
MashChord: A Structured Peer-to-Peer
Architecture for Mashups Based on Chord

Osama Al-Haj Hassan, Ashraf Odeh, and Anas Abu Taleb

Abstract—Mashups are key category of Web 2.0 applications.
Due to their personalization property, mashup platforms suffer
from scalability and efficiency issues. Most mashup platforms
are based on either centralized or loosely distributed archi-
tectures and that causes several deficiencies when searching
for mashups. This paper presents MashChord–a structured
peer-to-peer (P2P) architecture for mashups based on Chord.
Naturally, Chord supports exact matching search queries. We
show how we customize this to provide partial matching search
queries in MashChord. MashChord architecture increases the
efficiency of searching for mashups. We utilize this structured
architecture to incorporate several features into MashChord
that further improve the functionality of our platform such as
offloading mashup execution to peers.

Index Terms—mashups, peer-to-peer, Web-2.0, structured,
search.

I. INTRODUCTION

MASHUPS are an icon of Web 2.0 applications. A
mashup is defined as a Web service designed by

end-user. The purpose of a mashup is to fetch data sources
distributed over the Web, process the fetched data and further
refine it based on several operators such as filter, truncate,
and sort operators. An example is a mashup that fetches
data from Yahoo sports feed and Google news feed, then
combines these two data sources, and filters the combined
data based on title containing ’Rafa Nadal’. This mashup is
shown in Figure 1.

The main difference between a mashup and a Web service
is that mashups are designed by end-users while Web services
are designed by developers to fulfill the need of a specific
group of people. In other words, mashups aid towards more
personalized user experience because each end-user can
design his own mashups based on his own needs.

The personalization property of mashups comes on the
expense of scalability problems. Since each end-user can
design his own mashups, it is expected that the number of
mashups hosted by mashup platforms is very high. Therefore,
mashup platforms have to be designed carefully so that
scalability issues are alleviated.

One of the existing mashup architectures is the central-
ized architecture. In this architecture, a mashup server is
responsible of hosting and executing mashups. So, end-
users use the mashup application deployed on the server to
design, execute, search, and save mashups. This architecture
is simple. Searching for mashups is a straight forward cheap
process because all mashups are hosted at one machine

Manuscript received June 28, 2013; revised July 19, 2013.
O. Al-Haj Hassan is with the Department of Computer Science, Isra

University, Amman, Jordan e-mail: osama.haj@ipu.edu.jo.
A. Odeh is with the Department of Computer Information Systems, Isra

University, Amman, Jordan e-mail: ashraf.odeh@ipu.edu.jo.
A. Abu Taleb is with the Department of Computer Science, Isra Univer-

sity, Amman, Jordan e-mail: anas.taleb@ipu.edu.jo.

(server). However, it is a single point of failure in the system
which jeopardizes the system functionality. In addition, this
architecture is not the appropriate architecture to use given
the scalability issues explained before because one server
cannot handle the increasing number of mashups and their
requests.

Another architecture is a loosely distributed one which
consists of many nodes. Nodes of this architecture represent
clients and mashup processing nodes. The advantage of this
architecture is the distributed load on nodes. However, being
a loose architecture causes a main drawback which is the vast
amount of messages exchanged between nodes in order for
the system to work correctly. For example, suppose one end-
user started a search process to find mashups that satisfy a
certain criterion. This search process will expand through the
network via flooding technique or its variants which causes
huge number of messages to be generated between nodes.
All that is performed for one search process, the problem
exacerbates when executing high number of search attempts.

In order to fix the previously mentioned problems, we
present the design of a mashup platform on top of a struc-
tured network architecture that helps in distributing load
between nodes. The structured part aids towards a faster
search process.

II. LITERATURE REVIEW

Our system represents a mashup platform over structured
peer-to-peer topology. Therefore, our literature review will
discuss the two aspects of mashup platforms and structured
peer-to-peer networks.

A. Mashup Platforms

Mashup platforms are becoming very popular Web 2.0
applications. They have been investigated in literature. One
famous mashup platform is Yahoo Pipes [1]. It is a platform
that enables end-user to build mashups by providing a set
of operators such as fetch, filter, and sort operators. The
mashups built using Yahoo Pipes extract data from several
types of data sources such as RSS and Atom feeds. Mash-
Maker [2] is a mashup platform that enables end-users to
extract data sources and populate them in a visual manner.
Marmite [3] is a tool that helps end-users to aggregate several
data sources and direct the end result to other files. This tool
is implemented as a Firefox plug-in. MARIO [4] enables
end-users to build mashups via choosing combination of
tags from a cloud. In addition, MARIO executes mashups
using an efficient execution plan. Karma [5] is a mashup
platform that provides end-user with examples of mashups
which he can alter to create his own mashups. Presto [6]
provides a visual interface that facilitates the creation of

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig. 1. Example of a mashup that which includes fetch, union, and filter
operators

secure enterprise mashups. DAMIA [7] discusses data ag-
gregation for situational application. Jung [8] enables end-
users to collaborate in order to build mashups. Di Lorenzo et
al. [9] design a scheme that can be used to compare mashup
platforms. The previous platforms rely on a centralized
server architecture which makes them vulnerable against high
workloads and that causes scalability issues. On the contrary,
our system adopts a distributed model which avoids the
single point of failure issue.

B. Structured Peer-to-Peer Networks

Peer-to-peer network is a well established area in lit-
erature. The main two types of them are Structured and
Unstructured peer-to-peer networks. We refrain from using
the unstructured topology because it uses flooding techniques
as a search mechanism. Although the search process has
been improved using for example random walks; this type
of a topology still requires expensive search process. We
use structured peer-to-peer topology in MashChord. Some
of the most popular structured peer-to-peer platforms are
Chord [10], CAN [11], and Pastry [12]. Chord [10] is a key
lookup protocol that works by having a logical structured
arrangement of peers and resources on a virtual ring topol-
ogy. A hash function(SHA1) is used to generate identifiers
for peers and resources. More information about Chord is
provided in the next section because we adopt its topology
and protocol in our work. CAN [11] is another structured
peer-to-peer key lookup system. CAN arranges peers and
resources in a virtual dimensional coordinate space such that
each peer resides in a zone specific to it. Therefore, when a
resource is mapped to a given zone, the peer responsible of
that zone is the one that hosts and maintains that resource.
Pastry [12] is a similar work to Chord where each node
is assigned a unique identifier from 128 bit space and
Pastry protocol routes each message and key to the nodeID
numerically closer to the given message key. Structured peer-
to-peer networks can be used in different domains such as
in [13] which surveys simulators built on top of structured
and unstructured peer-to-peer networks. Another work [14]
proposes a scheme that converts static network topology
into a dynamic one built on top of structured peer-to-peer
network. OE-P2RSP [15] is a structured peer-to-peer system
built on top of Pastry. It adds enhancements over Pastry
such as avoiding centralized object ID generation. It also
uses objects group to make sure that objects that belong to
the same group reside on the same node. The work in [16]
targets the problem of free riding which happens when users
make use of the peer-to-peer network without contributing
with resources to the network.

Fig. 2. A 8-identifier Chord ring with 3 nodes

Our work (MashChord) combines mashup platforms with
structured peer-to-peer networks in order to come up with a
mashup platform that benefits from efficient search process
of structured peer-to-peer network and also benefits from
distributed structure that avoids single point of failure in the
system. These features fit well with the stringent scalability
requirements of mashup platforms.

III. MASHCHORD

In this section, we show the design of our mashup platform
over Chord structured P2P network. First, we discuss the key
features of Chord topology and protocol. Second, we explain
mashup representation in our system. Third, we provide the
details of MashChord platform and how mashups are mapped
to peers.

A. Chord

Our system is based on Chord [10]. Chord protocol ar-
ranges peers and resources on a virtual ring. The arrangement
occurs by using SHA1 hash function. The hash function
receives peer IP address as an input and it produces an
identifier for that peer. Similarly, the hash function takes
resource key as an input and it generates an identifier for
that resource. The resulting identifier of a peer represents
its location on the virtual ring. The concept ’successor’ is
important in Chord. The successor of an identifier ’k’ is
the peer with identifier ’k’ or the peer that immediately
follows ’k’ on the ring (clockwise). For example, in Figure 2
successor(2)=2 because there is a peer with identifier 2. Also,
successor(6)=0 because there is no peer with identifier 6 and
the peer that immediately follows identifier 6 on the ring
(clockwise) is 0. Given the concept of ’successor’, the way
resources are assigned to peers is simple. A resource ’k’ is
assigned to a peer successor(k). For example, resource with
identifier 3 is hosted at peer 4 because successor(3)=4.

Searching for a given resource happens in the following
way. Each peer has a finger table which contains several
entries of the form {peer, peer interval, successor of peer}.
Each entry simply specify three things for a given peer. First,
a peer identifier. Second, what interval this peer covers of the
ring. Third, what is the successor of that peer. In Figure 2,
suppose peer 2 is looking for resource 5. Using its finger
table, peer 2 tries to find out successor(5). Unfortunately,

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig. 3. Representation of each operator of the mashup in Figure 1

the successor of identifier 5 is not found among finger table
entries. Therefore, peer 2 finds the interval that contains 5
in the finger table. This interval is [4,6) and it is found in
the second entry of the finger table. Based on that entry we
see that successor(4)=4. Since 4 precedes 5, peer 2 contacts
peer 4 asking for successor(5). Now, finger table of peer 4
indicates that successor(5)=0. Therefore, peer 4 informs peer
2 that peer 0 is the peer that is supposed to host resource
5 if it exists. As a result, peer 2 contacts peer 0 to find out
whether it hosts resource 5. Accordingly, peer 0 returns the
answer of the search query (Yes/No) to peer 2.

This is a brief description of Chord protocol that we adopt
in our work. More details about Chord can be found in [10].

B. Mashup Representation

Each mashup is considered a tree of operator execution.
This tree starts by fetch operators that fetch data from data
sources distributed over the web. Then other operators such
as filter, truncate, and sort operators process and refine the
fetched data. After that, the final result is provided to the
end-user.

Each mashup has a string representation in the system.
This representation results from concatenating the repre-
sentation of the operators that constitute the mashup. For
example, the mashup in Figure 1 consists of 4 operators.
The fetch operator to the left is represented as ’11’ where
’11’ is the ID of the data source ’Google News’. The fetch
operator to the right is represented as ’10’ where ’10’ is
the ID of ’Yahoo Sports’ data source. The fetched data are
combined using a union operator which has the representa-
tion ’SU |11|MU |10|EU ’ where SU,MU,EU are separators
between the two combined data sources ’11’ and ’10’. The
combined data is fed to a filter operator that filters data based
on title containing keyword ’Rafa Nadal’. The filter operator
is represented as ’15|07|30|Rafa Nadal’ where ’15’ is the
ID of the filter operator, ’07’ is the ID of ’title’ property, ’30’
is the ID of ’contains’ operation, and ’Rafa Nadal’ is the
keyword on which filtering is executed. The representation
of the operators in this example is shown in Figure 3. We
also assign a representation for each subtree in mashups.
This representation is the concatenation of representation of
operators that are part of the subtree. In our example we have
two subtrees. The first one consists of the two fetch operators
in addition to the union operator. The second subtree is
the whole mashup. The representation of the first subtree is
’SU |11|MU |10|EU ’. The representation of the second sub-
tree is ’SU |11|MU |10|EU#15|07|30|Rafa Nadal’ where
the # symbol is used as a separator between the union and

Fig. 4. Representation of each subtree of the mashup in Figure 1

the filter operator representations. The representation of each
subtree is shown in Figure 4.

C. MashChord Mechanism

Our system consists of several peers. These peers are
logically connected via a Chord ring as described in subsec-
tion III-A. In our platform, each peer has mashup compo-
nents that enable the peer end-users to fully design, execute,
and host mashups. The mashup execution component is
responsible of executing mashups. The mashup user interface
component is used by end-users to design new mashups and
see the result of executing mashups. The offloading com-
ponent coordinates with the mashup execution component to
manage executing part of mashups on other peers. The search
component is responsible of following the structure of the
network to find mashups that satisfy end-users criterion.

The resources of our system are mashups. As explained
in section III-B each operator/subtree of a mashup has a
string representation. We start by explaining how a string
representation is converted to a Chord identifier. The rep-
resentations of operators/subtrees of mashup in Figure 1
are shown in Figures 3 and 4. First, a string representa-
tion is passed as an input to SHA1 hash function which
results in a hexadecimal representation. Second, we supply
the hexadecimal representation to a simple function which
converts it to a decimal number. Third, the decimal number
is divided by 2m where m is the number of bits used to
represent Chord identifiers. The remainder of the division
process would be a Chord identifier. For example, the string
representation of subtree1 is found in Figure 4. Supplying
this representation to SHA1 function results in a hexadecimal
number which is then converted to a decimal number. In our
Chord example, we have 8-identifier Chord ring (0–7) which
can be represented by at most 3 bits (000–111). Therefore,
in our case m = 3. When the decimal number of subtree1
is divided by 23. The remainder of the division process is 6.
Accordingly, subtree1 is assigned the identifier 6. Calculating
the identifier of subtree1 is illustrated in Figure 5. Based
on the previous discussion, the identifier is generated based
on Equation 1 where ’R’ is the string representation of the
operator or subtree. The same process is repeated for each
operator/subtree of the mashup which results in identifiers
shown in the second column of Figure 6.

identifier = To Decimal(SHA1(R)) mod 2m (1)

Now, we describe the mechanism to host resources
(mashups) on peers of Chord ring. Regardless of Chord, the

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig. 5. Generating identifier 6 for subtrees1

first peer responsible of hosting a mashup is the same peer
at which the mashup is created. So, if an end-user at peer 0
created a mashup, that mashup would be hosted at the same
peer. As an initial solution, that mashup is hosted on another
peer in the network. This peer is decided as follows. As we
previously mentioned, the mashup string representation is
converted to a Chord identifier. Assume the resulting identi-
fier is ’k’. So, successor(k) gives us the identifier of the peer
responsible of hosting that mashup. This initial solution has a
major drawback which is the inability of our system to satisfy
partial matching queries. Usually, when an end-user executes
a search query, he issues a search query that finds mashups
containing certain subtree (Partial Matching). For example,
the mashup illustrated in Figure 1 has string representation
’SU |11|MU |10|EU#15|07|30|Rafa Nadal’. When this
representation is converted to a Chord key, the identifier 4 is
the result. Accordingly, successor(4)=4 which indicates that
peer 4 is going to host that mashup. Now suppose the end-
user at peer 2 is looking to find mashups containing subtree1
indicated in Figure 4. Clearly, the mashup in conversation
contains the desired subtree. So, this mashup is supposed to
be returned as a result of the search query. Unfortunately,
Chord protocol supports only exact matching queries. So,
when the mashup representation of the subtree1 is converted
to a Chord identifier, the resulting identifier is 6 and succes-
sor(6)=0 which indicates peer 0 (not peer 4 which actually
hosts the mashup).

This leads us to think of a variation of this scheme
which supports the partial matching operation. In the updated
scheme, we state that a mashup is hosted on the following
peers.

• The peer that is initially used to create the mashup.
• Each peer indicated by Chord protocol resulting from

mapping all operators/subtrees of the mashup.

We explain this in the following example. First, assume
the mashup in Figure 1 is created by peer 0 which in
turn hosts that mashup. In addition, that mashup contains 6
operators/subtrees shown in Figures 3 and 4. The mashup
representation for each operator/subtree is shown in the
same figures. We convert the string representation for each
operator/subtree to its corresponding Chord identifier. The
result is identifiers 3,4,5,5,6 and 6 shown in the first column
of Figure 6. Accordingly, successor(3)=4, successor(4)=4,
successor(5)=0, and successor(6)=0 which indicates that the
mashup in conversation is also going to be hosted at peers 0
and 4. The successor for each identifier of operators/subtrees
is found in the third column of Figure 6. Clearly, peer 0
is the peer on which the mashup is originally created, so,

Fig. 6. Operators and Subtrees mapped to Chord identifiers

the mashup is not going to be duplicated on the same peer.
Figure 7 shows that the mashup is hosted at peers 0 and 4.

Now, suppose the end-user at peer 2 issues a search
query looking for mashups that contain the filter operator
in Figure 1. The search process is performed as follows.

• The filter operator representation is converted to a Chord
identifier which is 5.

• Peer 2 searches its finger table looking for successor(5).
This information is not found in the finger table.

• Peer 2 finds that 5 falls in the interval [4,6) which is in
the second entry of its finger table.

• The second entry of the finger table shows that succes-
sor(4)=4. Since 4 precedes 5 on the Chord ring, peer 4
is contacted looking for successor(5).

• Peer 4 finger table shows that successor(5)=0. So, Peer
4 contacts peer 0 asking whether it hosts a mashup with
the desired filter operator.

• Peer 0 truly hosts such a mashup; and therefore a ’Yes’
answer combined with the mashup is sent to peer 2.

Since MashChord is built on top of Chord protocol.
Chord [10] states that a search process only requires
O(log N) messages where N is the number of peers in the
network. This is much cheaper cost compared to flooding
technique where number of messages increases exponentially
as search progresses. This is why depending on Chord search
mechanism makes searching for mashups in MashChord
efficient.

IV. SCALABILITY AND RELIABILITY

Scalability and reliability are two important features for
a networking system. MashChord is scalable and reliable
because of three reasons. First, it follows a structured P2P
architecture that does not rely on a given node as the core
of the system. This structured type of P2P network has
minimal search overhead due to depending on structure to
map resources to peers. MashChord relies on Chord which
is a well established work that handles node joins and leaves
efficiently. We will not discuss peer joins and leaves as they
are described in Chord protocol [10] and they are not the
main focus of this paper.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig. 7. Mapping process resulted in peers 0 and 4 hosting the mashup in
Figure 1

Second, the scalability and reliability of our system is
extended by the nature of our mashup mapping protocol.
Remember that a mashup is hosted on several peers in the
network which are found by generating identifiers for each
subtree of a given mashup. If one of those peers decides
to leave the system, the system functionality is not affected
because the mashup is also hosted on several other peers. For
example, suppose that an end-user is looking for mashups
that contain subtree1 shown in Figure 4. If such mashups
exist, they would be hosted on 2 peers, namely, 0 and 4.
Consequently, if one of those peers fails or voluntarily leaves
the network, the mashups can still be found on the other peer.

Third, we further enhance the scalability and reliability of
our system by designing ’Execution Offloading’ mechanism.
One possible scenario is that one peer is busy performing
operations of its own. The end-user at that peer wants to
execute certain set of mashups. As explained in section III-C,
the peer has the necessary mashup components to execute
the mashups. But, its CPU is busy performing other work.
We can exploit the fact that a mashup is hosted in several
peers to offload all/part of mashup execution to other peers
that host that same mashup. One thing to mention here is
that each peer declares a percentage indicating how busy
it is. We add this piece of information to the Chord finger
table. Now, when a given peer wants to offload part of its
mashup execution to another peer, it chooses the peer with
minimum busy percentage. Also, each peer has an offloading
percentage which represent the percentage of mashups to
offload their execution to other peers. The previous features
aids towards a scalable and reliable mashup platform.

V. SYSTEM EVALUATION

We use simulation to evaluate MashChord system. Our
topology consists of 128 nodes, 12800 total mashups orig-
inally created at peers. Number of operators per mashup is
varied between 4 and 8. Offloading percentage for peers
is varied between 10% and 90%. The peers we use in
our simulation are extracted from 2012 Internet topology
measured by DIMES [17] and [18].

In the first experiment, we show the effect of mashup
execution offloading. We pick one peer randomly and we
vary offloading percentage for this peer between 10% and
90%. Then we measure the execution time spent by that
peer. Figure 8 shows that the execution time spent by that
peer decreases as the offloading percentage increases. This

makes sense because the peer has to execute a subset of
mashups as the execution of the rest of mashups is offloaded
to other peers.

In the next experiment, we measure the average number
of mapped mashups per peer when the number of operators
per mashup increases. Here, we are not pointing to the
original mashups created at each peer. We only focus on
the number of mashups that are hosted on other peers due to
operator/subtree mapping to Chord identifiers. Here, we vary
number of operators to be between 4 and 8. Figure 9 shows
that average number of mapped mashups per peer increases
as number of operators per mashup increases. When number
of operator per mashup increases, the number of subtrees
per mashup increases. Therefore, we have more subtrees that
are mapped to Chord identifiers. As a consequence, these
additional identifiers cause mashups to be hosted on more
peers.

The previous experiments shed light on the importance
of mashup execution offloading in our system. They also
pointed out that the increase in number of operators per
mashup would increase the load of hosting mashups on peers.

VI. FUTURE WORK

This work provides a design of a mashup platform over
Chord structured peer-to-peer network. We have two things
in mind that we intend to investigate in future. First, it is
noticed from the running example we explained in this paper
that several mashup operators/subtrees might result in the
same identifier and hosted on the same peer. Such a peer that
receives a search query does not have a problem resolving
this issue. This happens by searching all mashups that it hosts
until the required mashup is found. The point here is that
this sequential search to all mashups it hosts can be costly.
Therefore, we intend to investigate using indexing structures
based on the keys of each peer. This is expected to minimize
local search cost for peers.

Second, we mentioned earlier that each peer declares
a percentage indicating how busy it is. If this percentage
is low, this means that the peer is capable of receiving
many offloaded mashup execution requests from other peers.
Consider a scenario where a peer deliberately declares a
high busy percentage with the intention to not receiving
mashup execution requests from other peers. The peer plays
a negative role in this case which is considered a sort of
the popular free riding problem in which certain peers use
the network without contributing much to it. Consequently,
we intend to investigate how to prevent peers from declaring
false busy percentage. This can be achieved by adding a
certain part of the peer software that checks how busy the
CPU is and therefore checks if the declared busy percentage
makes sense. We can also achieve this by using a formula that
allows a peer to offload mashup execution only if it maintains
a minimum average busy percentage per week/month.

VII. CONCLUSION

Mashup platforms are flourishing as an important Web
2.0 applications. Existing mashup platforms suffer from
scalability problems. In this work, we proposed MashChord–
A scalable and reliable mashup platform over Chord. Mash-
Chord uses structured P2P topology to facilitate executing

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

0 20 40 60 80 100
0

100

200

300

400

500

Offloading Percentage

E
xe

cu
tio

n
 t

im
e

 s
p

e
n

t
b

y
p

e
e

r
(s

)

Execution Time with Offloading

Fig. 8. Execution time spent by a peer when offloading percentage varies

4 5 6 7 8
0

200

400

600

800

1000

Operators per mashup

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
"m

a
p

p
e

d
"

m
a

s
h

u
p

s

Average Number of "mapped" mashups

Fig. 9. Average number of hosted mashups per peer when number of
operators per mashup varies

mashups and searching for them. Following the structured
P2P mechanism improves search efficiency. Also, hosting a
mashup at several peers allows end-user to perform partial
matching search over Chord which originally supports exact
matching. We explained how execution offloading improves
the efficiency of MashChord.

REFERENCES

[1] Yahoo Inc., “Yahoo pipes,” http://pipes.yahoo.com/, 2007.
[2] R. J. Ennals and M. N. Garofalakis, “Mashmaker: mashups for the

masses,” in ACM SIGMOD international conference on Management
of data, 2007, pp. 1116–1118.

[3] J. Wong and J. Hong, “Making mashups with marmite: towards end-
user programming for the web,” in SIGCHI conference on Human
factors in computing systems, 2007, pp. 1435–1444.

[4] A. Riabov, E. Bouillet, M. Feblowitz, Z. Liu, and A. Ranganathan,
“Wishful search: interactive composition of data mashups,” in WWW.
New York, NY, USA: ACM, 2008, pp. 775–784.

[5] R. Tuchinda, P. Szekely, and C. Knoblock, “Building mashups by
example,” in International Conference on Intelligent User Interfaces,
2008, pp. 139–148.

[6] JackBe Corp., “Presto enterprise mashups,”
http://www.jackbe.com/products/presto, 2011.

[7] IBM Corp, “Damia,” http://services.alphaworks.ibm.com/damia/,
2007.

[8] J. J. Jung, “Collaborative browsing system based on semantic mashup
with open apis,” Expert Systems with Applications, vol. 39, no. 8, pp.
6897–6902, Jun. 2012.

[9] G. Di Lorenzo, H. Hacid, H.-y. Paik, and B. Benatallah, “Data
integration in mashups,” SIGMOD Rec., vol. 38, no. 1, pp. 59–66,
Jun. 2009.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for internet applications,” in Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for
computer communications, ser. SIGCOMM ’01. New York,
NY, USA: ACM, 2001, pp. 149–160. [Online]. Available:
http://doi.acm.org/10.1145/383059.383071

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in Proceedings of the
2001 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’01. New
York, NY, USA: ACM, 2001, pp. 161–172. [Online]. Available:
http://doi.acm.org/10.1145/383059.383072

[12] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,”
in Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg, ser. Middleware ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 329–350. [Online].
Available: http://dl.acm.org/citation.cfm?id=646591.697650

[13] S. Naicken, A. Basu, B. Livingston, S. Rodhetbhai, and I. Wakeman,
“Towards yet another peer-to-peer simulator,” in Proceedings of the
International Working Conference in Performance Modelling and
Evaluation of Heterogeneous Networks, 2006.

[14] T. Jacobs and G. Pandurangan, “Stochastic analysis of a churn-
tolerant structured peer-to-peer scheme,” Peer-to-Peer Networking
and Applications, vol. 6, no. 1, pp. 1–14, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s12083-012-0124-z

[15] S. ZHANG and H. Jun, “Building structured peer-to-peer resource
sharing platform using object encapsulation approach,” TELKOMNIKA
Indonesian Journal of Electrical Engineering, vol. 11, no. 2, pp. 935–
940, 2013.

[16] M. Karakaya, I. Korpeoglu, and O. Ulusoy, “Free riding in peer-to-
peer networks,” Internet Computing, IEEE, vol. 13, no. 2, pp. 92–98,
2009.

[17] Y. Shavitt and E. Shi, “Dimes: let the internet measures itself,” ACM
SIGCOMM, vol. 35, no. 5, pp. 71 – 74, May 2005.

[18] Shavitt, Yuva, “Dimes,” http://www.netdimes.org/, 2009.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

