
 

  
Abstract— JPEG2000 has become one of the most rewarding 

image coding standards. It provides a practical set of features 
which weren’t necessarily available in the previous still image 
coding standards. The features were realized as a result of two 
new techniques adopted in this standard, namely the Discrete 
Wavelet Transform (DWT), and Embedded Block Coding with 
Optimized Truncation (EBCOT). The generated coefficients by 
DWT are entropy coded by EBCOT algorithm. EBCOT is a 
two-tiered coder, where Tier-1 is a context-based adaptive 
arithmetic coder, and Tier-2 is a rate control algorithm. The 
complexity of EBCOT Tier-1 makes its hardware 
implementations very difficult. A high speed hardware 
implementation usually takes a large amount of space on the 
die. 

In this paper we propose a new simplified pipelined 
architecture for the JPEG2000 MQ-Coder. The proposed 
approach has resulted in a 20% decrease in hardware 
requirements and 10% increase in clock frequency. Post 
synthesis simulations indicate that the proposed architecture is 
able to compress 4 CIF video (704×576 pixels) at a rate of 30 
frames per second, making it a good candidate for high 
resolution real time video coding, or high speed compression of 
high resolution images. 
 

Index Terms— Byte-out, CODELPS, CODEMPS, EBCOT, 
flush, JPEG2000, MQ-Coder, Renormalization, Tile-
Component 
 

I. INTRODUCTION 
mage data compression has always been a necessary and 
prominent issue due to boundaries of data bandwidth and 

storage. JPEG [1][2], a traditional standard of coding, has 
proved to be a suitable technique for compressing natural 
images at high bit rates. Yet the imperfections due to the 
blocking effect make this technique impractical especially 
for low bit rates of image compression. 

JPEG2000 [3]-[8] has recently been proposed as a new 
high performance and multi-featured, yet complex standard 
of digital image coding. JPEG2000 offers numerous 
advantages over JPEG. These advantages include: ROI 
(Region Of Interest) coding, quality vs. resolution 
compression, lossless and lossy compression, progressive 
image compression/transmission by resolution/quality, 
random code-stream access and error resilience. Such 
characteristics add to the functionality of a system that is 
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employing JPEG2000 as an image compression technique. 
The features and performance of JPEG2000 make this 
standard superior to JPEG. Yet computational complexities 
of JPEG2000 are much higher than that of JPEG. Such 
complexities are due to EBCOT [9][10] as the most 
important algorithm employed in JPEG2000. That is why 
EBCOT algorithm plays a major role in hardware 
implementation of JPEG2000 in different applications. 

During the process of encoding, an image is partitioned 
into data matrices called Tile-components. Each Tile-
component is then coded separately. The process of coding 
is made up of different sections. These sections are depicted 
in Figure 1 and each is described below. 

 

 
Fig. 1. JPEG2000 encoder block diagram 

A. Component Transform 
This section is optional in JPEG2000 and is used to 

improve compression efficiency [11]. The transform 
converts the RGB data into another color representation, 
with a luminance (or intensity) channel and two color 
difference channels. This is used for taking advantage of 
some of the redundancy between the original RGB 
components. In particular color difference components 
mostly account for less than 20% of the bits used to 
compress a color image; therefore they are better 
represented as individual components [4]. 

B. Discrete Wavelet Transform (DWT) 
DWT [4] is a domain transform that transforms an image 

Tile-component from special domain to frequency domain 
and provides a special decorrelation. This transform can be 
executed for as many levels as necessary. The output of 
each level of DWT is categorized into four sub-bands. Each 
sub-band contains the high/low frequency characteristics of 
the input image.  

C. Quantization 
Quantization [3] is the process by which the sub-band 

samples generated by the DWT are mapped onto 
quantization indices for coding. This process is lossy unless 
the quantization step is one and the coefficients are integer. 

D. EBCOT Tier-1 
This section receives the quantized wavelet coefficients 

and encodes them into bit-streams. These coefficients are 
sliced into code-blocks before they are fed into the EBCOT 
Tier-1 [9][10]. EBCOT Tier-1 is composed of two parts: 
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Bit-Modeler and MQ-Coder [4]. Bit-Modeler is a bit-plane 
(a matrix that contains all the bits of the same order of all 
the coefficients of a code block) coder. A Bit-Modeler 
exploits the symmetries and redundancies within and across 
the bit-planes and generates corresponding contexts for each 
bit. After the context is generated, the MQ-Coder will code 
the bits (decisions) based on their associated contexts. The 
MQ-Coder is a derivative of Q-Coder [12] and generates 
compressed bit-streams for every code-block. The detail 
functionality of MQ-Coder is explained in Section II. 

E. EBCOT Tier-2 
This tier is for rate allocation. The rate allocation is 

responsible for acquiring the highest quality for the output 
while maintaining a predetermined resolution, or acquiring 
the highest resolution while maintaining a predetermined 
image quality. At EBCOT Tier-2 [3] the bit-streams 
generated by the Tier-1 is collected with their rate-distortion 
information. Then different truncation points are set 
according to the optimization diagram. Each truncation 
point determines how many bits of a relevant bit-stream are 
to be selected for the final bit-stream. 

 
TABLE I 

RUN TIME PERCENTAGE OF DIFFERENT MODULES IN JPEG2000 ENCODER 
 

 

Operation Lossy Lossless 
Component Transform 10.1 3.64 
DWT 25.14 10.41 
Quantization 6.4 N.A. 
EBCOT Tier-1 44.86 67.35 
EBCOT Tier-2 13.5 18.6 

 

The execution time of different modules in the JPEG2000 
algorithm is presented in Table I. It is noted from this table 
that EBCOT algorithm, as one of the main modules in 
JPEG2000 standard, occupies over half of the execution 
time of the whole procedure. It is also noted that the 
complexity weight of EBCOT lies within Tier-1. Therefore, 
the architectures proposed to reduce hardware resources of 
Tier-1 while maintaining a high throughput, are highly 
valued.  

In this paper we propose a novel pipelined architecture 
for JPEG2000 MQ-Coder. In our proposed architecture we 
have focused on reducing the hardware resources while 
securing a high throughput for the design. Our main 
contribution in this design is a special trade-off between 
area and execution time. 

This paper is organized at follows: in the next section a 
deep analysis of the MQ-Coder will be presented. In section 
III the proposed architecture for the MQ-Coder are 
reviewed. Our proposed architecture is presented at section 
IV. Synthesis results are depicted in section V followed by 
conclusions and references. 

II. MQ-CODER ALGORITHMS AND ANALYSIS 
MQ-Coder is a module applied in JPEG2000 EBCOT 

Tier-1 for generating output bit-streams [3][4][9]. MQ-
Coder is an adaptive Binary Arithmetic Coder (BAC). The 
functionality of BAC is discussed in the following sub-
section. 

A. Binary Arithmetic Coder (BAC) 
In BAC [13], symbols (either logic '0' or logic '1') in a 

code-stream are classified as either More Probable Symbol 
(MPS) or Less Probable Symbol (LPS) [13]. The probability 
of the occurrence of the MPS is called Pe and the 
probability of the occurrence of LPS is called Qe. Either of 
the symbols 0 or 1 can be MPS or LPS depending on the 
probability of their occurrence. In BAC an interval is 
considered in order to represent the probability of MPS and 
LPS. The initial interval is [0,1) and is divided to 
subintervals corresponding to the values of Qe and Pe. 
When a symbol occurs (either MPS or LPS), the subinterval 
associated with that symbol becomes the new interval. 
When the last symbol has been received a code-word C will 
be developed. The code-word C always points to the left 
point (lower bound) of the interval and A denotes its width.  

The BAC algorithm needs multiplication for the coding 
of each symbol, which is an area and time consuming 
operation for hardware implementation. Also, since a 
compressed data will only be generated when the last 
symbol of an input stream has been received by the encoder, 
an implementation of this algorithm will be exposed to 
serious loss of data at the times that the last bit of a stream is 
not received. Finally, after each update the length of the 
code-word and interval will be grown. This leads to a need 
for a high number of bits for storing the code-word and 
interval in hardware implementation of the algorithm. A 
specific type of efficient BAC which has been adapted to 
deal with the issues discussed above has been developed 
and is called MQ-Coder. 

B. MQ-Coder 
This adaptive binary arithmetic coder is used in 

JPEG2000 standard. In order to omit the multiplication 
operations, the length of interval A is maintained in the 
range [0.75,1.5). This means that the interval is always 
approximately equal to 1, if rounding to one significant bit. 
Therefore Qe ×A ≈ Qe and the following changes will be 
made to step 3 of the encoding process of BAC. MPS 
occurrence: C = C + Qe and A = A – Qe. LPS occurrence: A 
= Qe. The value C is kept in a 32 bit code-word [3][4] as 
shown in Figure 2. 

 

0000  cbbb  bbbb  bsss  xxxx  xxxx  xxxx  xxxx
   31…….28    27…...24    23…….20    19…....16   15…..12     11…….8     7…….4      3……..0

 
Fig. 2. Code-word partitions 

 

In MQ-Coder, the last byte of the code-word is being sent 
to the output at special times, therefore the problems 
associated with the growing length of a code-word and 
compressed data being generated only after receiving the 
code-word's last bit is removed. The MQ-Coder can be 
understood as a module illustrated in Figure 3, which maps 
a sequence of input symbols (decisions) and associated 
contexts, to a single compressed code-word.  

The MQ-Coder utilizes a probability model for its 
encoding process. This model is implemented as a Finite 
State-Machine (FSM) of 47 states. In this state-machine, 
each state contains coding information. Coding information 
determines whether the current MPS (Most Probable 
Symbol) is 0 or 1. If an MPS has occurred the CODEMPS 
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algorithm is performed, while if an LPS has occurred the 
CODELPS algorithm is performed. 

 

Probability
Estimator

Arithmetic
Unit

Decision

Context
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data

 
Fig. 3.  MQ-Coder block diagram 

1. CODEMPS Algorithm 
If an MPS has occurred, the CODEMPS procedure [3]  is 

called. The length of interval A is updated to (A – Qe) and 
code-word C is updated to (C + Qe). The value of A is 
always checked after it has been updated to determine if it 
has fallen below 0.75. If it does, it could mean that (A – Qe) 
has fallen below the value of Qe meaning that the 
subinterval associated with MPS is smaller than the 
subinterval associated with LPS. Therefore the two 
subintervals must be changed. 

2. CODELPS Algorithm  
If an LPS has occurred, the CODELPS procedure [3]  is 

called. The length of the interval A is updated to value Qe, 
while the code-word C remains unchanged. If the LPS 
occurs successively for many times, Qe would become 
progressively larger and eventually (A – Qe) would become 
less than Qe. Therefore the portion of interval A that 
represents probability associated with LPS would become 
larger than the portion representing the probability of MPS. 
However, this does not occur since the CODELPS 
procedure tests for this condition and swaps the intervals 
associated with LPS and MPS when necessary. 

3. Renormalization Algorithm  
In order to ensure that the interval value A always 

remains in the range of [0.75,1.5), a renormalization [3] 
method is applied. The value A would fall below the value 
of 0.75 at the times that so many MPS has occurred. This 
case is also true for every time that an LPS occurs. This is 
due the fact that the value Qe, which interval A is updated 
to, is always less than 0.75. The renormalization algorithm 
shifts the values of A and C every time it is applied. The 
value of C code-word is sent to the output as compressed 
data by the byte-out and flush algorithms. These algorithms 
are discussed in the following sub-sections. 

4. Byte-out Algorithm 
The byte-out algorithm [3]  generates the current byte-out 

value regarding the value of the last byte-out and carry bit in 
the code-word. As it was mentioned before the value of C is 
added with the Qe value each time a new decision has been 
received and value of C has been changed. If a carry bit (bit 
'c' in C code-word) is generated from this addition, it must 
be added to the last generated byte-out. If the last byte-out 
becomes 0xFF, the carry bit is sent individually along with 
the last byte-out in order to prevent further carry 
propagation. This is called bit-stuffing. 

5. Flush Algorithm  
The flush algorithm is composed of different parts. At 

first a set-bit algorithm is performed in order to detect the 

best value of C, so that the lower two bytes of C contains 16 
or 15 bits with the value of 1. After the set-bit algorithm [3], 
the byte-out algorithm is called for two times. At the end, 
the last compressed data is checked whether it is 0xFF or 
not. If it is, nothing is sent to the output since the 0xFF are 
not sent as the encoded data. 

The complexity of the different algorithms in MQ-Coder, 
make its implementation very difficult. Some challenges 
encountered in the implementation of these algorithms are 
as follows: 

1. The encoding procedures are serial processes with 
high dependency. Therefore it is impossible to 
employ parallel processing in the implementation 
of these procedures. 

2. Renormalization is a time consuming process, which 
is due to the sequential shifts that are employed in 
this algorithm. Therefore a novel technique for 
reducing the execution time of this process is 
necessary for hardware implementation. 

3. A large number of calculations are applied for each 
context-decision input. This leads to a long 
execution time and too many resources in hardware 
implementation. 

In order to achieve a good hardware implementation of 
the MQ-Coder, one must take the aforementioned 
challenges into consideration. 

III. PREVIOUSLY PROPOSED ARCHITECTURES 
In this section the hardware implementation of different 

architectures are compared. Several MQ-Coder 
implementations have been introduced in the literature. 
These implementations were using either pipelined or non-
pipelined architectures. 

Non-pipelined architectures [14] suffer from a low clock 
frequency and a very low throughput. Several buffers are 
required for interfacing such architectures with the rest of 
the components and in order to match their low throughput. 
This not only affects the overall performance but also 
increases the hardware resource requirements. 

Pipelined architectures consist of a sequence of pipeline 
stages. The architecture proposed in [15] consists of three 
stages. The first stage calculates the new interval and code-
word results. In order to perform these operations the Qe 
value and other necessary information such as NMPS will 
be derived from FSM [3][4]. The renormalization algorithm 
is also performed in this stage. The second stage is 
dedicated to the bit-stuffing algorithm. At the third stage 
four FIFO modules are used. The intricacy of the first stage 
leads to a critical path that affects the clock frequency. In 
this design there is no mechanism to prevent data hazards. 
Since data hazards occur quite often during an adaptive 
binary arithmetic coding process, the proposed architecture 
suffers from a large number of pipeline stalls. The flush 
algorithm is not supported in this design. 

The proposed architecture in [16][17] has four pipeline 
stages which are more balanced compared to the previous 
architecture. The index and MPS sense of each context is 
stored at the first stage. At stage two a probability 
estimation model is implemented as a look-up table. At the 
third stage calculations for updating the value of interval is 
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performed. The renormalization algorithm is also fulfilled in 
this stage. Each shift applied in the renormalization 
algorithm takes one clock cycle in this design. The 
calculation and renormalization of code-word C is applied 
in the last pipeline stage. The compressed data is issued 
from this stage to the output. 

In this design, a multi-port memory is used. This leads to 
an implementation that occupies a large area, and has a slow 
access time. Besides, as the renormalization algorithm is not 
implemented with a barrel shifter, there is more chance for 
pipeline stalls. The flush algorithm is not supported in this 
design either. 

The proposed architecture proposed in [18] is composed 
of four pipeline stages. At the first stage the probability 
model is implemented and the state of each context is 
stored. The main function of stage two is to update the 
interval value. The renormalization algorithm is also 
performed in this stage. The update and renormalization of 
the 16 lower bits of the C code-word, is done in this stage. 
The rest of the bits in C is updated and renormalized at the 
last stage. This is done in order to shorten the critical path. 
The flush and byte-out algorithms are also performed at the 
last stage. 

This design suffers from the slow access time and large 
area consumption caused by employing a multi-port 
memory. The renormalization algorithm is not implemented 
with a barrel shifter, which adds to the chance of receiving 
pipeline stalls. 

The architecture proposed in [19] is a five pipelined 
stage. The states of contexts are stored at the first stage. The 
probability model is implemented at stage. The update and 
renormalization of interval value is performed at the third 
stage. The code-word C is updated and renormalized at the 
fourth stage. At the last stage the byte-out and bit-stuffing 
algorithms are implemented. 

The design has balanced stages and no stalls. But this has 
consumed a lot of hardware resources which in turn has lead 
to large area consumption. The complexity of this design is 
mostly caused by the attempt to eliminate pipeline stalls. 
The flush algorithm is not supported in this design either.  

The observed imperfections in the proposed architectures 
were: unbalanced pipeline stages, not supporting all the 
algorithms present in the MQ-Coder, lack of solution for 
removing data hazards, high area consumption and 
inefficient implementation for the renormalization 
algorithm. We must note that each one of the proposed 
architectures has some of the defects mentioned above. 

IV. PROPOSED ARCHITECTURE 
Our proposed architecture consists of five pipeline stages 

as shown in Figure 4. These stages are as follows: 1) 
Context-Decision Fetch with data-Forwarding (CDFF), 2) 
Probability Estimation (PE), 3) Interval Update (IU), 4) 
Code-word Update (CU) and 5) Byte-Out (BO). Each stage 
is described in details below. 

A. Context-Decision Fetch with data-Forwarding (CDFF) 
This is the first stage (Figure 4.a.) of our pipelined 

architecture. The inputs of this stage are a 5-bit context 
value (ctx-read) along with a single bit decision signal 

(decision). The duty of this stage is to generate the state of 
input value ctx-read. The state includes index of Qe table 
(look-up table that represents the probability model) and 
MPS sense [4]. This is done through a Context-Table 
module that contains a state value for every context. These 
state values are updated through a feedback context called 
ctx-write. The current state of the signal ctx-write is updated 
to new-state which is provided by the next stages. In case 
that two similar context values are fed to this stage 
consecutively, the new-state signal is saved and sent to the 
state output of this stage directly, thus avoiding pipelined 
stalls. Detecting such cases is done by a Data-Forward-
detector module that compares the values of two 
consecutive contexts.  

B. Probability Estimation (PE) 
The main module of this stage (Figure 4.b.) is Qe-Table 

[3] which in fact represents the probability model. Each 
entry of this table contains probability value (Qe), new 
index in the case of MPS or LPS occurrence (NMPS and 
NLPS) and switch (SW) signal [3]. The normal practice in 
pipeline architectures is to employ a multi-port memory in 
order to implement the Qe-table. However, our design 
utilizes a special technique in order to replace the multi-port 
memory with a single port memory. In this technique the 
NMPS and NLPS value corresponding to the last context 
are always stored. In order to handle the data-hazard 
situation, the index of the current context or the NMPS or 
the NLPS of the last context is used as the correct index of 
the current context. It must be noted that cases in which 
data-hazard occurs are detected by the data-forward-
detector in the previous stage. Whether the index of the 
current context or the NMPS/NLPS of the last context is 
selected, is done by a module named index-selector. By 
utilizing this technique the design has removed the pipeline 
stalls of this stage with minimum hardware overhead.  

C. Interval Update (IU) 
The main task of this stage (Figure 4.c.) is to update the 

interval length (A) of MQ-Coder. This interval is stored in a 
16-bit register called A-Register. In order to update the A 
value to A – Qe, a 16-bit subtractor is employed. The output 
of the subtractor is multiplexed with Qe-value and is passed 
to Zero-Detector and A-Barrel-Shifter as a new interval 
length. The Zero-Detector module detects the number of 
consecutive zero bits at most significant positions of this 
new interval length (Zero-Num). The Zero-Num value is the 
number of shifts required for the renormalization algorithm 
and is passed to A-Barrel-Shifter and to the next stage. The 
new interval length is shifted by the A-Barrel-Shifter in a 
single clock cycle. The shifted value is stored in A-Register 
as the renormalized interval length. The normal practice in 
pipelined architectures is to implement hardware for a 
maximum of 15 shifts and dedicate one clock cycle per each 
shift. This results in pipeline stalls equal to the number of 
shifts. In our architecture the shift is performed by A-Barrel-
Shifter and therefore avoiding extra clock cycles. 

 
Besides, the renormalization of the A interval is 

performed for 79% (as shown in Figure 5) of the times and
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Fig. 4.  Proposed pipelined architecture data path 
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Fig.  5.  Renormalization occurrence probability 

the maximum number of shifts applied for each 
renormalization is equal to 15, yet as the simulations results 
presented in Figure 6 indicate, the number of shifts is less 
than 8 for more than 90% of the time. In our design in order 
to reduce hardware resources and increase clock frequency, 
we propose that a maximum of 7 shifts per clock cycle be 
implemented. A Hold-State module is employed in order to 
extend the shifting operations for one more clock cycle at 
the times that the number of shifts is more than 7. This will 
result in one clock stall in 7.9% of condition in total. 
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Fig.  6.  Number of shifts for various renormalizations 

Another module in this stage is the Update-State unit 
which is used to update new state of current context and 
also determines if decision is MPS or LPS. The outputs of 
this module are sent to the context-table of stage 1 as ctx-
write and new-state. 

A. Code-word Update (CU) 
The updating of code-word value is performed in this 

stage (Figure 4.d.). The code-word value (C) is stored in a 
32-bit register called C-Register. The number of shifts that 
should be performed over the A value and C code-word 
before every byte-out is stored in a 4-bit register called CT-
Register. It should be mentioned that every time the CT-
Register becomes zero a byte-out is sent to the next stage. 
After every byte-out this register is initialized to the value 
determined by the Init-CT. In order to update the CT-
Register a 4-bit subtractor called A-subtractor is used to 
reduce the CT-Register by Zero-Num. Normally the output 
of the A-subtractor is positive. Yet in some occasions when 
CT-Register is less than Zero-Num the result becomes 
negative. In order to correct this, a 4-bit adder called Init-
Adder is employed. 

In order to generate the new code-word and therefore 

perform the renormalization algorithm, the C + Qe value 
and the current code-word are multiplexed and the result is 
passed to the C-Barrel-Shifter. The number of shifts applied 
in the C-Barrel-Shifter is equal to the number of shifts 
applied to the A-value in the previous stage. 

In the standard the shift operation for the code-word 
value is introduced so that each shift is performed at every 
clock cycle. The byte-out data is generated when enough 
shifts have been performed over the C code-word. The rest 
of the shift operations are applied after byte-out generation. 
However, since the shift operations are performed with a 
barrel shifter in our proposed architecture, the byte-out is 
produced after all the shifts are applied together. A C-Reg-
Correction module is employed in order to recognize the 
correct location of the byte-out data in the C code-word. 

The flush algorithm [3] is performed parallel to the 
updating and renormalization of the code-word. This 
algorithm is responsible for sending the last value of C-
Register to the output in the end of coding. The suitable C 
value for best compression is the one that contains the most 
number of bits with the value 1. The Carry-Detector is 
employed in order to choose the suitable C value. This value 
is kept in a register called C-Flush-Reg. When the best 
value for C is stored, it must be shifted out in order to 
generate compressed data. This is done by the Flush-Shifter 
module. 

B. Byte-Out (BO) 
This stage (Figure 4.e.) performs the byte-out and Bit-

stuffing algorithm [3]. An 8-bit register, B-Register, is used 
to store the last byte of compressed data. The last byte-out 
for the next clock is selected from the C-Register/C-Flush-
Reg by the Byte-Selector module. 

In order to implement the Bit-stuffing algorithm two 
modules are used: The All-One-Detector that determines 
whether the last byte-out is 0xFF or not and the B-Adder 
that adds the B–Register value with the value determined by 
All-One-Detector, namely the carry bit (27th bit of the code-
word). The output of the B-Adder is sent to the output of 
this stage as the compressed data. 

V. EXPERIMENTAL RESULTS 
The proposed architecture of MQ-Coder has been 

simulated using VHDL. This architecture is implemented by 
0.18 μm CMOS technology. The synthesis results of the 
proposed architecture are shown in Table II. The gate count 
and clock frequency of this architecture is compared to three 
previous pipeline architectures with the same technology. 
The execution time of our proposed architecture is 
compared to other architectures at Table III using Lena, 
Baboon and Jet images with the resolution of 256 × 256 and 
24-bit RGB components. 

As the results indicate, the design in [15] suffers from a 
low clock frequency and consumes a large number of clock 
cycles during the coding process, resulting in a very low 
throughput. The design in [16] has a high clock frequency 
and a low gate count. Yet the number of clock cycles 
consumed for the coding process is very large, which has 
resulted in a low throughput as well.  
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TABLE II 
COMPARISON OF IMPLEMENTATION RESULT  

 

 

  [15]  [16]  [19] Proposed 
Gate# 8459 7100 9156 7325 
Clock Frequency 
(MHz) 

185.5 206.2 190.6 208.1 

 

 

The architecture in [18][19] does not have a high clock 
frequency, but since the number of clock cycles for the 
encoding process is very low, therefore the coding time is 
acceptable. The only shortcoming of this design is its high 
number of gate count. In our proposed architecture although 
the number of clock cycles for an encoding process is higher 
than the architecture in [19], but due to its high clock 
frequency it has the lowest coding time. In addition the gate 
count of our proposed architecture is 20% lower than the 
next fastest design. 

 
TABLE III 

EXECUTION TIME FOR THREE PICTURES 
 

   Timing Lena Baboon Jet 

 [15] 
CLK # 1311233 1554195 1286333 

Time (ms) 7.1 8.38 6.94 

 [16] 
CLK # 1297355 1605745 1276743 

Time (ms) 6.29 7.79 6.19 

 [19] 
CLK # 998967 1224958 959033 

Time (ms) 5.24 6.42 5.03 

Our 
CLK # 1077885 1321729 1034796 

Time (ms) 5.18 6.35 4.98 
 

Post synthesis simulations indicate that the proposed 
architecture encodes precisely one context-decision pair 
every 1.079 clock cycle and operates at 208 MHz. This 
architecture is able to compress 4 CIF video (704×576 
pixels) at a rate of 30 frames per second, making it a good 
candidate for high resolution real time video coding, or high 
speed compression of high resolution images. 

VI. CONCLUSION 
 
A high-speed pipelined architecture with reduced area for 

JPEG2000 MQ-Coder is proposed in this paper. In this 
design the time consuming algorithms are divided into 
different pipeline stages. Therefore the critical path has been 
reduced considerably. All of the algorithms introduced in 
the JPEG2000 MQ-Coder are supported in this design. 
Special techniques employed in order to implement the 
renormalization algorithm, has led to major reduction in 
hardware recourse requirements and improving the clock 
frequency while receiving a few pipeline stalls. The stalls 
occur in 7.9% conditions in total. Therefore every context-
decision pair is encoded in 1.079 clock cycle. 

The architecture is implemented by 0.18 μm CMOS 
technology and is functional at 208 MHz clock frequency. 
This architecture being able to code 4 CIF video (704 × 
567) at a rate of 30 frames per second is suitable for real 

time image processing applications. 

REFERENCES 
[1] "Information Technology—JPEG—Digital Compression and Coding 

of Continuous-Tone Still Image—Part 1: Requirement and 
Guidelines", ISO/IEC 10918-1 and ITU-T Recommendation T.81, 
(1994). 

[2] W. B. Pennebaker and J. L. Mitchell, "JPEG Still Image Data 
Compression Standard", New York: Van Nostrand Reinhold, (1992). 

[3] "JPEG2000 part I final draft international standard," ISO/IEC 
JTC1/SC29/WG1 N1890, (2000). 

[4] D. S. Taubman and M. W. Marcellin, JPEG2000: image compression 
fundamentals, standards and practice, MA: Kluwer, Norwell, (2002). 

[5] M. D. Adams, H. Man, F. Kossentini, and T. Ebrahimi, “JPEG 2000: 
The next generation still image compression standard,” Doc. ISO/IEC 
JTC1/SC29/WG1 N1734. 

[6] Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still 
image compression standard,” IEEE Signal Processing Magazine, 
(2001). 

[7] M. J. Gormish, D. Lee, M. W. Marcellin, “JPEG 2000: overview, 
architecture, and applications,” in Proc. IEEE Int. Conf. Image 
Processing, 2, (2000). 

[8] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An 
overview of JPEG-2000,” in Proc. IEEE Data Compression Conf. 
(DCC2000), (2000). 

[9] D. Taubman, "High performance scalable image compression with 
EBCOT", IEEE Transaction on Image Processing, 9, 7, (2000). 

[10] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, “Embedded 
block coding in JPEG 2000,” Signal Processing: Image 
Communication, 17, (2002). 

[11] K.-F. Chen, C.-J. Lian, H.-H. Chen, and L.-G. Chen, “Analysis and    
architecture design of EBCOT in JPEG2000,” in Proc. IEEE Int. 
Symp. Circuits and Systems (ISCAS’01), (2001). 

[12] B. Pemmebaker, J. Mitchell, G. Langdon, R. Arps, "An Overview of 
the Basic Principles of the Q-Coder Adaptive Binary Arithmetic 
Coder", IBM J. RES. DEVELOP, 32, (1988). 

[13] G. G. Langdon Jr., "An Introduction to Arithmetic Coding", IBM 
Journal of Research and Development, 28, (1984). 

[14] K. Andra, C. Chakrabarti, T. Acharya, "A High-Performance 
JPEG2000 Architecture", IEEE Trans. On Circuits and Systems for 
Video Technology, (2003). 

[15] K.K. Ong, W.H. Cahng, Y.C. Tseng, Y.S. Lee, C.Y. Lee, "A High 
Throghput Context-Based Adaptive Arithmetic Coder for JPEG2000", 
IEEE International Symposium on Circuits and Systems, (2007). 

[16]  M. Tarui, M. Oshita, T. Onoye, I. Shirakawa, "High-Speed 
Implementation of JBIG Arithmetic Coder", Proceedings of the IEEE 
Region 10 Conference, (2001). 

[17] JBIG Bi-Level Image Compression Standard, ISO/IEC 11544 and 
ITU-T Recommendation T.82, (2000). 

[18] C. Lian, K. Chen, H. Chen, L. Chen, "Analysis and Architecture 
Design of Block Coding Engine for EBCOT in JPEG2000", IEEE 
Transaction on Circuits and Systems for Video Technology, 13, 
(2003). 

[19] M. Ahmadvand, A. Shahrokhi, O. Fatemi, "A High-Speed Pipelined 
Architecture for MQ-Coder of JPEG2000 Standard", 27th Queen's 
Biennial Symposium on communications, (2009). 

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012




