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Abstract—This paper presents a direct fuzzy adaptive control
for standalone Wind Energy Conversion Systems (WECS)
with Permanent Magnet Synchronous Generators (PMSG). The
problem of maximizing power conversion from intermittent
wind of time-varying, highly nonlinear WECS is dealt with
by an adaptive control algorithm. The adaptation is designed
based on the Lyapunov theory and carried out by the fuzzy
logic technique. Comparison between the proposed method
and the feedback linearization method is shown by numerical
simulations verifying the effectiveness of the suggested adaptive
control scheme.

Index Terms—wind energy conversion system, permanent
magnet synchronous generators, fuzzy logic, nonlinear adaptive
control.

I. INTRODUCTION

W IND energy is a renewable energy source. It has
developed significantly in the last few decades and

now has the fastest growth among other renewable energy
sources [1].

Wind energy is harvested by WECS or wind turbines.
These wind energy converters can be classified as grid-
connected or standalone depending on their connections
to utility grids or local grids. Nowadays most WECS are
connected to utility grids. However there is still demand
for standalone WECS which provide electrical power for
remote areas where utility grids cannot reach. To guarantee
continuous energy supply, standalone WECS are combined
with other energy sources such as battery storage systems,
solar energy systems, diesel generators, etc. resulting in Hy-
brid Wind Energy Systems (HWES). Due to the presence of
other energy sources, the control of HWES is quite different
from that of grid-connected WECS. Beside attempting to
capture as much power as possible, controllers need to ensure
constant power flow to local loads. A number of control
strategies has been proposed for HWES in [2], [3], [4]. Most
of these works focus on the interaction between WECS and
storage systems. Meanwhile, authors in [5] deal with the
control of maximizing the power conversion of WECS in
HWES based on the nonlinear feedback linearization control
method.

The adaptive control is an attractive control which provides
controllers ability to learn as systems and/or environments
change [6]. This feature is particularly useful for WECS
which are immersed in highly stochastic wind surroundings.
Different adaptive structures were presented to WECS in
[7]–[12]. Basically these works study adaptive Proportional
Integral Derivative (PID) control using fuzzy logic [7], [8]
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or neural networks [9]–[12] to tune PID parameters. Our
paper focuses on an adaptive control scheme based on the
input-output linearization control where the adaptive rule is
designed based on the Lyapunov analysis. The chosen HWES
is the same as in [5]. The results of the adaptive control will
be compared to that of the feedback linearization control in
[5] proving advantages of the proposed control.

The paper is organized as follows. Section II describes the
HWES and the standalone PMSG-based WECS nonlinear
model. The adaptive control design is presented in Section
III followed by its application to the standalone WECS in
Section IV. Based on simulation results shown in Section V,
some discussions and conclusions are drawn in Section VI.

II. STANDALONE WIND ENERGY CONVERSION SYSTEM
MODELING

A HWES includes a WECS interacting with another
source of energy as shown in Fig. 1. Due to the output power
from the WECS fluctuating according to wind changes, other
energy sources such as battery or solar systems or diesel
generators must be added to ensure a constant power supply
to the local grid. Maximum power conversion of the WECS
is obtained by adjusting the generator speed ωg as wind speed
V changes. This is achieved by modifying the equivalent load
at the generator terminal via power electronics converters.
The equivalent standalone WECS is depicted in Fig. 2 where
RL and LL are the equivalent load resistance and inductance,
respectively. The equivalent load resistance is considered the
control input for the control system.

The dynamic model of the standalone WECS is obtained
by combining the aerodynamics, drive train dynamics and
generator dynamics. Note that the power electronics dy-
namics is ignored because it is much faster than the other
dynamics.

The aerodynamics converts wind flows into aerodynamic
torque and mechanical power given respectively as

Tr =
1
2
ρπR3V 2CQ(λ, β), (1)

Pr =
1
2
ρπR2V 3CP (λ, β), (2)

where Tr is the aerodynamic torque, ρ is the air density,
R is the radius of the wind rotor swept area, V is the
wind speed, CQ(λ, β) is the torque coefficient, Pr is the
mechanical power, and CP (λ, β) is the power coefficient. It
is seen that both torque and power coefficient are functions
of the so-called tip-speed ratio λ and pitch angle of the wind
rotor blades β. The tip-speed ratio is defined as the ratio
between the speed at the tip of blades and the wind speed,
which is given as

λ =
ωrR

V
, (3)
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Fig. 1. Hybrid Wind Energy System

Fig. 2. Standalone WECS

where ωr is the wind rotor rotational speed. However for
the optimal power conversion purpose the torque coefficient
in (1) is only dependent on the tip-speed ratio and can
be approximated as the following sixth-order polynomial
function of the tip-speed ratio [5]

CQ(λ) = a6λ
6 + a5λ

5 + a4λ
4 + a3λ

3 + a2λ
2

+a1λ + a0. (4)

The power coefficient CP (λ) has its maximum value at
the so-called optimal tip-speed ratio λ∗ as illustrated in Fig.
3. Therefore, to maximize the power conversion, the WECS
must operate at the optimal tip-speed ratio. However, when
the wind speed changes, the tip-speed ratio is perturbed away
from the optimal value as seen from (3). To maintain the
optimal tip-speed ratio, the wind rotor speed ωr must be
adjusted by the control system.

The standalone PMSG model in the direct and quadrature
(d,q) frame is given as [5]

d

dt
id = −Rs + RL

Ld + LL
id +

p(Lq − LL)
Ld + LL

iqωg, (5)

d

dt
iq = −Rs + RL

Lq + LL
iq −

p(Ld + LL)
Lq + LL

idωg

+
pΦm

Lq + LL
ωg, (6)

Tg = pΦmiq, (7)

where id and iq are the d- and q-components of the stator
currents respectively; Ld and Lq are the d- and q-components
of the stator inductances respectively; Rs is the stator resis-
tance; RL is the equivalent load resistance; p is the number
of pole pairs; Φm is the linkage flux; ωg is the high-speed
or generator speed; and Tg is the generator electromagnetic
torque.

The drive train system consists of a low-speed shaft
connected to a high-speed shaft through a gearbox which
is a rotational speed multiplier. The drive train dynamics can
be represented by a rigid model as

Jh
dωg

dt
=

η

i
Tr − Tg, (8)

where Jh is the equivalent inertia transformed into the high-
speed side, η and i are the gearbox efficiency and speed
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Fig. 3. Power Coefficient Curve

ratio respectively, Tr is the aerodynamic torque, and Tg is
the generator electromagnetic torque.

Defining x = [x1 x2 x3]T = [id iq ωg]T as the state
variable vector, u = RL as the control input, and y = ωg

is the system output. Combining (1), (3), and (5)-(8) gives a
nonlinear state space model of the standalone PMSG-based
WECS:  ẋ1

ẋ2

ẋ3


︸ ︷︷ ︸

ẋ

=

 f1(x)
f2(x)
f3(x)


︸ ︷︷ ︸

f(x)

+

 g1(x)
g2(x)
g3(x)


︸ ︷︷ ︸

g(x)

u, (9)

y = h(x), (10)

where

f1(x) = − Rs

Ld + LL
x1 +

p(Lq − LL)
Ld + LL

x2x3, (11)

f2(x) = − Rs

Lq + LL
x2 −

p(Ld + LL)
Lq + LL

x1x3

+
pΦm

Lq + LL
x3, (12)

f3(x) =
ηρπR3V 2

2iJh
CQ(x3, V )− pΦm

Jh
x2, (13)

and

g1(x) = − 1
Ld + LL

x1, (14)

g2(x) = − 1
Lq + LL

x2, (15)

g3(x) = 0, (16)
h(x) = x3. (17)

Note that the wind rotor speed ωr is multiplied i times after
going through the gearbox, therefore the generator speed ωg

is i times larger than the wind rotor speed. Consequently the
torque coefficient CQ(x3, V ) in (13) can be expressed as

CQ(x3, V ) = a6

(
Rx3

iV

)6

+ a5

(
Rx3

iV

)5

+ a4

(
Rx3

iV

)4

+a3

(
Rx3

iV

)3

+ a2

(
Rx3

iV

)2

+a1

(
Rx3

iV

)
+ a0. (18)
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It is observed from (18) that the dynamical model (9)-(10)
is highly nonlinear.

III. ADAPTIVE CONTROL METHOD

Consider a Single Input Single Output (SISO) nonlinear
system defined in the region Dx ∈ Rn as

ẋ = f(x) + g(x)u, (19)
y = h(x), (20)

where x ∈ Rn is the state vector, u ∈ R1 is the control input,
y ∈ R1 is the system output, f(x) ∈ Rn and g(x) ∈ Rn

are smooth vector fields, and h(x) ∈ R1 is a scalar smooth
function. It is assumed the nonlinear system (19)-(20) has a
relative degree r (r < n) at x0 ∈ Dx and internal dynamics
is stable, taking derivatives of the output y with respect to
time up to r times gives

y(r) = Lr
fh(x) + LgL

r−1
f h(x)︸ ︷︷ ︸
6=0

u, (21)

where Lr
fh(x) is the Lie derivative of h(x) along the

direction of the vector field f(x) up to r times, LgL
r−1
f h(x)

is the Lie derivative of Lr−1
f h(x) a long the direction of the

vector field g(x).
Defining α(x) = Lr

fh(x) and β(x) = LgL
r−1
f h(x) and

rewriting (21) yields

y(r) = α(x) + β(x)u, (22)

Assumption 1: The function β(x) is positive. It means that
0 < β(x) < ∞ with ∀x ∈ Dx.

Choosing the state feedback linearization control:

u∗(x) =
1

β(x)
(−α(x) + v) , (23)

, then the input-output nonlinear relation (22) becomes linear
as

y(r) = v. (24)

A. Fuzzy Approximation Strategy

The linear input-output relation (24) can be designed
for stabilization or tracking with any linear methods. It is
apparent that the ideal feedback linearization control (23)
is only applicable if α(x) and β(x) are known. However,
there are uncertainties imposed on α(x) and β(x) in practice,
therefore the control (23) is not accurate. In this case,
adaptive algorithms were proposed to realize the ideal control
u∗(x) by using an approximate nonlinear function û(x),
called direct adaptive control, or by using approximate α̂(x)
and β̂(x) of nonlinear functions α(x) and β(x), called
indirect adaptive control [13], [14]. This paper presents the
direct adaptive control using the fuzzy approximation.

The control problem is to drive the output y track a
reference signal ym (ym is a smooth function). The feedback
linearized control input v in (24) is defined as

v = y(r)
m + ēs + γes, (25)

where γ is a positive constant, ēs and es are defined as

es = e(r−1)
o + k1e

(r−2)
o + ... + kr−1eo, (26)

ēs = ės − e(r)
o = k1e

(r−1)
o + ... + kr−1ėo, (27)

eo = ym − y, (28)

where es is the tracking error, eo is the output error. Co-
efficients ki are chosen such that following polynomial is
Hurwitz

E(s) = sr−1 + k1s
r−2 + ... + kr−2s + kr−1, (29)

The ideal control input in (23) is approximated by a fuzzy
system as

û(x) = θT
u ξu(x), (30)

where θu is a parameter vector including values of singleton
membership function at consequent propositions of the fuzzy
system rule base, ξu(x) is a fuzzy regressive vector. θu is
updated online such that û(x) approaches u∗(x). The optimal
parameter vector is

θ∗u = arg min
θ∈Dθ

{
sup

x∈Dx

∣∣θT
u ξu(x)− u∗

∣∣} . (31)

Because u∗(x) is approximated by a fuzzy system possessing
a finite number of rules, there exists an unavoidable structural
error δu(x). Therefore the actual ideal control u∗(x) is

u∗(x) = θ∗u
T ξu(x) + δu(x). (32)

The difference between the approximate control û(x) and
ideal control u∗(x) is

û(x)− u∗(x) = θ̃T
u ξu(x)− δu(x), (33)

where

θ̃u = θu − θ∗u (34)

is the approximation error.
Assumption 2: The adaptive control is chosen such that the

structural error is bounded
(∣∣δu(x)

∣∣ ≤ δ̄u

)
with ∀x ∈ Dx and

the upper bound δ̄u is known.
Due to the presence of the structural error, an additional

supervisory control us is added to guarantee the closed-loop
stability. Therefore the real control is

u = û + us. (35)

B. Adaptive Law Design

The adaptive law is designed based on an Lyapunov
analysis is presented here.

Adding and subtracting β(x)u∗(x) into (22) gives

y(r) = α(x) + β(x)u∗(x) + β(x) [u(x)− u∗(x)] ,
= v + β(x) [u(x)− u∗(x)] . (36)

Combining (25), (28), (33), (35), and (36) gives

e(r)
o = y(r)

m − y(r),

e(r)
o = y(r)

m − v − β(x) [u(x)− u∗(x)] ,
e(r)
o = −ēs − γes − β(x) [û(x) + us − u∗(x)] ,

e(r)
o = −ēs − γes − β(x)θ̃T

u ξu(x) + β(x)δu(x)
−β(x)us. (37)

Combining (27) and (37) yields the error dynamic as

ės + γes = −β(x)θ̃T
u ξu(x) + β(x)δu(x)− β(x)us. (38)

Considering a positive semidefinite quadratic Lyapunov
function:

V =
1

2β(x)
e2
s +

1
2
θ̃T

u Quθ̃u, (39)
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where Qu is a positive definite weighting matrix. Taking the
derivative of V with respect to time, with the observation
from (34) that ˙̃

θu = θ̇u, yields

V̇ =
1

β(x)
esės −

β̇(x)
2β2(x)

e2
s + θ̃T

u Quθ̇u. (40)

Substituting (38) into (40) produces

V̇ =
es

β(x)

[
− γes − β(x)θ̃T

u ξu(x) + β(x)δu(x)

−β(x)us

]
− β̇(x)

2β2(x)
e2
s + θ̃T

u Quθ̇u,

V̇ = − γe2
s

β(x)
− esus + esδu(x) + θ̃T

u

(
Quθ̇u − ξ(x)es

)
− β̇(x)

2β2(x)
e2
s. (41)

Choosing the adaptive law:

θ̇u = Q−1
u ξu(x)es, (42)

and substituting (42) into (41) gives

V̇ = − γe2
s

β(x)
− esus + esδu(x)− β̇(x)

2β2(x)
e2
s, (43)

V̇ ≤ − γe2
s

β(x)
− esus +

∣∣es

∣∣(∣∣δu(x)
∣∣

+

∣∣β̇(x)
∣∣

2β2(x)

∣∣es

∣∣). (44)

Assumption 3: There exist positive lower bound and upper
bound of β(x). It means 0 < β ≤ β(x) ≤ β̄.

Assumption 4: The velocity of β(x) is bounded. It means∣∣β̇(x)
∣∣ ≤ βv .

Combining (44) with assumptions 3 and 4 yields

V̇ ≤ −γe2
s

β̄
− esus +

∣∣es

∣∣(δ̄u +
βv

2β2

∣∣es

∣∣). (45)

Choosing the supervisory control us as

us =
(
δ̄u +

βv

2β2

∣∣es

∣∣)sgn(es), (46)

and substituting (46) into (45) gives

V̇ ≤ −γe2
s

β̄
≤ 0. (47)

Note that essgn(es) =
∣∣es

∣∣. It is seen from (39) and (47), the
positive semidefinite Lyapunov function V has its negative
semidefinite derivative V̇ , therefore the closed-loop adaptive
system is stable [15].

IV. ADAPTIVE CONTROL DESIGN FOR THE STANDALONE
WECS

In this section the adaptive control method presented in
Section III is applied to the standalone nonlinear PMSG-
based WECS given in (9) and (10). The control objective
is to track the optimal generator speed reference ω∗g in
order to maintain the optimal tip-speed ratio λ∗ as the wind
speed V changes. Unlike the feedback linearization design
in [5] where authors simplified the sixth-order polynomial
torque coefficient in (4) by using an approximate second-
order polynomial which captures only the steady-state region,
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Fig. 5. Direct Fuzzy Adaptive Control Structure

our study uses the sixth-order polynomial torque coefficient
which captures all operating regions.

The fuzzy model û(x) used to approximate the control
u∗(x) is chosen as Takagi-Sugeno model which has inference
rules in the form
If x1 is A1i and x2 is A2i and x3 is A3i then û(x) = θui,
where x1, x2, and x3 are state variables; A1i, A2i, and A3i

are fuzzy sets of linguistic variables describing x1, x2, and
x3 respectively at the ith rule. The forms and number of
fuzzy sets for linguistic variables are chosen based on trial
and error basis. In this system fuzzy set forms were chosen
as Gaussian and there are five fuzzy sets for each linguistic
variable as shown in Fig. 4. Consequently there are total 125
rules.

The approximate fuzzy system in (30) is

û(x) = θT
u ξu(x),

where

θu =
[
θu1 θu2...θu125

]T
, (48)

ξu(x) =
[
ξu1(x) ξu2(x)...ξu125(x)

]T
, (49)

ξui =
µA1i

(x1).µA2i
(x2).µA3i

(x3)∑125
i=1 µA1i

(x1).µA2i
(x2).µA3i

(x3)
, (50)

where ξui is the regressor at the ith rule.
The direct fuzzy adaptive control structure is shown in

Fig. 5 where the adaptive controller is given in (30) with the
adaptive law given in (42), and the supervisory controller is
given in (46).

V. SIMULATION RESULTS

Simulations were carried out with a 3KW standalone
PMSG-based WECS which has the optimal power coefficient
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TABLE I
SIMULATION DATA

Wind Rotor Drive Train PMSG

R = 2.5 m i = 7 p = 3, Rs = 3.3 Ω

ρ = 1.25 kg/m3 η = 1 Ld = 0.04156 H

Jh = 0.0552 kg.m2 Lq = 0.04156 H

Ls = 0.08 H

Φm = 0.4382 Wb
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Fig. 6. Simulation Wind Speed Profile
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Fig. 7. Output Reference Tracking

CPmax
= 0.478 and the optimal tip-speed ratio λ∗ = 7.

Other system parameters are given Table I. Lower and upper
bounds in assumption 2, 3, and 4 are δ̄u = 0.001, β = 1,
and βv = 30. The nonlinear PMSG-based WECS has the
relative degree r = 2, so parameters for the error dynamics
are chosen as γ = 15 and k1 = 5. The control input is
set bounded as 0 < u ≤ 100. The stochastic wind profile
is shown in Fig. 6. Control performances of both Direct
Fuzzy Adaptive Control (DFAC) proposed in this paper and
Feedback Linearization Control (FLC) proposed in [5] are
compared in parallel.

Regarding the output tracking performance, Fig. 7 and
8 show both DFAC and FLC track the output reference
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Fig. 8. Control Inputs
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Fig. 9. Tracking Errors
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Fig. 10. Optimal Power Coefficient Maintenance

satisfactorily. However the DFAC provides better tracking
than the FLC does as seen from the Fig. 9 which indicates
tracking errors.
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Fig. 11. Optimal Tip-speed Ratio Maintenance

Regarding the power conversion efficiency, two important
factors representing the optimal power extraction are the
power coefficient maintenance and tip-speed ratio mainte-
nance under wind speed fluctuations. Fig. 10 and 11 prove
the DFAC better than the FLC in optimizing the power
conversion. It is obviously observed from those figures that
the DFAC stays constantly steady at the optimal power
coefficient and tip-speed ratio values after the transient time.
Meanwhile, the FLC keeps oscillating around optimal values.

VI. DISCUSSION AND CONCLUSION

The simulation results show that the proposed DFAC
is very good in dealing with the time-varying, nonlinear
nature of WECS. The DFAC was also proven more effective
than the FLC regarding the control performance and power
capture. However, the design of DFAC requires certain
assumptions to be met as stated in Section III which are
not always satisfied in practice. For example, it is hard to
find lower and upper bounds of the nonlinear function β(x)
and structural error δu(x). These values were found based
on the system physical features combined with the trial and
error method in this paper.

Another important note is that both DFAC and FLC require
all states to be accessible. As we know that system states
are not available sometime and/or somewhere; consequently
the DFAC and FLC are not applicable in those situations.
Therefore, an extension of this study would be construct-
ing a nonlinear observer to estimate unavailable states and
integrating the nonlinear observer into the DFAC scheme.
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