

Abstract—In recent years, much has been made of the

computing industry’s widespread shift to parallel computing.
Nearly all consumer computers will ship with multicore
processors. Parallel computing will no longer be only relegated
to exotic supercomputers or mainframes, moreover, electronic
devices such as mobile phones and other portable devices have
begun to incorporate parallel computing capabilities. High
performance computing becomes increasingly important. To
maintain high quality solutions, programmers have to
efficiently parallelize and map their algorithms. This task is far
from trivial, especially for different existing parallel computer
architectures and different parallel programming paradigms.
To reduce the burden on programmers, automatic
parallelization tools are introduced. The purpose of this paper
is to discuss different automatic parallelization tools for
different parallel architectures.

Index Terms—parallel processing, automatic parallelization
tools, parallel programming paradigms

I. INTRODUCTION

HE parallel machines are being built to satisfy the
increasing demand of higher performance for parallel

applications. Multi and many-core architectures are
becoming a hot topic in the fields of computer architecture
and high-performance computing. Processor design is no
longer driven by high clock frequencies. Instead, more and
more programmable cores are becoming available. In recent
years, much has been made of the computing industry’s
widespread shift to parallel computing. Nearly all consumer
computers will ship with multicore processors. Parallel
computing will no longer be only relegated to exotic
supercomputers or mainframes, moreover, electronic
devices such as mobile phones and other portable devices
have begun to incorporate parallel computing capabilities.

Therefore, more and more software developers will need
to cope with a variety of parallel computing platforms and
technologies in order to provide optimum performance to
fully utilize all the processor power. However, the parallel
programming requires in-depth knowledge on underlying
systems and parallel paradigms, which make the whole
process difficult. It would be desirable to let programmer
program in sequential and have the parallelization tools help
to automatic parallelize the program.

Depending on different parallel computer architectures or

Manuscript received July 15, 2012; revised August 9, 2012. This work

was supported by KAUST Supercomputing Laboratory at King Abdullah
University of Science and Technology (KAUST).

Y. Qian is with KAUST Supercomputing Laboratory, King Abdullah
University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
(e-mail: ying.qian@kaust.edu.sa).

machines, the parallel applications can be written using a
variety of parallel programming paradigms, including
message passing, shared memory, data parallel, bulk
synchronous, mixed-mode and so on. The message passing
and shared memory paradigms are the two most important
programming paradigms.

The general procedure to parallelize an application can be
concluded as, 1) decide on which kind of parallel computer
system will be used, 2) choose the right parallel
programming paradigm to parallelize the code, 3) choose
the good automatic parallelization tool.

The rest of paper is organized as follows. In Section 2, I
provide the background introduction of several popular
parallel computer architectures. The parallel programming
paradigms which are designed for these architectures are
discussed in Section 3, which include shared memory,
message passing programming paradigm and so on. Section
4 introduces the automatic parallelization and general way
to employ it. Finally the existing automatic parallelization
tools are discussed in Section 5.

II. PARALLEL COMPUTER ARCHITECTURES

In the past decade, high performance computers have
been implemented using a variety of architectures. I briefly
describe the most common parallel computer architectures
here.

Based on the Flynn’s classification [1], there are four
kinds of machine architectures, single-instruction stream
single-data stream (SISD), single-instruction stream
multiple-data streams (SIMD), multiple-instruction streams
single-data stream (MISD) and multiple-instruction streams
multiple-data streams (MIMD). SISD models conventional
sequential computers. MISD was seldom used. In an SIMD
machine, all processors execute the same instruction at the
same time. It is a synchronous machine, and mostly used for
special purpose applications. An MIMD machine is a
general-purpose machine, where processors operate in
parallel but asynchronously. MIMD machines are generally
classified into four practical machine models: Symmetric
Multiprocessors (SMP), Massively Parallel Processors
(MPP), Distributed Shared Memory (DSM) multiprocessors,
Cluster of Workstations (COW), and Cluster of
Multiprocessors (CLUMP).

A. SMP

SMP is a Uniform Memory Access (UMA) system, where
all memory locations are the same distance away from the
processors, so it takes roughly the same amount of time to
access any memory location. SMP systems have gained
prominence in the market place. Considerable work has
gone into the design of SMP systems, and several vendors
such as IBM, Compaq, SGI, and HP offer small to large-

Automatic Parallelization Tools

Ying Qian

T

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

scale shared memory systems [2]. A typical SMP machine
architecture is shown in Fig. 1.

Fig. 1. A typical SMP machine.

B. Multi-core Cluster

Multi-core clusters are distributed-memory systems,
where there are multiple nodes each having multiple
processors and its own local memory. For these systems,
one node’s local memory is considered remote memory for
other nodes. SMPs are called tightly coupled [1]. 81.4% of
the top 500 supercomputers in the world are clusters [3]. A
typical multi-core cluster machine is shown in Fig. 2.

Computer Node

p0 p1

p2 p3

Cluster Interconnect

Computer Node

p4 p5

p6 p7

p0 p1

p2 p3

p4 p5

p6 p7

... ...

Network Interface Network Interface

Fig. 2. A typical multi-core cluster.

C. GPU

At the same time, Graphics Processing Units (GPUs) are
becoming programmable. While their graphics pipeline was
completely fixed a few years ago, now, we are able to
program all main processing elements using C-like
languages, such as CUDA [4] or OpenGL [5]. Multi-core
and many-core architectures are emerging and becoming a
commodity. Many experts believe heterogeneous processor
platforms including both GPUs and CPUs will be the future
trend [6]. A typical GPU architecture as in Fig. 3 consists of
a number of Single Instruction Multiple Thread (SIMT)
processor clusters. Each cluster has access to an on-chip
shared memory (smem), a L2 cache and a large off-chip
memory.

Fig. 3. Schematic view of a GPU architecture. [6]

III. PARALLEL PARADIGMS

Parallel computers provide support for a wide range of
parallel programming paradigms. The HPC programmer has
several choices for the parallel programming paradigm,
including the shared memory, message passing, mix-mode,
and GPU.

A. Message passing

MPI [7] is a well-known message passing environment.
MPI has good portability, because programs written using
MPI can run on distributed-memory systems, shared-
memory multiprocessors, and networks of workstations or
clusters. On top of shared memory systems, message
passing is implemented as writing to and reading from the
shared memory. So MPI can be implemented very
efficiently on top of the shared memory systems. Another
advantage of the MPI programming model is that the user
has complete control over data distribution and process
synchronization, which can provide optimal data locality
and workflow distribution. The disadvantage is that existing
sequential applications require a fair amount of restructuring
for parallelization based on MPI.

MPI provides the user with a programming model where
processes communicate with each other by calling library
routines.

B. Shared Memory

Message-passing codes written in MPI are obviously
portable and should transfer easily to SMP cluster systems.
However, it is not immediately clear that message passing is
the most efficient parallelization technique within an SMP
box, where in theory a shared memory model such as
OpenMP [8] should be preferable. OpenMP is a loop level
programming style. It is popular because it is easy to use
and enables incremental development. Parallelizing a code
includes two steps, (1) discover the parallel loop nests
contributing significantly to the computations time; (2) add
directives for starting/closing parallel regions, managing the
parallel threads (workload distribution, synchronization),
and managing the data.

C. Mix-mode

In the mixed MPI-OpenMP programming style, each
SMP node executes one MPI process that has multiple
OpenMP threads. This kind of hybrid parallelization might
be beneficial when it utilizes the high optimization of the
shared memory model on each node. As small to large SMP
clusters become more prominent, it is open to debate
whether pure message-passing or mixed MPI-OpenMP is
the programming of choice for higher performance.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

D. CUDA

In comparison to the central processor’s traditional data
processing pipeline, performing general-purpose
computations on a graphics processing unit (GPU) is a new
concept. CUDA [4] are specifically designed for general
purpose GPU programming. The CUDA architecture
included a unified shader pipeline, allowing each and every
arithmetic logic unit (ALU) on the chip to be marshaled by a
program intending to perform general-purpose
computations. These ALUs were built to comply with IEEE
requirements for single-precision floating-point arithmetic
and were designed to use an instruction set tailored for
general computation rather than specifically for graphics.
Also, the execution units on the GPU were allowed arbitrary
read and write access to the memory and software managed
cache known as shared memory.

Even so, the mapping process of most applications
remains non-trivial. To achieve this, the programmer has to
deal with mappings of distributed memories, caches, and
register files. Additionally, the programmer is exposed to
parallel computing problems such as data-dependencies,
race-conditions, synchronization barriers and atomic
operations.

IV. AUTOMATIC PARALLELIZATION

A. Need for automatic parallelization

High performance computing becomes increasingly
common. To fully utilize these power machines,
programmers have to efficiently parallelize and map their
applications. This task is far from trivial, leading to the
necessity to automate this process.

Past techniques provided solution for languages like
FORTRAN and C; however, these are not enough. These
techniques dealt with parallelization sections with specific
systems in mind like loop or particular section of code.
Identifying possibilities for parallelization is a crucial step
for generating parallel application. This need to parallelize
applications is partially addressed by tools that analyze code
to exploit parallelism. These tools use either compile time
techniques or run-time techniques. Some techniques are
built-in in some parallelizing compilers but user needs to
identify parallelize code and mark the code with special
language constructs. The compiler identifies these language
constructs and analyzes the marked code for parallelization.
Some tools only parallelize special form of code like loops.
Hence a fully automatic tool for converting sequential code
to parallel code is still required.

B. General procedure of parallelization

The process starts with identifying code sections that the
programmer feels have parallelism possibilities. Often this
task is difficult since the programmer who wants to
parallelize the code has not originally written the code.
Another possibility is that the programmer is new to the
application domain. Therefore, this first stage in the
parallelization process seems easy at first, but it may not be
straightforward.

The next stage is to identify the data dependency relation
of given sequential program. This is a crucial stage to sort

code sections out of the identified ones that actually need
parallelization. This stage is the most important and difficult
since it involves lot of analysis.

Most research compilers for automatic parallelization
consider Fortran programs, because during this data
dependency identification stage, Fortran makes stronger
guarantees about aliasing than languages such as C and
C++. Aliasing can be described as a situation where a data
location in memory can be accessed through different
symbolic names in the program. Thus, modifying the data
through one name implicitly modifies the values associated
to all aliased names, which may not be expected by the
programmer. As a result, aliasing makes it particularly
difficult to decide the data dependency of programs.
Aliasing analyzers intend to make and compute useful
information for understanding aliasing in programs.
Therefore, generally for codes in C/C++ where pointers are
involved are difficult to analyze. If there are more
dependencies in the identified code sections, the
possibilities of parallelization decreases.

 Sometimes the dependencies are removed by changing
the code and this is the next stage in parallelization. Code is
transformed such that the functionality and hence the output
is not changed but the dependency, if any, on other code
section or other instruction is removed.

The last stage is to generate the parallel code with
appropriate parallel programming model. Functionally this
code should be same to the original sequential code.
Moreover, it has additional constructs and parallel function
calls to enable it to run on multiple threads, processes or
both.

V. PARALLELIZATION TOOLS

A. OPENMP

ICU_PFC
ICU_PFC is introduced in [9], which is an automatic

parallelizing compiler. It receives FORTRAN sources and
generates parallel FORTRAN codes where OpenMP
directives for parallel execution are inserted. ICU-PFC
detects the DO ALL parallel loop in the program, and
inserts appropriate OpenMP directives. For parallel loop
detection, a dependency matrix is designed to store data
dependency information of statements in a loop. Finally, the
parallelized code generator of ICU-PFC can generate
OpenMP supported parallel code.

Polaris compiler

The Polaris compiler [10] takes a Fortran77 program as
input, transforms this program so that it runs efficiently on a
parallel computer, and outputs this program version in one
of several possible parallel FORTRAN dialects. Polaris
performs its transformations in several "compilation
passes". In addition to many commonly known passes,
Polaris includes advanced capabilities performing the
following tasks: array privatization, data dependence
testing, variable recognition, inter procedural analysis, and
symbolic program analysis.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Cetus
The Cetus [11] tool provides an infrastructure for

research on multicore compiler optimizations that
emphasizes automatic parallelization. The compiler
infrastructure, which targets C programs, supports source-
to-source transformations, is user oriented and easy to
handle, and provides the most important parallelization
passes as well as the underlying enabling techniques.

The infrastructure project follows Polaris [10], which is a
research infrastructure for optimizing compilers on parallel
machines. While Polaris translated Fortran, Cetus targets C
programs.

SUIF
The SUIF [12] (Stanford University Intermediate Format)

compiler is an automatic parallelizing compiler made at
Stanford university. This compiler reads ordinary C or
FORTRAN programs and generates parallelized
intermediate codes (of the Stanford University Intermediate
Format), parallelized executable codes for some systems, or
C program containing parallel constructs such as doall,
doacross, etc. It is able to detect and generate doalls, with
freely available package. This compiler is composed of
many passes. Each pass does its role and is independent of
each other.

The freely available SUIF compiler finds every
parallelism for all the loops contained in a given source
program and makes an effort to maximize the granularity
and to minimize communications and synchronizations as
much as it can. And it generates intermediate codes
containing tags indicating "parallelizable". Using the
intermediate codes, the pass pgen generates a parallelized
intermediate code for shared memory multiprocessors.

Intel Compiler

The auto-parallelization feature of the Intel Compiler [13]
automatically translates serial portions of the input program
into semantically equivalent multi-threaded code. C, Fortran
and C++ are all supported. The auto-parallelization feature
is only for SMP type of machine.

Automatic parallelization determines the loops that are
good candidates for parallelization. Then, it performs the
data-flow analysis to verify correct parallel execution, and
partitions the data for threaded code generation, and inserts
with OpenMP directives properly.

B. MPI

Automatic parallelizing compilers such as SUIF [12] and
Polaris [10] can be a solution for SMP machines. For
distributed memory parallel processor systems or
heterogeneous computers, message passing paradigm is
usually used. For such kind of machines, a compiler
backend must convert a shared memory based parallel
program into a program using message passing scheme,
send/receive.

Based on the automatic parallelizing compiler SUIF, a
new parallelization tool is introduced in [14]. The original
backend of SUIF is substituted with a new backend using
MPI, which give it the capability of validating of

parallelization decisions based on overhead parameters.
This backend converts shared-memory based parallel

program into distributed-memory based parallel program
with MPI function calls without excessive parallelization
that causes performance degradation.

The tool adopts the SUIF parallelizing compiler and the
LAM implementation [15] of MPI for the patchwork
system. The tool converts the implicit data sharing and
explicit doall into explicit data send/receive functions and
implicit doall into explicit descriptions of condition for the
sequential execution of the master node. Eventually it
converts a program assuming a shared memory environment
into one assuming the other.

In a shared memory environment, all data in memory can
be accessed by every processor. In a distributed
environment, all data must be sent and received from the
processing node explicitly which has the data, to the nodes
which want to use them. Therefore, the remote data must be
identified. It is done by using the dataflow equation [16] and
DEF and USE sets provided by SUIF, for every doall loop
represented in SUIF. There is no need to examine all the
code blocks for such data, since SUIF parallelize loops at
current state. The tool incorporates function calls for
sending and receiving messages into the parallel code
generator of SUIF, since MPI uses the traditional
send/receive message scheme. After completion of the doall
loop, the result should be returned to the master.

The code generated by SUIF contains no explicit master
node but it is started on a node and the node calls the doall
function, with the function pointer that points to the
function containing the actual doall loop, whenever doall is
reached. The parallel code generator pgen is modified to
insert a conditional statement that makes the current
processor execute a block that is not parallelized, if the node
id of the current processor is the same as that of the master.
By these, the sequential part of the program assuming
shared memory could be converted into one assuming
distributed memory.

C. GPU

In [17], a technique to automatically parallelize and map
sequential image processing algorithm on a GPU is
presented. The work is based on skeletonization, which
separates the structure of a parallel computation from the
algorithms functionality, enabling efficient implementations
without requiring architecture knowledge from the
programmer. [17] A number of skeleton classes are defined
for image processing algorithms. Each skeleton class
enables specific GPU parallelization and optimization
techniques, such as automatic thread creation, on-chip
memory usage and memory coalescing.

The tool uses domain specific skeletons and a fine
grained classification of algorithms. If we compare
skeleton-based parallelization to existing GPU code
generators in general, skeleton-based parallelization
potentially achieves higher hardware efficiency by enabling
algorithm restructuring through skeletons.

D. EMBEDDED SYSTEMS

The OSCAR [18] automatic parallelizing compiler has

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

been developed to utilize multicores for consumer
electronics like portable electronics, mobile phones, car
navigation systems, digital TVs and games. Also, a new
Consumer Electronics Multicore Application Program
Interface (API) is defined [19] to use the OSCAR compiler
with native sequential compilers for various kinds of
multicores from different vendors. It has been developed in
NEDO (New Energy and Industrial Technology
Development Organization) “Multicore Technology for
Realtime Consumer Electronics” project with six Japanese
IT companies.

To parallelize a program on consumer electronics
multicores, it is especially important to optimize memory
allocations, overlap data transfer and realize low power
consumption.

This API uses a subset of OpenMP. Furthermore, this
API enables the allocation of various kinds of memory such
as local memory, distributed shared memory and on-chip
central shared memory for real-time processing. It also
realizes low power consumption on multicore memory
architectures. The automatic parallelizing compiler
generates parallelized programs with the API, so that the
generated parallel programs can be easily executed on
different processor cores and memory architectures.

VI. CONCLUSION

High performance computing becomes increasingly
important. To maintain high quality solutions, programmers
have to efficiently parallelize and map their algorithms. This
task is far from trivial, leading to the necessity to automate
this process. The general procedure to parallelize an
application can be concluded as, 1) decide on which kind of
parallel computer system will be used, 2) choose the right
parallel programming paradigm to parallelize the code, 3)
choose the good automatic parallelization tool.

A number of automatic penalization tools are discussed in
this paper. Most of the tools are designed for SMP, shared
memory machines, where OpenMP is supported. I believe
OpenMP kind of parallel codes are easier to be parallelized
than other parallel paradigms, such as MPI. Few works have
been done to automatically parallelize MPI, CUDA codes
and also embedded systems, such as portable multi-core
devices. However in real life, the high scalable systems are
mainly clusters, which are distributed memory systems. We
really need automatic parallelization tools for MPI or
MPI/OpenMP mix-mode applications.

ACKNOWLEDGMENT

I would like to thank Dr. Kai Qian for his kind support.

REFERENCES

[1] K. Huang, Z. Xu, “Scalable Parallel Computing: Technology,

Architecture, Programming”.
[2] N. R. Fredrickson, Ahmad Afsahi, and Ying Qian, “Performance

Characteristics of OpenMP Constructs, and Application Benchmarks
on a Large Symmetric Multiprocessor,” 17th Annual ACM
International Conference on Supercomputing, ICS'03, San Francisco,
CA, USA, June, 2003, pp. 140-149.

[3] Top500 supercomputer sites. Available: http://www.top500.org
[4] CUDA. Available:

http://www.nvidia.com/object/cuda_home_new.html

[5] OpenGL. Available: http://www.opengl.org
[6] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: A

Compiler Framework for Automatic Translation and Optimization,”
Proc. ACM Symp. Principles and Practice of Parallel Programming
(PPoPP 09), ACM Press, Feb. 2009, pp. 101-110.

[7] Message Passing Interface Forum: MPI, A Message Passing
Interface Standard, Version 1.2, 1997.

[8] OpenMP C/C++ Application Programming Interface, Version 2.0,
March 2002.

[9] H. Kim, Y. Yoon, S. Na, D. Han, “ICU-PFC: An Automatic
Parallelizing Compiler,” International Conference on High
Performance Computing in the Asia-Pacific Region - HPCASIA ,
2000.

[10] D. A. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S.
Weatherford, and K. Faigin, “Polaris: A new-generation parallelizing
comiler for MPPs,” Technical Report CSRD-1306, Center for
Supercomputing Research and Development, Univ. of Illinois at
Uurbana-Champaign, June 1993.

[11] C. Dave, H, Bae, S. Min, S. Lee, R. Eigenmann, and S. Midkiff,
“Cetus: A Source-to-Source Compiler Infrastructure for Multicores,”
Computer, vol. 42, no. 12, pp. 36-42, Dec. 2009.

[12] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W.
Liao, E Bugnion, and M.S. Lam, “Maximizing Multiprocessor
Performance with the SUIF compiler,” IEEE Computer, December
1996.

[13] Intel compiler. Available: http://software.intel.com/en-
us/articles/intel-compilers

[14] D. Kwon and S. Han, “MPI Backend for an Automatic Parallelizing
Compiler,” 1999 International Symposium on Parallel Architectures,
Algorithms and Networks (ISPAN '99), Fremantle, Australia , June
1999.

[15] MPI Primer / Developing with LAM (manual), Ohio Supercomputer
Center, 1996.

[16] K. Li, “Predicting the Performance of Partitionable Multiprocessors,”
Proc. Of PDPTA’96 International Conference, pp 1350-1353., 1996.

[17] C. Nugteren, H. Corporaal, and B. Mesman, “Skeleton-based
Automatic Parallelization of Image Processing Algorithms for GPUs,”
ICSAMOS, 2011, pp. 25-32.

[18] H. Kasahara, M. Obata, K. Ishizaka, K. Kimura, H. Kaminaga, H.
Nakano, K. Nagasawa, A. Murai, H. Itagaki, and J. Shirako,
“Multigrain Automatic Parallelization in Japanese Millennium Project
IT21 Advanced Parallelizing Compiler,” PARELEC IEEE Computer
Society (2002) , p. 105-111.

[19] T. Miyamoto, S. Asaka, H. Mikami, M. Mase, Y. Wada, H. Nakano,
K. Kimura, and H. Kasahara, “Parallelization with Automatic
Parallelizing Compiler Generating Consumer Electronics Multicore
API,” International Symposium on Parallel and Distributed
Processing with Applications, 2008. ISPA '08, pp,600-607,

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

