

Lessons Learned Building Reusable OO
Telecommunication Software Frameworks

M. Chandra Pal A. Vinay Babu A. Sadanandam

Abstract— Developing complex software systems is
expensive and error-prone. Object-oriented (OO)
programming languages are heavily touted technologies for
reducing software cost and improving software quality.
When stripped of their hype, the primary benefits of OO
stem from the emphasis on modularity and extensibility,
which encapsulate volatile implementation details behind
stable interfaces and enhance software reuse.

Index Terms— Software Reuse, Framework, Software
Artifacts, Object Oriented Components.

I. INTRODUCTION

Developers in certain well-traveled domains have
successfully applied OO techniques and tools for years.
For instance, the Microsoft MFC GUI framework and
OCX components are in fact industry standards for
creating graphical business applications on PC platforms.
Although these tools have their limitations, they
demonstrate the productivity benefits of reusing common
frameworks and components. Software developers in more
complex domains like telecom have traditionally lacked
standard off-the-shelf middleware components. As a result,
telecom developers largely build, validate, and maintain
software systems from scratch. In an era of deregulation
and stiff global competition, this in-house development
process is becoming prohibitively costly and time
consuming. Across the industry, this situation has
produced a “distributed software crisis”, where computing
hardware and networks get smaller, faster, and cheaper;
yet telecom software gets larger, slower, and more
expensive to develop and maintain.

M.Chandra Pal is with Department of Computer Science, Kakatiya
University, Warangal, AP, INDIA. 506009, e-mail:
pauldec1@gmail.com
A.Vinay Babu is with Department of Computer Science & Engineering.,
JNTU ,Hyderabad.
A.Sadanadam is with Department of Computer Science, Kakatiya
University, Warangal, AP, INDIA. 506009.

II. LESSONS LEARNED BUILDING
REUSABLE OO COMMUNICATION SOFTWARE

FRAME-WORKS

The challenges of building distributed software has
inherent and accidental complexities associated with
telecom systems:

 Inherent complexity is the fundamental challenge for
developing telecom software. Chief Among these is
detecting and recovering from network and host
failures, minimizing the impact of communication
travel time, and determining an optimal partitioning of
service components and workload onto processing
elements throughout a network.

 Accidental complexity has limitations with tools and
techniques used to develop telecom software. A
common source of accidental complexity is the Wide
spread use of algorithmic decomposition, which
results in non-extensible and non-reusable software
designs and implementations.

The lack of extensibility and reuse in-the-large is
particularly problematic for complex distributed telecom
software. Extensibility is essential to ensure timely
modification and enhancement of services and features.
Reuse is essential to leverage the domain knowledge of
expert developers to avoid re-developing and re-validating
common solutions to recurring requirements and software
challenges. While developing high quality reusable
software is hard enough, developing high quality
extensible and reusable telecom software is even harder.
Not surprisingly, many companies attempting to build
reusable middleware fail, often with enormous loss of
money, time, and market share. Those companies that do
succeed, however, reap the benefits resulting from their
ability to develop and deploy complex applications rapidly,
rather than wrestling endlessly with infrastructure
problems. Unfortunately, the skills required to
successfully produce telecom middleware remain

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

something of a "black art", often locked in the heads of
expert developers.

III. SUCCESSFUL REUSE-IN-THE-LARGE
REQUIRES NON-TECHNICAL PREREQUISITES

Many political, economical, organizational, and
psychological factors can impede successful reuse in
telecom companies. We have found that reuse-in-the-large
works best when (1) the marketplace is competitive (i.e.,
time-to-market is crucial, so leveraging existing software
substantially reduces development effort), (2) the
application domain is non-trivial (i.e., repeatedly
developing complete solutions from scratch is too costly),
and (3) the corporate culture is supportive of an effective
reuse process (e.g., developers are rewarded for taking the
time to build robust reusable components). When these
prerequisites don't apply, we found that developers often
fall victim to the "not-invented-here" syndrome and
rebuild everything from scratch.

IV. ITERATION AND INCREMENTAL GROWTH
IS ESSENTIAL

Expanding on the corporate culture theme, we
observed that it's crucial for software managers to openly
support the fact that good components, frameworks, and
software architectures take time to craft and hone. For
reuse to succeed in-the-large, management must have the
vision and resolve to support the incremental evolution of
reusable software. In general, an 80% solution that can be
evolved is often preferable to trying to achieve a 100%
solution that never ships. Truly useful components and
frameworks are derived from solving real problems, e.g.,
telecommunications, medical imaging, avionics, OLTP,
etc. Therefore, a time honored way of producing reusable
components is to generalize from working systems and
applications. In particular, resist the temptation to create
``component teams'' that build reusable frameworks in
isolation from application teams. We have learned the
hard way that without intimate feedback from application
developers, the software artifacts produced by a
component team won't solve real problems and will not be
reused. Apply simple solutions to complex problems that
sound too good to be true typically are, For example,
translating code entirely from high-level specifications or
using trendy OO design methodologies and programming
languages is no guarantee of success. In experience, there
is simply no substitute for skilled software developers,
which leads to the following final “lesson learned”.

Ultimately, reusable components are only as good
as the people who build and use them. Developing robust,
efficient, and reusable telecom middleware requires teams
with a wide range of skills. We need expert analysts and
designers who have mastered design patterns, software
architectures, and communication protocols to alleviate the

inherent and accidental complexities of telecom software.
Moreover, we need expert programmers who can
implement these patterns, architectures, and protocols in
reusable frameworks and components. In experience, it is
exceptionally hard to find high quality software
developers. Ironically, many telecom companies treat their
developers as interchangeable, "unskilled labor" who can
be replaced easily.

VI. CONCLUSIONS

Developing reusable OO middleware components
and frameworks is not a silver bullet. Software is
inherently abstract, which makes it hard to engineer its
quality and to manage its production. The good news,
however, is that OO component and framework
technologies are becoming main stream. Developers and
users are increasingly adopting and succeeding with
object-oriented design and programming.

On the other hand, the bad news is that (1) existing
OO components and frameworks are largely focused on
only a few areas (e.g., GUIs) and (2) existing industry
standards still lack the semantics, features, and
interoperability to be truly effective throughout the
telecom software domain. Too often, vendors use industry
standards to sell proprietary software under the guise of
open systems. Therefore, it is essential for telecom
companies to work with standard organizations and
middleware vendors to ensure the emerging specifications,
support true interoperability and define features that meet
telecom software needs.

Finally, to support the standardization effort, it is
crucial for us to capture and document the patterns that
underlie the successful telecom software components and
frameworks that do exist. Likewise, we need to rectify
these patterns to guide the creation of standard
frameworks and components for the telecom domain. We
hope that the next generation of OO frameworks and
components will be a substantial improvement for those
who worked with in the past.

REFERENCES

[1] Jacobson, M. Griss, P. Jonsson, “Software Reuse: Architecture,
Process and Organization for Business Success”, ACM Press, 1997.

[2] R.E.Johnson, B. Foote, "Designing Reusable Classes", Journal of
Object-Oriented Programming, 1(3):26-49, July-Aug, 1998.

[3] K.Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-
90-TR-21,ADA 235785). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1990

[4] Gib.T. The Principles of Software Engineering Management.
Addison-Wesley, 1998.

[5] Graham L., Henderson-Sellers, B., Younessi, H.: The OPEN
Process Specification. Addison-Wesley,1997.

[6] Griss M.L.: Software Reuse: From Library to Factory. IBM Systems
Journal, November-December 1993, 32(4), pp. 548-566.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

[7] Cooper, D.R., Schindler, P.S.: Business Research Methods.
McGraw-Hill International edition. 7th Edition, 2001.

[8] Creswell, J.W.: Research Design, Qualitative and Quantitative
Approaches. Sage Publications, 1994.

[9] Creswell, J.W.: Research Design, Qualitative and Quantitative
Approaches. Sage Publications, 1994.

[10] Gilb, T., Graham, D.: Software Inspection. Addison-Wesley, 1993.
[11] Jacobson, I., Christenson, M., Jonsson, P., Övergaard, G.: Object-

Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, revised printing, 1995.

[12] Generalized Perspective-Based Inspection to handle Object-
Oriented Development Artifacts. Proc. ICSE’99, Aug. 1999, IEEE
CS-Press, pp. 494-503.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

