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Abstract—In this paper a novel circuit is proposed for pulse-
based logarithmic computation using integrate-and-fire (IF)
structures. The smallest unit in the module is a network of
three IF units that implements a margin propagation (MP)
function using integration and threshold operations inherited
in the response of an IF neuron. The three units are connected
together through excitatory and inhibitory inputs to impose
constraints on the network firing-rate. The MP function is based
on the log likelihood computation in which the multiplication of
the inputs is translated into a simple addition. The advantage
of using integrate-and-fire margin propagation (IFMP) is to
implement a complex non-linear and dynamic programming
functions of spike based (pulse based) computation in a modular
and scalable way. In addition to scalability, the objective of the
proposed module is to map algorithms into low power circuits
as an attempt to implement signal processing applications on
silicon. The paper shows the mechanism of IFMP circuit,
dynamic characteristics, the cascaded modularity, and finally
a verification of the algorithm in analog circuit using standard
0.5µm CMOS technology.

Index Terms—Integrate and fire, excitatory, inhibitory, pulse
mode computation, margin propagation, log-sum-exp.

I. INTRODUCTION

Although Von Neumann computer architecture perform
high speed computation and communication but they are
unable to perform brain tasks processes in an efficient way
such as the biological sensing in the retina and cochlea.
A new trend in computer architecture for applications
other than precise, high speed calculation and efficient
communications is now in the fourth generation of research
work to built up a neuromorphic systems. The goal of the
neuromorphic systems is to implement sensory devices in
an efficient way as in the biological sensors [1], [2], [3], [4],
[5]. The architecture of the morphed biological systems are
different from the traditional Von Neumann architecture such
as asynchronous- parallel processing instead of synchronous-
single processing, hybrid computation instead of digital
computation, neuron model as a basic core of the processing
instead of the arithmetic logic unit and finally, analog VLSI
design instead of digital VLSI. As a contribution in this
huge project, a novel and scalable algorithm is proposed to
approximate non-linear function as an important procedure
to implement signal processing algorithms in the sensory
applications such as recognition and classification. The main
objective of this work is to map a pulsed mode algorithm
into low power silicon circuits as an attempt to implement
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signal applications in the neuromorphic systems.

The proposed module has three concepts, the first concept
is to map the non-linear functions into margin propagation
”MP” [6] which is an approximation function to the log
-sum - exp (LSE) expression. The second concept of the
proposed module is based on an integrate and fire neuron
model. The third concept is to implement the non-linear
function in pulse stream mode. The proposed pulse mode
computation module is abbreviated as ”IFMP” since it
implements a MP function using IF neuron model.

For the first concept, the LSE math function is used
in factor graph algorithms in which the sum of product
terms are used [7]. In these algorithms, the probabilities or
the marginal functions of passing messages are evaluated
between the nodes and variables of a factor graph. Since the
product of probability terms tend to decrease as the number
of probability terms increase, then we would have a problem
of underflow that cause false computations. Therefore, such
algorithms use the log-likelihood computation to eliminate
the underflow problem as well as to increase the dynamic
range of variables in the computation process. But the
representation of LSE is not scalable in hardware design.
Therefore the margin propagation function (scalable function
in hard ware design) is used as an approximation method
to the LSE function. The concept of margin propagation
(MP) algorithm is based on the idea of reverse water-filling
(RWF) algorithm, [8]. Given a set of random inputs (scores)
Li ∈ R; i = 1 : m, the RWF algorithm computes the solution
z according to the constraint,

m∑
i=1

[Li − z]+ = γ (1)

where [.]+ = max(., 0) denotes a threshold operation and
γ ≥ 0 represents a parameter of the algorithm. Note that
z is in the log domain. The solution of the equation 1 is
represented by z, where z can be written in LSE and MP
forms as ,

z = log(
m∑
i=1

eLi 'M(L1, L2, L3....Lm, γ) (2)

Where M denotes as the MP function, m denotes the
number of the input operand. In previous work [9], it was
proven that MP is successfully an approximation method
to LSE. The input/output variables in the above work are
represented as currents, also the computation procedure
is implemented using kirchoffs current law. MP was
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implemented in [9] to achieve scalability in the decoding
algorithms. In this work, we introduce the concept of MP
propagation as an approximation method to LSE in pulse
computation mechanism.

Secondly, the structure of the proposed module is based
on an integrate and fire (IF) neuron model that implement
integration and threshold operation. Since the IF model is
a simple representation of a neuron”, it is extensively used
as a neuron model in spiking neural networks [10], [11],
[12] and neuromorphic systems [13], [4]. The IF neuron
itself is the basic computational unit in the sophisticated
and efficient architecture, ”the brain”.

The brain is the most realistic example of an efficient
system, ”hybrid system”, which is the third concept of the
proposed module. The type of the signals (data) transferred
in the brain is mixed between digital as spikes (pulses) and
analog as the variable time between these spikes. The above
signal processing is called pulse stream mode or hybrid
computations [14], [15]. Hybrid (pulse) computation is a
promising research topic since it mixes the advantages of
analog and digital designs. The noise accumulation in analog
stages can be eliminated by digital noise immunity. The
analog design has the advantage of small area, low cost and
low power especially if the design of computational units
is implemented in weak inversion mode of complementary
metal oxide semiconductors (CMOS). Fig. 1 shows the
flow of the proposed module which includes manipulating
the input pulse rate (scaling and converting into logarithm
domain), mapping the function into MP and evaluate the
output z, then scaling back and calculating the exponent of
z to realize the function.

The concept of the proposed algorithm is analysed and
synthesised, proved theoretically, mapped and verified into
a low power analog circuit, implemented in applications
and finally verified on 0.5µm process chip. This paper is
organized as following: In section II, the analysis, synthesis
and dynamic characteristics of the IFMP module is explained
as well as the mathematical proofs of rate convergence in
IFMP are demonstrated in appendix A and B. Section III is
the circuit description and hard ware verification of IFMP.
Section IV is to conclude the paper with the future work.
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Fig. 1: Input/output stages in the pulsed computational mod-
ule.
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Fig. 2: Schematic of the proposed IFMP unit comprising of
three integrate-and-fire modules.

II. IFMP: CONCEPTS AND ANALYSIS

Fig. 2 shows a schematic diagram of the proposed spiking
network module. The network is referred to as an IFMP
module and consists of three integrate-and-fire structures
N1, N2 and N3. The excitatory/inhibitory inputs are repre-
sented by black /white triangles. Units N1 and N2 have self-
inhibitory feedback connections and unit N3 has inhibitory
input denoted as γ. Given the rate of input spike-trains
L1[n] and L2[n] with n being a discrete time-index, it can
be shown that firing-rate of the output Lz[n] (denoted by
E(Lz) = limT→∞

1
T

∑T
n=1 Lz[n]) asymptotically satisfies

the following equation,

[E(L1[n])− E(Lz[n])]++[E(L2[n])− E(Lz[n])]+ −→ E(γ[n])
(3)

and in general for m inputs,
m∑
i=1

[E(Li[n])− E(Lz[n])]+ −→ E(γ[n]) (4)

Note that equation 4 converges only in probability. The
difference between the left and right hand side of the above
equation decreases as the time increases (or the number of
stream sequence of random inputs increases) and hence the
summation of the expected values of the input stream con-
verges to the expected values of the output stream. In order
to prove the convergence of IFMP equation 4 (Appendix
B), it must be first proof the convergence of one neuron
(Appendix A) such that the expected value of output spikes
d[n] is equal to the expected value of the input spike L[n]
overall the samples,

En{L[n]}+ = En{d[n]} (5)

Fig. 4 shows the plot of instantaneous spiking-rates for
N1,N2 and N3, when input rate of the inputs are varied as
shown in Fig. 4 (below). In this experiment, γ = 0.3 and
the input rate L2 = 0.5 for N2 while input rate L1 for N1

increases from 0 to 1. The dynamic of the figure follows
the IFMP equation 4 such that [L1 − z]+ + [L2 − z]+ = γ.
Initially, when L1 is between 0 and 0.25, then the output rate
of N1, N2 and N3 is equal to 0, 0.3 and 0.2 respectively.
When L1 is 0.3, then the output rate of units N1, N2 and N3

are 0.05, 0.25 and 0.25 respectively. When L1 is 0.6, then
the output rate of units N1, N2 and N3 are 0.2, 0.1 and 0.4
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respectively and so on. Hence, the sum of the output rates
for the first two IF units N1, N2 converges to a constrain rate
γ over enough and sufficient time for convergence in which
the dynamics of IFMP satisfies equation 4 as shown in Fig. 4.

 
 

Fig. 3: Dynamic characteristics of IFMP unit for different
values of γ for MP and IFMP ( the analog mode and pulse
mode of MP respectively).
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Fig. 4: Spike-rates for neurons N1, N2 and N3 (upper fig)
when the spike-rate of L1 is monotonically increased, The
rate L2 is kept constant at 0.5 (lower fig).

Fig.3 shows the plot of instantaneous spiking-rates for N3,
when spiking-rate of the input rate L1 is varied from 0.01
to 0.99. For this result, the spiking-rate for input L2 is kept
constant to 0.5 as γ changes from 0.01 : 0.05 : 0.56. The
plot shows that the spiking-rate of N3 increases according to
a piece-wise linear approximation to the margin propagation
function.

It was shown in [9] that the margin propagation (MP) is
an approximation to the log-sum-exp. However, they did not
provide close form representation for the approximation and
the parameters involved. Furthermore, they did not demon-
strate the efficacy of cascading the approximated model. To
address the issues above, we state the followings:
Let L1, L2..Lm denote to the input pulse rates to the IF units
of Fig. 2 [m=2 for this fig], and let zLSE = log(

∑m
i e

Li) is
a solution to

m∑
i

e[Li−zLSE ]+ = 1 (6)

where {zLSE : Rm −→ R}, then using the fact that

e[Li−zLSE ] ≥ [1 + Li − zLSE ]+
We can say that,

m∑
i

[1 + Li − zLSE ]+ ≥ 1 (7)

To make normalization ideal, the above equation equates to
one,

m∑
i

[1 + Li − zLSE ]+ = 1 (8)

m∑
i

[Li − zMP ]+ = 1 (9)

where zMP is the approximated MP value to the LSE as
zMP = zLSE − 1

If normalization factor changes to zLSE/γ =
log(

∑m
i e

(Li/γ)) as a solution to
m∑
i

e[Li−zLSE ]/γ = 1 (10)

MP is approximated as following, (see Fig. 6-a)
m∑
i

[Li − zLSE + 1]+ ≥ 1 (11)

m∑
i

[γ + Li − zLSE ]+ ≥ γ (12)

m∑
i

[γ + Li − zLSE ]+ = γ (13)

m∑
i

[Li − zMP ]+ = γ (14)

such that zMP = zLSE − γ

Fig. 5 shows the above approximation which is equal to
γ between zLSE and zMP , zIFMP where zIFMP = zMP
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Fig. 5: Approximation of rate z between the log-sum-exp
rate (zLSE), Margin Propagation rate (zMP ) and Integrate-
Fire Margin Propagation (zIFMP ).

The MP formulation can be mapped onto a cascaded topol-
ogy by rewriting the LSE equation zLSE = log(

∑m
i e

(Li))
in a recursive form as following,

zLSE[m] = log(
m−1∑
i

e(Li) + e(Lm)) (15)

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



MP MP  
1MPz

1LSEz



MP 
MPz LSEz



( )a

( )b



iL

1L

2L 3L




2MPz

2LSEz

4L
MP 

Fig. 6: (a): Approximation of IFMP to the LSE math func-
tion. (b): Serial cascading or (modularity) of IFPM structure.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

Log−sum−exp
Margin series Cascade
MarginParallel
pulsed Margin series Cascade
pulsed MarginParallel
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the LSE function MP. The y-axis represents the output rate
(z) for different cases showed in the legend. The x-axis
represents the change of input rate for one input while
keeping the rate of other input constant.

zLSE[m] = log(elog(
∑m−1

i e(Li)) + e(Lm)) (16)

zLSE[m] = log(e(zLSE[m−1]) + e(Lm)) (17)

Above is the recursive equation for LSE. Now, Let’s derive
the equations of MP cascading shown in Fig. 6-b. For the
first MP unit,

[L1 − zMP1]+ + [L2 − zMP1]+ = γ (18)

Let L2 = −∞ for the sake of clarity to show the cascading
property. It was shown earlier that zLSE = zMP + γ then
for the second block,

[zLSE1 − zMP2]+ + [L3 − zMP2]+ = γ (19)

[zLSE1 − [zLSE2 − γ]]+ + [L3 − [zLSE2 − γ]]+ = γ (20)

[zLSE1 − zLSE2 + γ]+ + [L3 − zLSE2 + γ]+ = γ (21)

Denote zLSE[n] and zLSE[n−1] are equal to z2 and z1, then

[z2 − z1 + γ]+ + [L3 − z1 + γ]+ = γ (22)

Equation 22 shows that three inputs MP can be imple-
mented using two identical units of MP which is applicable
for higher number of inputs too as shown in Fig. 6-b.
The advantage of cascading is that the algorithms can be
implemented using array of 2-IFMP units integrated on
silicon while the connectivity could potentially be achieved
using an FPGA. Therefore, we do not have to redesign the
hardware for different applications. Fig. 7 shows the match in
the response of LSE, MP function for both serial and parallel
cascaded architecture as well as the IFMP topology for both
cases as well.
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Fig. 8: (a): Schematic circuit of the IFMP model, (b): The
membrane voltage of block B1 and the convergence equation
between the input and output rates for one neuron, (c): output
pulses of block B1 (d), the membrane voltage at the output
of the integrator (v), and input voltage of the integrator (in).

III. IFMP: CIRCUIT DESCRIPTION

The analog circuit of IFMP is shown in Fig.8-a. The
shaded area round blocks B1, B2 ,and B3 represent units
N1, N2 and N3 of Fig. 2 respectively. Block B2 in the upper
right of Fig.8-a represents the circuit of the integrator and
inverter for the three blocks B1, B2 and B3. Fig.8-b shows
the response of the membrane voltage and the convergence
equation between the input and output rates for one neuron
(represented by block B1 in Fig.8-a). Fig.8-c shows the
output pulses (d), membrane voltage (v) and input voltage
(in) of the integrator in Block B1.

The integration and threshold are designed between two
bounds (2.34v, 0.9v). Initially, if the input of the integrator
is zero, the outputs of the integrator and the cascoded
inverter are equal to 3.3 and zero volts respectively. If the
input voltage increases and reaches the high gain region of
integrator amplifier (60db), then the integration phase will
be built which is the discharging phase of the capacitor.
The input current is integrated and the output voltage of the
integrator discharges to the lower bound. At this point, the
output of the cascoded inverter turned into logic one which
will turn the output voltage of the integrator to the upper
bound (charging phase of capacitor). The cycle of charging
and discharging the capacitor C is repeated according to
the amount of the current injected to the inputs of the
integrator (’in’ node). The injected currents to the three
integrators are applied respectively during off and on states
of the input pulses for the excitatory path (PMOS transistors)
and inhibitory path (NMOS transistors). Modules N1, N2

have two excitatory inputs (PMOS path), one self feedback
inhibitory input (NMOS path) and one feedback inhibitory
input (NMOS path) from the output of unit N3, whereas
module N3 has two excitatory inputs (PMOS paths) and one
inhibitory input. The last inhibitory input is represented by
an adjustable constrain rate γ explained earlier.
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The dynamic characteristics of the IFMP module is veri-
fied in Matlab simulation (discussed in section II), cadence
simulation and layout design on .5µ process. Fig. 9 shows
successfully the balance trend in the dynamic characteristics
of one IFMP out of an array of 8*8 IFMP on a (1.5 mm*1.5
mm) package. Two experiments are applied, the first one
when the value of γ rate varies from 0.01 to 0.5 and values
of the two inputs (L1 and L2) are equal to 0.5 and .25
respectively. The second experiment is implemented when
the two inputs rates are 0.5 and 0.5 respectively for the same
change in gamma rate. The two experiments are succes-
sively matched in the dynamic characteristics between the
theoretical results (simulated circuits) and practical results
(designed low power layout on a chip).

(b) 

(a) 

decoder 

8*8  
array of IFMP 

Fig. 9: (a): Dynamic characteristics for two experiments for
one IFMP unit an array designed using 0.5µ process chip
shown in (b)

IV. CONCLUSION

A scalable IFMP computational module is analysed, syn-
thesised, proved theoretically, mapped and verified into an
analog design circuit on a standard 0.5µm process. The
importance of this module is to map a pulsed mode algorithm
into low power silicon circuits as an attempt to implement
signal processing in the neuromorphic applications. The
layout of the chip is designed to include an array of 8*8
IFMP circuit in order to verify algorithmic applications. The
above applications need more than one IFMP unit to map
the algorithms. The above applications are already verified
using IFMP module in both Matlab and cadence simulation.
The applications used to verify the IFMP operation are
concerned with sequence detection using Hidden Markov
Model algorithm and binary classification using support
vector machine. These applications are to be verified in hard
ware using the designed chip as a future work.

APPENDIX A
PROOF OF ONE NEURON CONVERGENCE

The convergence of IF means that the expected value of
output spikes d[n] is equal to the expected value of the input
spike L[n] overall the samples,

En{L[n]}+ = En{d[n]} (23)

To proof the convergence of IF unit, the equation for step
voltage change shown in Fig. can be written as,

V [n] = V [n− 1]− tsI

C
(L[n]− d[n]) (24)

where V is the membrane voltage, n is the instance time,
C is the capacitance that represent the membrane, ts is the
time sampling, I is the biasing current in the NMOS and
PMOS paths, L[n] is the Bernoulli random input variables
and d[n] is the output spikes that take the values { 0,1 }
according to the threshold voltage (vth)and the membrane
voltage V . where

d[n] = 0.5[sgn(Vth − V [n]) + 1] (25)

Then it must be proven that if the membrane voltage V [n]
is bounded, then the expected value of the output d[n] is
equal to the expected value of the input L[n]:

if |V [n]| ≤ c then En{L[n]}+ = En{d[n]}

where c is a constant.
we write the recursive equations of the membrane poten-

tial, sum them to deduce the expectation equation of input/
output and let α = tsI

C , then:

V [n] = V [n− 1]− α(L[n]− d[n]) (26)

V [n− 1] = V [n− 2]− α(L[n− 1]− d[n− 1]) (27)

V [n− 2] = V [n− 3]− α(L[n− 2]− d[n− 2]) (28)

Until
V [1] = V [0]− α(L[0]− d[0]) (29)

If we sum these equations, divide them by the number
of samples N and take the limN→∞ of both side of the
equation, then we get:

lim
N→∞

[V [n]

N

]
= lim
N→∞

[V [0]

N

]
−α

[ 1

N

N∑
n=1

L[n]− 1

N

N∑
n=1

d[n]
]

(30)
If |V [n]| is bounded (if |V [n]| ≤ constant ), then we can
write equation 30 as:

lim
N→∞

[ 1

N

N∑
n=1

L[n]
]
= lim
N→∞

[ 1

N

N∑
n=1

d[n]
]

(31)

Now, return to equation 26: V [n] = V [n− 1]−α(L[n]−
d[n]) where the output dn is equal to:

d[n] = 0.5[sgn(Vth − V [n− 1]) + 1] (32)

Let V ′[n] = Vth − V [n] and V ′[n− 1] = Vth − V [n− 1]. If
we substitute them in equation 26 and 32 then

d[n] = 0.5[sgn(V ′[n− 1]) + 1] (33)

and
V ′ [n] = V ′ [n− 1] + α(L[n]− d[n]) (34)

Now let
d′[n] = sgn[V ′[n− 1]] (35)

Substitute equation 35 in 33

d[n] = 0.5[d′[n] + 1] (36)

Substitute equation 36 in 34

V ′ [n] = V ′ [n− 1] + α(L[n]− 0.5d′[n]− 0.5) (37)
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2V ′ [n] = 2V ′ [n− 1] + α(2L[n]− 1− d′[n]) (38)

Now Let
L′[n] = 2L[n]− 1 , V ′′[n] = 2V ′[n] and

V ′′[n− 1] = V ′[n− 1] then (39)

V ′′ [n] = 2V ′′ [n− 1] + α(L′[n]− d′[n]) (40)

Now substitute 35 and 39 to find d′[n] such that d′[n] =
sgn[V ′′[n− 1]] too.

V ′′ [n] = V ′′ [n− 1] + α(L′[n]− sgn(V ′′[n− 1]))

If V ′′[n− 1] > 0 then
V ′′ [n] = V ′′ [n− 1] + α(L′[n]− 1)

and V ′′[n] ≤ V ′′[n− 1]

if V ′′[n− 1] ≤ c

then V ′′[n] ≤ V ′′[n− 1] ≤ c

and if V ′′[n− 1] < 0
then V ′′ [n] = V ′′ [n− 1] + α(L′[n] + 1)

and V ′′[n] ≥ V ′′[n− 1]

and if V ′′[n− 1] ≥ c
then V ′′[n] ≥ V ′′[n − 1] ≥ c Therefore V [n] is bounded
since |V [n]| ≤ c.
and hence the convergence of one neuron can be written as,
En{L[n]}+ = En{d[n]}

APPENDIX B
PROOF OF IFMP CONVERGENCE

The convergence equation of IFMP for Fig 2 is listed as,
m∑
i=1

[E(Li[n])− E(Lz[n])]+ −→ E(γ[n])

or
[En{T1[n]}+ En{T2[n]}]+ = E{γ[n]} (41)

where, T1[n] = E(L1[n])− E(Lz[n])
and T2[n] = E(L2[n])− E(Lz[n])

The equation for the membrane voltage for units 1,2 and
3 can be written as,

V1 [n] = V1 [n− 1]− α(L1[n]− T1[n]− z[n]) (42)

V2 [n] = V2 [n− 1]− α(L2[n]− T2[n]− z[n]) (43)

V3 [n] = V3 [n− 1]− α(T1[n] + T2[n]− γ[n]) (44)

The membrane potential V3 [n] in the IFMP is designed
to be bounded between threshold voltage and restart voltage
(initial voltage). Let T1, T2, and z be the output spike rate
for structures N1, N2 and N3 respectively and γ is the
inhibitory input rate for unit N3. Then , taking recursively
the membrane equation for N1 and sum them starting from
the first recursion below,

V1 [n− 1] = V1 [n− 2]−α(L1[n− 1]−T1[n− 1]−z[n− 1])
(45)

V1 [n− 2] = V1 [n− 3]−α(L1[n− 2]−T1[n− 2]−z[n− 2])
(46)

Until the initial recursion equation,

V1 [0] = V1 [1]− α(L1[0]− T1[0]− z[0]) (47)

Then divide the above sum by N, we get:

V1 [n]

N
=
V1[0]

N
−α( 1

N

N∑
i=1

L1[i]−
1

N

N∑
i=1

T1[i]−
1

N

N∑
i=1

z[i])

(48)
since |V1[n]| is bounded, then the limN→∞ of the above
equation becomes as,

[E{L1[n]} − En{z[n]}]+ = En{T1[n]} (49)

Similarly for N2,

[En{L2[n]} − En{z[n]}]+ = En{T2[n]} (50)

For N3, the membrane potential is listed below:

V3 [n] = V3 [n− 1]− α(T1[n] + T2[n]− γ[n]) (51)

Since V3 is bounded, then the expected value of the output
for neuron 3 will be as :

[En{T1[n]}]+ + En{T2[n]} = En{γ[n]} (52)

Now, substitute equations (49) and (50) in (52), we will
get the convergence expectation equation as listed below,

[En{L1[n]}−En{z[n]}]++[En{L2[n]}−En{z[n]}]+ = En{γ[n]}
(53)

and hence the convergence of IFMP module can be written
as,∑m
i=1 [E(Li[n])− E(Lz[n])]+ −→ E(γ[n])
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