
 

 
Abstract—In recent years, much has been made of the 

computing industry’s widespread shift to parallel computing. 
Nearly all consumer computers will ship with multicore 
processors. Parallel computing will no longer be only relegated 
to exotic supercomputers or mainframes, moreover, electronic 
devices such as mobile phones and other portable devices have 
begun to incorporate parallel computing capabilities. High 
performance computing becomes increasingly important. To 
maintain high quality solutions, programmers have to 
efficiently parallelize and map their algorithms. This task is far 
from trivial, especially for different existing parallel computer 
architectures and different parallel programming paradigms. 
To reduce the burden on programmers, automatic 
parallelization tools are introduced. The purpose of this paper 
is to discuss different automatic parallelization tools for 
different parallel architectures. 
 
 

Index Terms—parallel processing, automatic parallelization 
tools, parallel programming paradigms  
 

I. INTRODUCTION 

HE parallel machines are being built to satisfy the 
increasing demand of higher performance for parallel 

applications. Multi and many-core architectures are 
becoming a hot topic in the fields of computer architecture 
and high-performance computing. Processor design is no 
longer driven by high clock frequencies. Instead, more and 
more programmable cores are becoming available. In recent 
years, much has been made of the computing industry’s 
widespread shift to parallel computing. Nearly all consumer 
computers will ship with multicore processors. Parallel 
computing will no longer be only relegated to exotic 
supercomputers or mainframes, moreover, electronic 
devices such as mobile phones and other portable devices 
have begun to incorporate parallel computing capabilities. 

Therefore, more and more software developers will need 
to cope with a variety of parallel computing platforms and 
technologies in order to provide optimum performance to 
fully utilize all the processor power. However, the parallel 
programming requires in-depth knowledge on underlying 
systems and parallel paradigms, which make the whole 
process difficult. It would be desirable to let programmer 
program in sequential and have the parallelization tools help 
to automatic parallelize the program. 

Depending on different parallel computer architectures or 
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machines, the parallel applications can be written using a 
variety of parallel  programming paradigms, including 
message passing, shared memory, data parallel, bulk 
synchronous, mixed-mode and so on. The message passing 
and shared memory paradigms are the two most important 
programming paradigms.  

The general procedure to parallelize an application can be 
concluded as, 1) decide on which kind of parallel computer 
system will be used, 2) choose the right parallel 
programming paradigm to parallelize the code, 3) choose 
the good automatic parallelization tool.  

The rest of paper is organized as follows. In Section 2, I 
provide the background introduction of several popular 
parallel computer architectures. The parallel programming 
paradigms which are designed for these architectures are 
discussed in Section 3, which include shared memory, 
message passing programming paradigm and so on.  Section 
4 introduces the automatic parallelization and general way 
to employ it. Finally the existing automatic parallelization 
tools are discussed in Section 5. 

II. PARALLEL COMPUTER ARCHITECTURES 

In the past decade, high performance computers have 
been implemented using a variety of architectures. I briefly 
describe the most common parallel computer architectures 
here. 

Based on the Flynn’s classification [1], there are four 
kinds of machine architectures, single-instruction stream 
single-data stream (SISD), single-instruction stream 
multiple-data streams (SIMD), multiple-instruction streams 
single-data stream (MISD) and multiple-instruction streams 
multiple-data streams (MIMD). SISD models conventional 
sequential computers. MISD was seldom used. In an SIMD 
machine, all processors execute the same instruction at the 
same time. It is a synchronous machine, and mostly used for 
special purpose applications. An MIMD machine is a 
general-purpose machine, where processors operate in 
parallel but asynchronously. MIMD machines are generally 
classified into four practical machine models: Symmetric 
Multiprocessors (SMP), Massively Parallel Processors 
(MPP), Distributed Shared Memory (DSM) multiprocessors, 
Cluster of Workstations (COW), and Cluster of 
Multiprocessors (CLUMP). 

A. SMP 

SMP is a Uniform Memory Access (UMA) system, where 
all memory locations are the same distance away from the 
processors, so it takes roughly the same amount of time to 
access any memory location. SMP systems have gained 
prominence in the market place. Considerable work has 
gone into the design of SMP systems, and several vendors 
such as IBM, Compaq, SGI, and HP offer small to large-
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scale shared memory systems [2]. A typical SMP machine 
architecture is shown in Fig. 1. 

 

 
Fig. 1.   A typical SMP machine. 

 

B. Multi-core Cluster 

Multi-core clusters are distributed-memory systems, 
where there are multiple nodes each having multiple 
processors and its own local memory. For these systems, 
one node’s local memory is considered remote memory for 
other nodes. SMPs are called tightly coupled [1]. 81.4% of 
the top 500 supercomputers in the world are clusters [3]. A 
typical multi-core cluster machine is shown in Fig. 2.  
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Fig. 2.   A typical multi-core cluster. 

 

C. GPU 

At the same time, Graphics Processing Units (GPUs) are 
becoming programmable. While their graphics pipeline was 
completely fixed a few years ago, now, we are able to 
program all main processing elements using C-like 
languages, such as CUDA [4] or OpenGL [5]. Multi-core 
and many-core architectures are emerging and becoming a 
commodity. Many experts believe heterogeneous processor 
platforms including both GPUs and CPUs will be the future 
trend [6]. A typical GPU architecture as in Fig. 3 consists of 
a number of Single Instruction Multiple Thread (SIMT) 
processor clusters. Each cluster has access to an on-chip 
shared memory (smem), a L2 cache and a large off-chip 
memory. 

 

 
Fig. 3.   Schematic view of a GPU architecture. [6] 

III. PARALLEL PARADIGMS 

Parallel computers provide support for a wide range of 
parallel programming paradigms. The HPC programmer has 
several choices for the parallel programming paradigm, 
including the shared memory, message passing, mix-mode, 
and GPU.  

A. Message passing 

MPI [7] is a well-known message passing environment. 
MPI has good portability, because programs written using 
MPI can run on distributed-memory systems, shared-
memory multiprocessors, and networks of workstations or 
clusters. On top of shared memory systems, message 
passing is implemented as writing to and reading from the 
shared memory. So MPI can be implemented very 
efficiently on top of the shared memory systems. Another 
advantage of the MPI programming model is that the user 
has complete control over data distribution and process 
synchronization, which can provide optimal data locality 
and workflow distribution. The disadvantage is that existing 
sequential applications require a fair amount of restructuring 
for parallelization based on MPI. 

MPI provides the user with a programming model where 
processes communicate with each other by calling library 
routines.  

B. Shared Memory 

Message-passing codes written in MPI are obviously 
portable and should transfer easily to SMP cluster systems. 
However, it is not immediately clear that message passing is 
the most efficient parallelization technique within an SMP 
box, where in theory a shared memory model such as 
OpenMP [8] should be preferable. OpenMP is a loop level 
programming style. It is popular because it is easy to use 
and enables incremental development. Parallelizing a code 
includes two steps, (1) discover the parallel loop nests 
contributing significantly to the computations time; (2) add 
directives for starting/closing parallel regions, managing the 
parallel threads (workload distribution, synchronization), 
and managing the data.  

C. Mix-mode 

In the mixed MPI-OpenMP programming style, each 
SMP node executes one MPI process that has multiple 
OpenMP threads. This kind of hybrid parallelization might 
be beneficial when it utilizes the high optimization of the 
shared memory model on each node. As small to large SMP 
clusters become more prominent, it is open to debate 
whether pure message-passing or mixed MPI-OpenMP is 
the programming of choice for higher performance. 
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D. CUDA 

In comparison to the central processor’s traditional data 
processing pipeline, performing general-purpose 
computations on a graphics processing unit (GPU) is a new 
concept. CUDA [4] are specifically designed for general 
purpose GPU programming.  The CUDA architecture 
included a unified shader pipeline, allowing each and every 
arithmetic logic unit (ALU) on the chip to be marshaled by a 
program intending to perform general-purpose 
computations. These ALUs were built to comply with IEEE 
requirements for single-precision floating-point arithmetic 
and were designed to use an instruction set tailored for 
general computation rather than specifically for graphics. 
Also, the execution units on the GPU were allowed arbitrary 
read and write access to the memory and software managed 
cache known as shared memory.  

Even so, the mapping process of most applications 
remains non-trivial. To achieve this, the programmer has to 
deal with mappings of distributed memories, caches, and 
register files. Additionally, the programmer is exposed to 
parallel computing problems such as data-dependencies, 
race-conditions, synchronization barriers and atomic 
operations. 

IV. AUTOMATIC PARALLELIZATION 

A. Need for automatic parallelization 

High performance computing becomes increasingly 
common. To fully utilize these power machines, 
programmers have to efficiently parallelize and map their 
applications. This task is far from trivial, leading to the 
necessity to automate this process. 

Past techniques provided solution for languages like 
FORTRAN and C; however, these are not enough. These 
techniques dealt with parallelization sections with specific 
systems in mind like loop or particular section of code. 
Identifying possibilities for parallelization is a crucial step 
for generating parallel application. This need to parallelize 
applications is partially addressed by tools that analyze code 
to exploit parallelism. These tools use either compile time 
techniques or run-time techniques. Some techniques are 
built-in in some parallelizing compilers but user needs to 
identify parallelize code and mark the code with special 
language constructs. The compiler identifies these language 
constructs and analyzes the marked code for parallelization. 
Some tools only parallelize special form of code like loops. 
Hence a fully automatic tool for converting sequential code 
to parallel code is still required.  

B. General procedure of parallelization 

The process starts with identifying code sections that the 
programmer feels have parallelism possibilities. Often this 
task is difficult since the programmer who wants to 
parallelize the code has not originally written the code. 
Another possibility is that the programmer is new to the 
application domain. Therefore, this first stage in the 
parallelization process seems easy at first, but it may not be 
straightforward. 

The next stage is to identify the data dependency relation 
of given sequential program. This is a crucial stage to sort 

code sections out of the identified ones that actually need 
parallelization. This stage is the most important and difficult 
since it involves lot of analysis. 

Most research compilers for automatic parallelization 
consider Fortran programs, because during this data 
dependency identification stage, Fortran makes stronger 
guarantees about aliasing than languages such as C and 
C++. Aliasing can be described as a situation where a data 
location in memory can be accessed through different 
symbolic names in the program. Thus, modifying the data 
through one name implicitly modifies the values associated 
to all aliased names, which may not be expected by the 
programmer. As a result, aliasing makes it particularly 
difficult to decide the data dependency of programs. 
Aliasing analyzers intend to make and compute useful 
information for understanding aliasing in programs.  
Therefore, generally for codes in C/C++ where pointers are 
involved are difficult to analyze. If there are more 
dependencies in the identified code sections, the 
possibilities of parallelization decreases. 

 Sometimes the dependencies are removed by changing 
the code and this is the next stage in parallelization. Code is 
transformed such that the functionality and hence the output 
is not changed but the dependency, if any, on other code 
section or other instruction is removed. 

The last stage is to generate the parallel code with 
appropriate parallel programming model.  Functionally this 
code should be same to the original sequential code. 
Moreover, it has additional constructs and parallel function 
calls to enable it to run on multiple threads, processes or 
both. 

V. PARALLELIZATION TOOLS 

A. OPENMP 

ICU_PFC  
ICU_PFC is introduced in [9], which is an automatic 

parallelizing compiler. It receives FORTRAN sources and 
generates parallel FORTRAN codes where OpenMP 
directives for parallel execution are inserted. ICU-PFC 
detects the DO ALL parallel loop in the program, and 
inserts appropriate OpenMP directives. For parallel loop 
detection, a dependency matrix is designed to store data 
dependency information of statements in a loop. Finally, the 
parallelized code generator of ICU-PFC can generate 
OpenMP supported parallel code. 

 
Polaris compiler 

The Polaris compiler [10] takes a Fortran77 program as 
input, transforms this program so that it runs efficiently on a 
parallel computer, and outputs this program version in one 
of several possible parallel FORTRAN dialects. Polaris 
performs its transformations in several "compilation 
passes". In addition to many commonly known passes, 
Polaris includes advanced capabilities performing the 
following tasks: array privatization, data dependence 
testing, variable recognition, inter procedural analysis, and 
symbolic program analysis. 
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Cetus 
The Cetus [11] tool provides an infrastructure for 

research on multicore compiler optimizations that 
emphasizes automatic parallelization. The compiler 
infrastructure, which targets C programs, supports source-
to-source transformations, is user oriented and easy to 
handle, and provides the most important parallelization 
passes as well as the underlying enabling techniques. 

The infrastructure project follows Polaris [10], which is a 
research infrastructure for optimizing compilers on parallel 
machines. While Polaris translated Fortran, Cetus targets C 
programs. 

 
SUIF 
The SUIF [12] (Stanford University Intermediate Format) 

compiler is an automatic parallelizing compiler made at 
Stanford university. This compiler reads ordinary C or 
FORTRAN programs and generates parallelized 
intermediate codes (of the Stanford University Intermediate 
Format), parallelized executable codes for some systems, or 
C program containing parallel constructs such as doall, 
doacross, etc. It is able to detect and generate doalls, with 
freely available package. This compiler is composed of 
many passes. Each pass does its role and is independent of 
each other. 

The freely available SUIF compiler finds every 
parallelism for all the loops contained in a given source 
program and makes an effort to maximize the granularity 
and to minimize communications and synchronizations as 
much as it can. And it generates intermediate codes 
containing tags indicating "parallelizable". Using the 
intermediate codes, the pass pgen generates a parallelized 
intermediate code for shared memory multiprocessors. 

 
Intel  Compiler 

The auto-parallelization feature of the Intel Compiler [13] 
automatically translates serial portions of the input program 
into semantically equivalent multi-threaded code. C, Fortran 
and C++ are all supported. The auto-parallelization feature 
is only for SMP type of machine.  

Automatic parallelization determines the loops that are 
good candidates for parallelization. Then, it performs the 
data-flow analysis to verify correct parallel execution, and 
partitions the data for threaded code generation, and inserts 
with OpenMP directives properly.  

 

B. MPI 

Automatic parallelizing compilers such as SUIF [12] and 
Polaris [10] can be a solution for SMP machines. For 
distributed memory parallel processor systems or 
heterogeneous computers, message passing paradigm is 
usually used. For such kind of machines, a compiler 
backend must convert a shared memory based parallel 
program into a program using message passing scheme, 
send/receive. 

Based on the automatic parallelizing compiler SUIF, a 
new parallelization tool is introduced in [14]. The original 
backend of SUIF is substituted with a new backend using 
MPI, which give it the capability of validating of 

parallelization decisions based on overhead parameters. 
This backend converts shared-memory based parallel 

program into distributed-memory based parallel program 
with MPI function calls without excessive parallelization 
that causes performance degradation. 

The tool adopts the SUIF parallelizing compiler and the 
LAM implementation [15] of MPI for the patchwork 
system.  The tool converts the implicit data sharing and 
explicit doall into explicit data send/receive functions and 
implicit doall into explicit descriptions of condition for the 
sequential execution of the master node. Eventually it 
converts a program assuming a shared memory environment 
into one assuming the other.  

In a shared memory environment, all data in memory can 
be accessed by every processor. In a distributed 
environment, all data must be sent and received from the 
processing node explicitly which has the data, to the nodes 
which want to use them. Therefore, the remote data must be 
identified. It is done by using the dataflow equation [16] and 
DEF and USE sets provided by SUIF, for every doall loop 
represented in SUIF. There is no need to examine all the 
code blocks for such data, since SUIF parallelize loops at 
current state. The tool incorporates function calls for 
sending and receiving messages into the parallel code 
generator of SUIF, since MPI uses the traditional 
send/receive message scheme. After completion of the doall 
loop, the result should be returned to the master.  

The code generated by SUIF contains no explicit master 
node but it is started on a node and the node calls the doall 
function, with the function pointer that points to the 
function containing the actual doall loop, whenever doall is 
reached. The parallel code generator pgen is modified to 
insert a conditional statement that makes the current 
processor execute a block that is not parallelized, if the node 
id of the current processor is the same as that of the master. 
By these, the sequential part of the program assuming 
shared memory could be converted into one assuming 
distributed memory.  

C. GPU 

In [17], a technique to automatically parallelize and map 
sequential image processing algorithm on a GPU is 
presented. The work is based on skeletonization, which 
separates the structure of a parallel computation from the 
algorithms functionality, enabling efficient implementations 
without requiring architecture knowledge from the 
programmer. [17] A number of skeleton classes are defined 
for image processing algorithms. Each skeleton class 
enables specific GPU parallelization and optimization 
techniques, such as automatic thread creation, on-chip 
memory usage and memory coalescing. 

The tool uses domain specific skeletons and a fine 
grained classification of algorithms. If we compare 
skeleton-based parallelization to existing GPU code 
generators in general, skeleton-based parallelization 
potentially achieves higher hardware efficiency by enabling 
algorithm restructuring through skeletons. 

D. EMBEDDED SYSTEMS 

The OSCAR [18] automatic parallelizing compiler has 
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been developed to utilize multicores for consumer 
electronics like portable electronics, mobile phones, car 
navigation systems, digital TVs and games. Also, a new 
Consumer Electronics Multicore Application Program 
Interface (API) is defined [19] to use the OSCAR compiler 
with native sequential compilers for various kinds of 
multicores from different vendors. It has been developed in 
NEDO (New Energy and Industrial Technology 
Development Organization) “Multicore Technology for 
Realtime Consumer Electronics” project with six Japanese 
IT companies.  

To parallelize a program on consumer electronics 
multicores, it is especially important to optimize memory 
allocations, overlap data transfer and realize low power 
consumption. 

This API uses a subset of OpenMP. Furthermore, this 
API enables the allocation of various kinds of memory such 
as local memory, distributed shared memory and on-chip 
central shared memory for real-time processing. It also 
realizes low power consumption on multicore memory 
architectures. The automatic parallelizing compiler 
generates parallelized programs with the API, so that the 
generated parallel programs can be easily executed on 
different processor cores and memory architectures.  

VI. CONCLUSION 

High performance computing becomes increasingly 
important. To maintain high quality solutions, programmers 
have to efficiently parallelize and map their algorithms. This 
task is far from trivial, leading to the necessity to automate 
this process. The general procedure to parallelize an 
application can be concluded as, 1) decide on which kind of 
parallel computer system will be used, 2) choose the right 
parallel programming paradigm to parallelize the code, 3) 
choose the good automatic parallelization tool.  

A number of automatic penalization tools are discussed in 
this paper. Most of the tools are designed for SMP, shared 
memory machines, where OpenMP is supported. I believe 
OpenMP kind of parallel codes are easier to be parallelized 
than other parallel paradigms, such as MPI. Few works have 
been done to automatically parallelize MPI, CUDA codes 
and also embedded systems, such as portable multi-core 
devices. However in real life, the high scalable systems are 
mainly clusters, which are distributed memory systems. We 
really need automatic parallelization tools for MPI or 
MPI/OpenMP mix-mode applications. 
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