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Abstract—The increase in number of state variables in a 

higher order systems gives rise to a new possible mode of 

instability which was not previously observed in simple lower-

order systems. In this paper an extensive simulations were 

performed to capture the nonlinear behaviors of a higher order 

DC-DC converter described by 3D map. Floquet theory is then 

applied showing that: (a) two different types of bifurcations can 

be identified, either separately or interacting, depending on the 

values of bifurcation parameters (b) if there exist period 2n 

orbits created through a period doubling cascade, and if a 

period-n orbit undergoes Neimark-Sacker bifurcation, then the 

period-2n orbit also undergoes Neimark- Sacker bifurcation at 

the same parameter value. 

 
 Keywords — Ćuk converter, current-mode control, fast-

scale bifurcation, slow-scale bifurcation, chaos. 

I. INTRODUCTION 
ifurcation of smooth dynamical systems have been 
extensively studied in the literature [1, 2, 3, 4]. Most 

of these studies address the bifurcations in lower order 
systems (one and two-dimensional maps) [5, 6], i.e. 
bifurcations that take place when one bifurcation variable is 
altered. These bifurcation phenomena mainly include cases 
of fast-scale bifurcations (flip bifurcation), and slow-scale 
bifurcations (Neimark-Sacker bifurcation). The dynamical of 
higher order systems have received relatively less research 
attention (three dimension map 3D) [7, 8]. In 3D systems the 
alteration of two bifurcation variables leads to the existence 
of more bifurcation possibilities.  Recently an interaction of 
fast-scale and slow-scale phenomena has been observed in 
systems described by 3D maps [7, 9]. This new interaction, 
apart from any academic or theoretical interest, is also 
important from a control point of view as it describes the 
behavior of such systems when the dynamics of the inner 
and faster loop become similar to the dynamics of the outer 
and conventionally slower loop.  

In this paper we probe the events where a flip bifurcation 
is followed by a Neimark-Sacker bifurcation. In the first 
bifurcation, the real eigenvalue becomes less than -1 and the 
fixed point loses stability. With further change of the 
parameter, if the period-doubled orbit undergoes a Neimark 
Sacker bifurcation, a two-loop torus develops. In order to 
investigate such an event, it is necessary to compute the 
Floquet multiplier of the period-2 orbit. Using the 
methodology presented in [10, 11] it is possible to calculate 
the eigenvalues of the period-1, and period-2 fixed points. 
This is often computationally involved. We show that it 
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suffices to compute the Floquet multipliers of the unstable 
fixed point, because when the complex conjugate 
eigenvalues of this orbit move out of the unit circle, the 
period-2 orbit also experiences a Neimark-Sacker 
bifurcation at the same parameter value. If there exist period 
2 orbit created through a period doubling cascade, and if a 
period-n orbit undergoes Neimark-Sacker bifurcation, then 
the period-2 orbit also undergoes Neimark-Sacker 
bifurcation at the same parameter value. 

Investigation of the dynamics of a fourth order current-
mode controlled Ćuk converter fully confirms the above 
statement. The aim is to probe into the nature of the 
nonlinear phenomena that can be encountered in the system 
when two bifurcation parameters are varied. Two different 
types of bifurcations can be identified, either separately or 
interacting, depending on the values of the bifurcation 
parameters.  

II. MATHEMATICAL MODEL OF THE PEAK CURRENT-MODE 
CONTROLLED ĆUK CONVERTER  

The basic circuit of the closed loop current-mode 
controlled Ćuk converter is shown in Fig.1. The circuit 
represents a piecewise affine system governed by two sets of 
linear differential equations related to the ON and OFF 
switch states.  
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Fig.1. Schematic diagram of the closed loop current-mode controlled Ćuk 
converter. The nominal parameter values taken in this study are: T=400μs, 
L1=L2=L=20mH, C1=C2=C=47μF K=0.6.       
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The ON state equations of the system can be written as:  
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And when the switch is turned OFF :   
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The switching signal is generated by comparing the 

reference current Iref with the sum of the two inductor 
currents iL1+iL2, as shown in Fig.2. As the sum of the two 
inductor currents reaches the reference current the switch ST 
turns OFF, and remains OFF until the next cycle, i.e., the 
switch is turned ON at the beginning of every clock period. 
iref is generated by the output voltage feedback signal. For 
simplicity, a simple proportional feedback controller was 
used. Using a proportional-integral (PI) controller will add a 
fifth state to the system, further complicating the analysis of 
the system. The control low is given by: 

 
  )3(1vVKI refref    

Where K is the control parameter and Vref is the reference 
voltage. Based on the state equations given above, a number 
of numerical simulations were carried out to investigate 
possible bifurcation behaviors that the period-1 orbit and the 
period-2 orbit can undergo in the closed loop current-mode 
controlled Ćuk converter, as two bifurcation parameters are 
varied. Since the input voltage and the load resistance have 
clear influence on the design objective and the dynamic 
behaviour of the system, the stability analysis of the system 

was carried out considering the variation of these two 
parameters.  

A. Effect of Varying the Input Voltage with Load                                                                                                                                                                                          

Resistance R=60 Ω                              

The simulation was first performed with a relatively large 
value of the load resistance (R=60Ω) and varying input 
voltage Vin from 14.5V to 17V. A typical bifurcation 
diagram for the closed loop current-mode controlled Ćuk 
converter is shown in Fig.3, using Vin as a bifurcation 
parameter. It is clear that, fast-scale instability (period 
doubling) and interacting fast-scale and slow-scale 
instabilities may occur as Vin decreases. When Vin is large, 
e.g., V35.16inV  , the system is attracted to the period-1 
orbit. As Vin is reduced, a fast-scale instability (period 
doubling) begins to develop at Vin =16.35V. When the input 
voltage Vin is further reduced to 15.35V an interacting fast-
scale and slow-scale bifurcation occurs (birth of two-loop 
torus).  
 

B. Effect of Varying the Input Voltage with Load 

Resistance R=56 Ω  

In this section, the stability of the system at smaller value 
of R (R=56Ω) is studied. Similarly, we begin with a 
relatively large value of Vin and observed the possible 
bifurcation behaviors as Vin decreases. Fig.4 shows a typical 
bifurcation diagram. Unlike the above case where R=60Ω, 
the system loses its stability via a slow-scale bifurcation first 
before it goes into an interacting bifurcation as Vin is 
reduced. When Vin >16.45V, the system is stable. As Vin is 
reduced, a slow-scale instability occurs at Vin =16.4V. When 
Vin is further reduced, e.g., Vin =15.7V, the interacting fast-
scale / slow-scale bifurcation occurs.  

The above simulation results show that the closed loop 
current-mode controlled Ćuk converter can lose stability 
either via a fast-scale bifurcation or via a slow-scale 
bifurcation before it goes to the interacting fast-scale and 
slow-scale bifurcations, depending upon the values of 
system parameters. 
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Fig.3. Bifurcation diagram, taking Vin as bifurcation parameters (R=60Ω).  
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Fig.2. Generation of the ON-OFF driving signal in closed loop current-
mode controlled Ćuk converter. 
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III.  THEORETICAL ANALYSIS  

In the normal operating condition, the state variables of 
the converter follow a period-1 orbit. It has been shown 
earlier [10, 11] that the stability of such an orbit can be 
assessed by computing the state transition matrix over a 
complete clock cycle (called the monodromy matrix), which, 
in turn, is composed of the state transition matrices over the 
ON and OFF periods and those across the switching events 
(called the saltation matrices). The orbit is stable if the 
eigenvalues of the monodromy matrix are inside the unit 
circle. Any crossing of the eigenvalues from the interior to 
the exterior of the unit circle indicates a loss of stability, i.e. 
a type of bifurcation occurs at that crossing point. A fast-
scale bifurcation occurs when the negative real eigenvalues 
moves out the unit circle and a slow-scale bifurcation occurs 
when the complex pair of the eigenvalues moves out the unit 
circle. If both conditions are satisfied, an interacting 
bifurcation is produced. 

To verify the simulation results, all possible bifurcation 
behaviors exhibited by the period-1 and period-2 orbits were 
investigated using the monodromy matrix of the system. 

A. Derivation of the Monodromy Matrix For the period-1 

orbit 

Under normal operation the system is non-autonomous, 
because the beginning instant of each switching cycle is 
defined by clock signal, so the vector field, f (X, t), is an 
explicit function of time.  

where X=[x1   x2   x3   x4] and 

x1 = v1     The voltage cross the capacitor C1  

x2 = v2     The voltage cross the capacitor C2  

x3 = i2      The current through the inductor L2  

x4 = i1      The current through the inductor L1 

When the system assumes a specific circuit topology, the 
corresponding vector field is linear and continuous. 
However, the vector field of the system becomes  

discontinuous when the switch passes from ON to OFF state 
and from OFF to ON state, as shown in Fig. 5.  

The switching condition can be represented by a 
switching hypersurface h : 
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The two vector fields before and after the switching 

hypersurface are: 
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Since the two vector fields are not equal (fON(X, t) ≠ 
fOFF(X, t)), the overall vector field of the system is 
discontinuous. Knowing that the OFF period lasts for (1-d)T 
seconds, and the ON period lasts for dT seconds, the state 
transition matrices for these two time intervals are: 
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The state transition matrix cycleΦ  calculated over a 

complete cycle (the Monodromy Matrix) is defined as: 
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The saltation matrix 1S defines the solution on the 

hypersurface at dTt   and is given by: 
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The second saltation matrix S2  relates to the switching 

from an OFF state to an ON state and at the end of the clock 
cycle turns out to be an identity matrix, since the rising edge 
of the clock forces the switch to turn ON, i.e. both the 
original and perturbed orbits are forced to cross the 
switching hypersurface at the same time, and hence there is 
no need for a station matrix to describe the switching at t=T.  

Then if S1 is known, it is possible to calculate out the 
eigenvalues of monodromy matrix of the system.    

B. Derivation of the Monodromy Matrix For the period-2 

orbit 

Fig.7 shows a stable period-2 limit cycle of the closed 
loop current-mode controlled Ćuk converter. It is obvious 
that the trajectory will cross the switching hypersurface h  
two times in  Tt 2,0 . In this case the system starts the 
clock cycle in the ON state which continues for a period of 
dT. The switch turns OFF and remains OFF until the next 
clock cycle. Then the switch turns ON for a period of d1T, 
after which the switch turns OFF again. It remains OFF until 
the end of the second switching period, when it is turned ON 
again. Thus, the monodromy matrix for the period-2 orbit 
can be described by the same expressions used for the 
period-1 orbit, but with a period of 2T. The state transition 
matrix over the complete cycle will be composed of the 

transition matrices over the four time intervals, and the four 
saltation matrices for the switching from an ON state to an 
OFF state ( 1S  and 2S ) and that from an OFF state to an 

ON state ( 2S  and 4S ):  
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In calculating the saltation matrix S1, the switching 
hypersurface is:  
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In calculating S1, the expression for the switching 
hypersurface is:  
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So that the two switching hypersurfaces have the same 
normal and is given by: 
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With these expressions, one can obtain the two saltation 
matrices: 

    
 

dTt

T t

tt






,
,,

ON

T
ONOFF

1
Xfn

nXfXf
IS , 

 
    

 
Tdt

T t

tt

1
,

,,

ON

T
ONOFF

3





Xfn

nXfXf
IS  

S2 and S4 are identity matrixes for the same reasons 
explained in analysing the period-1 orbit. 

C. Evaluation of the Floquet Multipliers 

 The Floquet multipliers for the stable period-1 orbit and 
the stable period-2 orbit with variation of the input voltage 
Vin were calculated for two different values of the load 
resistance R.   

TABLE I 

FLOQUET MULTIPLIERS OF THE PERIOD-1 ORBIT FOR VARIOUS inV ; 

R=60Ω 

Vin  (V) 

eigenvalues 

Remarks Real  eigenvalues 
 

Modulus 
(Complex 

Pair) 
 

16.5 -0.9952 0.1996 0.9996 Stable 
period-1 

16.35 -1.003 0.2006 0.99968 
Fast-scale 

instability 

16 -1.0151 0.2026 0.9997 Fast-scale 
instability 

15.5 -1.0363 0.2056 0.9999 Fast-scale 
instability 

15.35 -1.0451 0.2068 1.00006 
Interacting 

bifurcation 

 
 

 
 

 

Fig.6. Period-2 orbit of the closed loop current-mode controlled Ćuk 
converter. 
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The results are shown in Tables I, II, III and IV. Tables I 
and II show the Floquet multipliers of the stable period-1 
orbit and the stable period-2 orbit, respectively, for R=60 Ω. 

By reducing the load resistance to R=56 a different 
bifurcation scenario is obtained. Tables III and IV show the 
Floquet multipliers of the stable period-1 orbit and the stable 
period-2 orbit, respectively, for R=56Ω. In this case the 
system goes from period-1 to an interacting bifurcation via a 
slow-scale bifurcation at 16.4V, and then the period-1 orbit 
undergoes a period doubling bifurcation (fast-scale 
bifurcation at 15.7V.  

In this case, when the period-2 orbit is born it is already 
unstable with complex eigenvalues with magnitude greater 
than 1, as can be seen in Table IV.  

From the above analysis it is clear that when the period-1 
orbit losses stability through a slow-scale bifurcation 
(Neimark-Sacker bifurcation) the period-2 orbit will also 
undergo a loss of stability.  

  

D. The Two-parameter Bifurcation Lines in Vin and R 

Parameter Space  

It is clear from the previous sections that different 
combinations of circuit parameter values can lead to 
different ways for the system to loss its stability. Therefore, 
it is important to obtain the bifurcation lines for the fast-
scale bifurcation (when the negative real eigenvalues moves 
out the unit circle) and the slow- scale bifurcation (when the 
complex pair of the eigenvalues moves out the unit circle) in 
the Vin and R parameter plane. Using the eigenvalues of the 
monodromy matrix, the stability of the system was 
investigated for different values of the input voltage and the 
load resistance. In particular, the load resistance R was 
varied in the range (50Ω-60Ω) and for each value the critical 
value of Vin was calculated for which either, a slow-scale or 
a fast-scale instability occurs. The other parameters were 
fixed. The two-parameter bifurcation lines computed 
analytically are shown in Fig. 7. The two lines divide the 
parameter plane into four regions; stable operation (region 
A), fast-scale instability (region B), interacting bifurcation 
(region C), and slow-scale instability (region D). Fig. 7 
shows that when inV  decreases, the system either leave the 
stable region A via a fast-scale bifurcation (with high value 
of R) or via a slow-scale bifurcation (low value of R) before 
it goes to the interacting bifurcation region C, depending 
upon the choice of the system’s load resistance value. The 
figure also shows that the two lines can cross at particular 
values of the input voltage, VVin 346.16 , and load 
resistance R=56.55Ω   i.e. the negative real and the complex 
pair of the eigenvalues move out the unit circle at the same 
time (Codimention-2 bifurcation node), i.e. bifurcations that 
take place when two bifurcation variable are altered.   

It is worth mentioning that if the system operates with one 
bifurcation parameter value closer to codimention-2 
bifurcation nodes, a very small change in the other 
bifurcation parameter could leads to a different type of 
instability. It may also mean that the system never operates 
in the stable region. Therefore, it is important to be able to 
locate such point and re-examine the stability of the system 
at those key values. 

TABLE II 

FLOQUET MULTIPLIERS OF THE PERIOD-2 ORBIT FOR VARIOUS inV ; R=60Ω 

Vin  (V) 

eigenvalues 

Remarks Real  eigenvalues 
 

Modulus 
(Complex Pair) 
 

16.35 0.9877 0.0406 0.9995 Stable 
period-2 

15.35 0.8286 0.0474 1.00001 
Slow-scale 

instability 

15 0.7119 0.0537 1.0004 Slow-scale 
instability 

 
 

 
 

TABLE III 

FLOQUET MULTIPLIERS OF THE PERIOD-1 ORBIT FOR VARIOUS inV ; R=56Ω. 

Vin  (V) 

eigenvalues 

Remarks Real  eigenvalues 
 

Modulus 
(Complex Pair) 
 

16.5 -0.9937 0.1981 0.9999 Stable 
period-1 

16.4 -0.9976 0.1987 1 
Slow-scale 
instability 

15.7 -1.0218 0.2010 1.0002 
Interacting 

bifurcation 

15.5 -1.0345 0.2040 1.0004 Interacting 
bifurcation 
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Fig. 7.  Bifurcation lines in the parameter plane (R, Vin). 
 
 

TABLE IV 

FLOQUET MULTIPLIERS OF THE PERIOD-2 ORBIT FOR VARIOUS inV ; R=56Ω. 

Vin  (V) 

eigenvalues 

Remarks Real  eigenvalues 
 

Modulus 
(Complex 

Pair) 
 

15.7 0.8827 0.0431 1.0003 
Slow-scale 

instability 

15.5 0.8642 0.0466 1.0009 Slow-scale 
instability 

15 0.7189 0.0531 1.0013 Slow-scale 
instability 
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IV. CONCLUSION  

In conclusion, we may come out with the following general 
observation for the dynamical behaviour of high dimensional 
maps systems  

1- An interacting fast-scale and slow-scale bifurcation 
occurs, corresponding to the simultaneous 
occurrence of a fast-scale bifurcation and a slow-
scale bifurcation.  

2- The system can lose stability via a fast-scale 
bifurcation, a slow-scale bifurcation, or an 
interacting bifurcation, depending upon the values 
of the system’s load resistance and input voltage.  

3- When a period-1 orbit undergoes a slow scale 
bifurcation, a period-2 orbit undergoes a similar 
bifurcation. 

4- A codimention-2 bifurcation can take place (the fast-
scale bifurcation and the slow-scale bifurcation 
occur at the same time) at particular values of the 
bifurcation parameters  

5- The system may never operate in the stable region if 
one the bifurcation parameters is chosen just below   
the codimention-2 bifurcation whatever is the value 
of the other bifurcation parameter.    
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