

Fig. 9. The microphotograph of the complete FFT chip.

quence. The design uses only about half number of adders
compared with the other pipeline circuits. In order to provide
a transformed output sequence with normal order, a novel
output reorder buffer mechanism is also proposed which
can be efficiently integrated with the function of the data
commutator and realized with a single buffer which consists

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Fig. 10. The shmoo plot of the proposed fabricated FFT chip.

of eight single-port on-chip SRAM memory banks. By using
the proposed radix-22 × 22 FFT decomposition method, the
8k-point FFT processor will only require two and a half
general complex-number multipliers. The final fabrication
results show that our 8k-point FFT architecture is not only
power-efficient, but also represents the most compact design.

According to our fabrication result, the reorder buffer
occupies the most portion of the entire chip. Since at most
two memory read and two write operations are required per
cycle, in future, the reduction of the bank numbers of the
reorder buffer from eight to four will be pursued.

ACKNOWLEDGMENT

The authors would like to thank National Chip Implemen-
tation Center (CIC) in Taiwan for chip fabrication.

REFERENCES

[1] B. M. Baas, “A low power, high performance, 1024-point FFT proces-
sor,” IEEE Journal of Solid-State Circuits, vol. 34, no. 3, pp. 380–387,
Mar 1999.

[2] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A dynamic scaling FFT processor
for DVB-T applications,” IEEE Journal of Solid-State Circuits, vol. 39,
no. 11, pp. 2005–2013, Nov 2004.

[3] C.-L. Wey, W.-C. Tang, and S.-Y. Lin, “Efficient VLSI implementation
of memory-based FFT processors for DVB-T application,” in IEEE
Computer Society Annual Symposium on VLSI, Porto Alegre, Brazil,
2007, pp. 98–106.

[4] G. Bi and E. Jones, “A pipelined FFT processor for word-sequential
data,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, pp. 1982–1985, Dec. 1989.

[5] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-chip
implementation of 8192 complex point FFT,” IEEE Journal of Solid-
State Circuits, vol. 30, no. 3, pp. 300–305, Mar 1995.

[6] E. E. Swartzlander, W. K. W. Young, and S. J. Joseph, “A radix-4 delay
commutator for fast Fourier transform processor implementation,”
IEEE Journal of Solid-State Circuits, vol. SC-19, no. 5, pp. 702–709,
Oct. 1984.

[7] M. Ayinala, M. Brown, and K. K. Parhi, “Pipelined parallel FFT
architectures via folding transformation,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, no. 6, pp. 1068–1081,
2012.

[8] S. H. Park, D. H. Kim, D. S. Han, K. S. Lee, S. J. Park, and J. R. Choi,
“Sequential design of a 8192 complex point FFT in OFDM receiver,”
in Proc. IEEE Asia-Pacific Conference on Advanced System Integrated
Circuits, Seoul, Korea, Aug. 1999, pp. 262–265.

[9] C.-C. Wang, J.-M. Huang, and H.-C. Cheng, “A 2k/8k mode small-
area FFT processor for OFDM demodulation of DVB-T receivers,”
IEEE Trans. on Consumer Electronics, vol. 51, no. 1, pp. 28–32, Feb
2005.

[10] S. He and M. Torkelson, “Designing pipeline FFT processor for
OFDM (de)modulation,” in URSI International Symposium on Signals,
Systems, and Electronics, Sep. 1998, pp. 257 – 262.

[11] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented
FFT algorithm and implementation,” in Proc. Eleven Annual IEEE
International Conference on Advanced System Integrated Circuits,
Rochester, New York, Sep. 1998, pp. 337–341.

[12] J.-Y. Oh and M.-S. Lim, “Fast Fourier transform processor based on
low-power and area-efficient algorithm,” in Proc. IEEE Asia-Pacific
Conference on Advanced System Integrated Circuits, Fukuoka, Japan,
Aug. 2004, pp. 198 – 201.

[13] T.-H. Tsai and C.-C. Peng, “Design and implementation of a FFT/IFFT
soft IP generator for OFDM system,” in International Conference on
Consumer Electronics, Las Vegas, NV, Jan. 2005, pp. 385–386.

[14] S. Y. Park, N. I. Cho, S. U. Lee, K. Kim, and J. Oh, “Design
of 2k/4k/8k-point FFT processor based on CORDIC algorithm in
OFDM receiver,” in IEEE Pacific Rim Conference on Communications,
Computers and signal processing, vol. 2, Victoria, Canada, Aug. 2001,
pp. 457–460.

[15] Y.-N. Chang, “An efficient VLSI architecture for normal I/O order
pipeline FFT design,” IEEE Transactions on Circuits and Systems-II,
vol. 55, no. 12, pp. 1234–1238, Dec 2008.

[16] S.-Y. Lee, C.-C. Chen, C.-C. Lee, and C.-J. Cheng, “A low-power
VLSI architecture for a shared-memory FFT processor with a mixed-
radix algorithm and a simple memory control scheme,” in Proc. of
2006 IEEE ISCAS, Island of Kos, Greece, May 2006, pp. 157–160.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

