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Abstract—Nowadays, there are many emerging electronic
structures for which their nonlinear models for computer-
aided design are necessary, especially for the ones from the
areas of nanoelectronics and microwave techniques. However,
for such structures, sufficiently accurate analytic models are
mostly unavailable. This is partially caused by the fact that
the physical principles of the element operation are sometimes
not fully clear (especially for quantum devices), and also
by bizarre characteristics of some of the elements (typically
with irregularities and a hysteresis in parts of characteristics,
or by negative differential conductances that are typical for
the microwave transistors). In such cases, models based on
artificial neural networks are necessary and useful for these
elements. Majority of the elements can be characterized with
a single artificial neural network. However, for certain kinds
of elements, a cooperation of more artificial neural networks is
necessary. This case is described in the paper first, where the
Pt−TiO2−x−Pt memristor characteristic with an extraordinary
(but typical) hysteresis is approximated by a set of cooperative
artificial neural networks, as a single network is unable to
characterize this unconventional element. Second, an ability
of the artificial neural networks for modeling the negative
differential conductance is demonstrated by characterizing
the 110GHz pseudomorphic high electron mobility transistor
(pHEMT). Moreover, a semiautomatic selection of an optimal
structure of the networks (both numbers of hidden layers and
the numbers of the elements in the layers) is also suggested.

Index Terms—artificial neural networks, multilayer percep-
tron, device characterization, memristive system, pHEMT.

I. INTRODUCTION

AMATHEMATICAL description of the memristive ele-
ments is a very complicated task due to an extraor-

dinary hysteresis and several irregularities in some parts
of their characteristics. It can be easily seen in Fig. 1,
where a set of measured points for a Pt − TiO2−x − Pt
memristor is shown [1]. (The element is called “memristor”
in [1]; however, it is rather a memristive system because the
characteristic does not have odd symmetry [2], [3].) There are
various analytic models of memristors [2], but their precision
is naturally limited due to the simplicity of the functions.
Even single – both exclusive and corrective – artificial neural
networks (of the multilayer perceptron type shown in Fig. 2)
are unable to characterize this element due to the fact it is
neither i = f(v) nor v = f(i) function. For this reason, the
element has to be approximated by more cooperative neural
networks, some of them should be of i = f(v) and other
ones of i = f(v) types.
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Fig. 1. Measured characteristic of the memristive system.

Fig. 2. Multilayer perceptron (MLP) structure.

Generally, for the pHEMT device, it is important to
emphasize that the nonlinear dependence of the drain current
on the gate-drain and gate-source voltages affects its overall
behavior, i.e., also the hundred-gigahertz part of the model
is strongly affected by the transistor characteristics [4].

Further, for modeling the pHEMT devices, the two regions
in the characteristics are critical regarding the precision:
• The low-current part (for a subthreshold voltage, or

slightly over the threshold voltage), where the depen-
dence of the threshold voltage on the drain-source
voltage becomes extremely important (and frequently
inaccurately defined by standard analytic models).

• The high-current part, where the negative output con-
ductance becomes substantial (and again inaccurately
defined in most of the analytic models).
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TABLE I
SYSTEMATIC SEARCHING FOR THE OPTIMAL NUMBER OF ELEMENTS

OF THE 5-LAYER STRUCTURE FOR REGION #1

Type of network Relative deviation
i = f(v) after 500 training epochs
5-layer rms (%)

MLP-1-2-2-2-1 2.67

MLP-1-3-2-2-1 0.93

MLP-1-4-2-2-1 0.87

MLP-1-2-3-2-1 0.50

MLP-1-2-4-2-1 0.65

MLP-1-2-2-3-1 1.15

MLP-1-2-2-4-1 0.79

TABLE II
SYSTEMATIC SEARCHING FOR THE OPTIMAL NUMBER OF ELEMENTS

OF THE 5-LAYER STRUCTURE FOR REGION #2

Type of network Relative deviation
i = f(v) after 500 training epochs
5-layer rms (%)

MLP-1-2-2-2-1 3.88

MLP-1-2-3-2-1 3.91

MLP-1-2-4-2-1 1.75

MLP-1-2-2-3-1 4.02

MLP-1-2-2-4-1 1.05

MLP-1-3-2-3-1 2.25

MLP-1-4-2-2-1 1.51

However, the two above phenomena can be easily and pre-
cisely characterized by multilayer artificial neural networks.

II. A STRATEGY OF USING THE COOPERATIVE
ARTIFICIAL NEURAL NETWORKS FOR MODELING

THE MEMRISTIVE SYSTEMS

As the single networks, the MLP (multilayer perceptron)
ones were used. For example, for the MLP-3-4-3 network
in Fig. 2, we have three input x = (x1, x2, x3) and three
output y = (y1, y2, y3) variables, which are determined by
the formula

y = F 3
[
W 32F 2

(
W 21x− w2

0

)
− w3

0

]
, (1)

where the single superscript marks the layer number, and
the double one expresses the relation of the two layers. The
scalars w2

0 and w3
0 are threshold levels of neurons (w0) of

the second (hidden) and third (output) layers, respectively.
The matrices W 32 and W 21 contain synaptic weights [5]
between the second and third layers, and first and second
ones, respectively; and the operators F 3 and F 2 symbolize
the nonlinear functions in the third and second layer, respec-
tively.

The result of using the four cooperative neural networks
is shown in Fig. 3. (For some more bizarre types of the
memristive systems, the regions #3&4 in Fig. 3 cannot be
represented by one neural network, but by two ones.) Any of
the four regions (#1, #2, #3&4, and #5) were modeled by a
single artificial neural network; however, they must cooperate
because they share boundary points. The comparison of some
measured points (dots) with the model (solid lines) in Fig. 3
demonstrates the successfulness of the method. Moreover,
for each neural network, an optimal structure of its hidden
layers was also investigated, and the results are shown in
Tables I through IV. For any network, there exists an optimal

TABLE III
SYSTEMATIC SEARCHING FOR THE OPTIMAL NUMBER OF ELEMENTS

OF THE 5-LAYER STRUCTURE FOR REGIONS #3 & #4

Type of network Relative deviation
i = f(v) after 500 training epochs
5-layer rms (%)

MLP-1-3-3-2-1 12.25

MLP-1-3-4-2-1 9.86

MLP-1-3-5-2-1 3.16

MLP-1-3-6-2-1 2.95

MLP-1-3-7-2-1 2.80

MLP-1-3-8-2-1 3.05

TABLE IV
SYSTEMATIC SEARCHING FOR THE OPTIMAL NUMBER OF ELEMENTS

OF THE 6-LAYER STRUCTURE FOR REGION #5

Type of network Relative deviation
v = f(i) after 500 training epochs
6-layer rms (%)

MLP-1-3-3-3-2-1 13.22

MLP-1-3-4-3-2-1 15.28

MLP-1-3-4-4-2-1 11.80

MLP-1-3-5-4-2-1 8.05

MLP-1-3-6-4-2-1 7.83

MLP-1-3-6-5-2-1 8.75

MLP-1-3-7-6-2-1 7.94

structure, it is not the most complicated case, and there are
more solutions near the optimum. It is clear that the root-
mean-square error rms can be of a percentage order even
for the approximation of the most problematic part of the
memristive-system characteristic.

III. USING THE SINGLE MULTILAYER ARTIFICIAL
NEURAL NETWORK FOR MODELING THE

PSEUDOMORPHIC HIGH ELECTRON MOBILITY
TRANSISTOR (PHEMT)

In order to demonstrate the performance of the identifica-
tion procedure, measured multibias data of the transistor of
a GaAs-pHEMT type with a gate length 0.25 µm has been
used [6], [7].

After numerical experiments, we have found that a five-
layer network is necessary for sufficiently precise charac-
terization of this 110GHz transistor. A typical result for the
MLP-2-9-13-8-1 artificial neural network is shown in Fig. 4
(again, (1) was used). The network yields very precise results
in practically all the parts of the characteristics.

Moreover, similarly to the investigations for the memris-
tive system, we have searched for an optimal structure of the
network with respect to its accuracy. Some of the results are
shown in Table V. The best results – for both root-mean-
square error rms (2) and maximum-absolute-value-deviation
δmax (3) – were obtained for the MLP-2-10-12-8-1 structure.
However, there are more structures that enable similar errors,
e.g., MLP-2-10-11-8-1 or MLP-2-9-12-8-1. That means there
are no critical demands for finding just one optimal structure
– more ones can offer comparable accuracy.

Furthermore, from Table V, it can also be seen that the
most complicated network MLP-2-10-13-8-1 has given the
worst result. It is not an exceptional feature – the experiments
have shown there exists a region of relatively not complicated
networks that give the most accurate results.
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Fig. 3. An approximation of the memristive system with a set of cooperative artificial neural networks, both y = f(x) and x = f(y) types of the
networks are necessary because any single network is unable to characterize the element precisely.

Fig. 4. An approximation of the 110GHz 0.25µm GaAs pHEMT output characteristics by the single MLP-2-9-13-8-1 artificial neural network.
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TABLE V
SYSTEMATIC SEARCHING FOR THE OPTIMAL NUMBER OF ELEMENTS

OF THE 5-LAYER STRUCTURE FOR CHARACTERIZING PHEMT

Type of network rms (%) δmax (%)
MLP-2-10-13-8-1 0.8568 71.0582
MLP-2-10-12-8-1 0.2835 10.1848
MLP-2-10-11-8-1 0.3406 12.0719
MLP-2- 9-13-8-1 0.4203 17.7939
MLP-2- 9-12-8-1 0.3116 13.3131
MLP-2- 9-11-8-1 0.3565 22.811

In a summary, with characterizing pHEMTs by a conve-
nient artificial neural network (which can be found relatively
easily), we can obtain rms lesser than a percent and δmax of
about 10 percent.

IV. CONCLUSIONS

In the paper, a reliable and robust method for the char-
acterization of emerging electronic elements by the artificial
neural networks has been presented. For the elements with
strong hysteresis and substantial irregularities, an original
method has also been suggested based on more cooperative
networks. A semiautomatic method for selecting the optimal
structure of single neural networks has been demonstrated,
which shows that the resulting error can be of a percentage
order even for the elements with extraordinary hysteresis and
irregularities. In this way, using the novel idea of cooperative
neural networks promises to be a sufficient modeling tool
for various structures of nanoelectronics. Furthermore, for
modeling pHEMTs and similar microwave transistors, only
a single network can be sufficiently precise, which has been
proven by a number of experiments, and the optimal structure
of the network can be found relatively easily as well.

APPENDIX

The root-mean-square error (rms) and maximum-absolute-
value-deviation (δmax) computed for the results in Tables I–V

are defined in the following natural way:

rms =

√√√√√√
np∑
i=1

(
y
(ident)
i − y

(meas)
i

y
(meas)
i

)2

np
× 100 %, (2)

δmax = max
i=1,...,np

∣∣∣∣∣y(ident)
i − y

(meas)
i

y
(meas)
i

∣∣∣∣∣× 100 %, (3)

respectively, where y
(ident)
i and y

(meas)
i are the identified and

measured values, respectively, and np is the number of all
points.
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