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Modeling of Wireless Networks as Queuing System

L.Mirtskhulava, Member, IAENG, G. Gugunashvili, M. Kiknadze

Abstract—This paper presents the study of special Erlang
distribution model in wireless networks and mobile computing.
We demonstrate that the Erlang family provides more
flexibility in modeling that exponential family, which only has
one parameter. In practical situations, the Erlang family
provides more flexibility in fitting a distribution to real data
that the exponential family provides. The Erlang distribution is
also useful in queueing analysis because of its relationship to
the exponential distribution. To demonstrate the applicability
of the Erlang distribution, we consider queueing model,
represented as wireless channel where the interarrival times
between failures have the Erlang Distribution.

Index Terms—Erlang distribution, interarrival time between
failures, probabilistic approach, queueing model.

. INTRODUCTION

An accurate estimation of network performance is vital for
the success of a network of any kind. Networks, whether
voice or data, are designed around many different variables.
Two of the most important factors that you need to consider
in network design are service and cost. Service is essential
for maintaining customer satisfaction. Cost is always a factor
in maintaining profitability. One way that you can factor in
some of the service and cost elements in network design is to
optimize circuit utilization.

Also to a large extent, the success of a network depends
on the development of effective congestion control
techniques that allow for optimal utilization of a network's
capacity. Performance modeling is necessary for deciding
the type of congestion control policies to be implemented.
Performance models in turn, require very accurate traffic
models that have the ability to capture the statistical
characteristics of the actual traffic on the network.

The design of robust and reliable networks and network
services is becoming increasingly difficult in today's world.
The only path to achieve this goal is to develop a detailed
understanding of the traffic characteristics of the network.

Managing performance of networks involves optimizing
the way networks function in an effort to maximize capacity,
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minimize latency and offer high reliability regardless of
bandwidth available and occurrence of failures. Network
performance management consists of tasks like measuring,
modeling, planning and optimizing networks to ensure that
they carry traffic with the speed, capacity and reliability that
is expected by the applications using the network or required
in a particular scenario.

Networks are of different types and can be categorized
based on several factors. However, the factors that affect the
performance of the different networks are more or less the
same.

If the underlying traffic models do not efficiently capture
the characteristics of the actual traffic, the result may be the
under-estimation or over-estimation of the performance of
the network. This would totally impair the design of the
network. Traffic Models are hence, a core component of any
the performance evaluation of networks and they need to be
very accurate. Depending upon the type of network and the
characteristics of the traffic on the network, a traffic model
can be chosen for modeling the traffic.

Il. TRAFFIC MODELS AND ERLANG DISTRIBUTION

Special Erlang Distribution lends itself well to modeling
packet interarrival time for a number of reasons. The first is
the fact that The Erlang distribution is a
continuous probability distribution with wide applicability
primarily due to its relation to the exponential and
Gamma distributions. The exponential function is a strictly
decreasing function of t. This means that after an arrival has
occurred, the amount of waiting time until the next arrival is
more likely to be small than large.

To begin modeling we define T as fixed length of packet.
Simple traffic consists of single arrivals of discrete entities,
packets. This Kkind of traffic can be expressed
mathematically as a Point Process. Point processes can be
described as a Counting Process or Inter-Arrival Time (IAT)
Process.

We also assume that T is the length of the messages, let n
be the number of packets in the message; we define | to be a
number of phases in the Erlang distribution of failures, i.e.
there is the scheme of failures arrival, according to which
the failures must go through | phases (stages), before they
actually will arrive;

F(u)zlkt,fb) is Distribution function (DF) of packet

length with a cyclic check redundancy (CRC), where 1(t) —
unit function, and t,=T/n block length; r- the number of
allowed repetitions of  transmitting a block, G(u)-
Distribution function of recovery time; a- the distribution
intensity of each phase, i.e. the duration of time intervals
between subsequent moments of occurrence of failure follow
the Erlang Distribution given by :

a(au)l “lg-au

(1-2)!

Alu) =

WCECS 2013



Proceedings of the World Congress on Engineering and Computer Science 2013 Vol 11

WCECS 2013, 23-25 October, 2013, San Francisco, USA

Our task is to find Distribution Function of transfer time
of fixed length message depending on number of the packets
included in it and number of their retransmissions for a given
network characteristics.
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Figure 1. A family of Erlang distributions with mean 3

We denote by qbgk")(t,x,T) the probability that the

message transfer of fixed length of T (consisting of n
packets, each of length of 1) starting from j-th block will be
completed in a time less than t under the condition that: 1) at
the t=0 moment data channel (DCH) is in K phase according
to failures and x-th part (xe[0,t5]) of j-th block has been
transferred without distortion; 2) An attempt was made to
transfer the j-the block without distortion v times.

By definition:
okv)

J+1 (t,0,T), underx =7

b

under x > R

(I)J.(k‘/)(t,x,T)

k=11, v=Lr,j=1n;
We denote by @(t,T) the DF of the probability of transfer
time of fixed length message (T=nts) and by F(u) Df of

random length message, then we have the following
notation:

D(t) =qu>(t,u)dﬁ(u)
0
where

r |
Yy Oy qJ(lkV) (t.0)/
v=1lk =1
is DF od transfer time of fixed length message of u
The model mentioned above can be described by the
following system of equations:

cb(t,u) =

Fol iy = (})e_ WKL (- u,0,T)F(x+u)du+

]+

t

jae_“ulf(x+u)d>(jk+Lv)(t—u,x+u)du ’
0
J—l,n v k= :LI

+ (2.4.1)

1, V—l,r:

(13

(1)
\PJ (t X) j_““d>]+l(t u,O)duF(x+u)+
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% z }ae atg,! ] Y F(HUM)[ NCELS 1)(U)+B£pl+k)(u) x
k=1p=00 0

Xq)(jk’wrl)(t—u—u,O), (242)

gl (t-uod Flx+u)*

e = o J

(D(;ﬁl)(t —Uu-0,0)dG(v) (2.4.3)

where B,Ek)(u) - k-fold convolution and B(v) =1—e %;
y/(jk")(t,x) = If(x)cD(kV)(t,x,T) ;

J If(x)zl— F(x) ;
F(ng _1; F(Tb_ -0

Let us assume

@Skv) t0), x=0
U/Ekv)(t,x) _ dD(kV)(t 0, x=7
0, X > Tb

The boundary conditions have the form:

lI]n+1 (t X) nli‘i(to) 1’k:ﬂ7 V:H'j:ﬁ;

By Integrating the product of the probabilities of events
according to u, v and summing the probabilities of
incompatible events, we obtain (2.4.2).

Using the Laplace Transform in (2.4.2), we obtain:

-au A(k1) . _
Iﬁoe*stdt%e duF(x+u)Oj+l(t u,0) =

JPe M Feru)fre —Sto("l)(t u,0)dt =

=[§Pe”"d JFOruge s(z+ u)(A)(.kli(z,O)dZ =

E‘f}(sO)jo e @My Fixiu)=
- (0! + S)(T X) (kl)
=¢ J+1( 0)
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X+Uu=ts t-u=z; t=z+u.
—au. (k+1v)
. t—u,x+u)du=
afPeStae” Vi ( )
a

loe” ““dujsoe_ Stwgk +Lv) (t—u,x+u)dt=

=affe” Mdujfe” s(u+ Z)ng 1) (2, x +u)dz =

=alye (s+ a)udujgo e~ Szz//gk +1v) (z,x+u)dZ =

=0lf809_ (s+a)udul//§k +1’V)(S,X+U) _
aj-;oe—(s+a)(r—x)y/§k +1’V)(s,z')dr=

=ae (s +a)xf)czoe_ (s+ a)T‘r’/gk ) (s,7)dr,

t—u=1z
Denoting by:
[00)

ik V)(s, x)= ] e~ St K V>(t, x)dt ;

] o

o0
EKkVJ(s,x): [e 5t(ID(.I(V)(t,x)dx,

J 0 J
We obtain:

KV) g gy—p @ =0 sk1)
v ex)=e 10+

P (a+ S)XJ;Oe_ (a+ S)T.//(_k +Lv) (s,7)dr

or

—(a+9)7,. .

—(a+9)7
+alibe ( ) bwgk+1‘v)(s,r)dr
Moving on to differential equation (2.1.4), we obtain:

a7 s

- —(s+a)@gk’vj(s,x)+ a@%k 1 VJ(s,x) =0
(2.4.5)
@gkv)(s,o)za(j"v)(s,o). j=in, k=i, v=L1r

V/EKV)(S,X)— monotonic and continuous function

according to x in the range

+ —
0 Sxﬁrb,

l//gkv) (s,x)=0, under x> rg'

We apply the Laplace transform to (2.4.2). For this

purpose, first of all, let u+v=y; dv=dy. We rewrite (2.4.2) as
follows:
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Wﬁ' e, x) = j8°duF(><+u)e_“uégll)1(t—u,0) +

¢, Foce P K Dy-u)-

o0

D D S ] ;
k=1p=0 .

-8P -l -y

and changing the order of integration in the second
member, we get:

t
V’? it x) = (j)e_ “”Oﬁ'i)l (t—u,0)duF(x + u) +

| o © y
+ Y ZaO(k’V+l)(s,O)je d_F(x+y)Je” WMx
k=1p=0J 0 y 0

{ Bl KDy ey

Applying the Laplace-Stieltjes, we get:

- —(@+3)(r, —x)<(11
y/(jlv)(s,x)ze “ ‘b OE+)1(5,0)+

I o —(kv+1 © _
3y aOg v )(s,O)je Yd F(x+y)x
K=1p=0 0 y

x ﬂ—aU[B,ﬁp' k=D y_y)-glP +")(y—uﬂdu
0

If we denote:

‘/’1(5) = of:e_ SydyF(x+ u) = e S[Tb - X]

- T e
0 0

—B’(\,pl +kj(y—u)}e_audu =__ 1 |a )p|+k—l
)2 S+a

(s+a

Thus, we have:

—(lv —(a+s]r x|

\PE j(s’x):e g )q’(jjl(s’O)J'

+ < —[k,v+lj [ C*Jrioo

kzlpzoa J (S0P T o= wloy(wjaw

C -iwo
2.4.7)

where C * is the abscissa of convergence of the improper
integral, which lies in the domain of analyticity of under the

integral sign function; 1 =+/—1
or

@EI l/](s,x) e (a S)[Tb - X](I)(j”ﬂl(s,o) +

+Iild)(jk’v+lj(s,0)ak i_c‘*'iwe— (S—W)(Ib —X) (W+a)| —1—Ik dW:|+

(W+a)|—a

(s0)a! ic?iwe—(S—W)(rb—X) dw

i (VV+a)[(W+a)I 7a|:|
(2.4.8)
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Applying the Laplace-Stieltjes to (2.1.3), we obtain:

—(a+9s)\7. —x|_
+S[b XJCD(J.I:}Z].(S,O)'F

@(.I’r)(s,x): e

J
_S(Tb ‘X)

g(s)agl’l) (s.0) e
i=1n

(2.4.8) and (2.4.9) contin [(I-1)r+r]'=Irj - equations, a
number of unknowns is equal to 2jer,

7(kv) — pkv) :
lr//J (87 Tb) - (D_] (S,O) ’
[j=1Ln; k=11-1]
By the method of deductions, we calculate (2.4.8):

—(a+ s)[rb ] (|1)

]+1(SO)+

| fswg g )

@?ﬁg@=e

sO)a + Ze

+1-1 { (k,v+1(
J p=0

Vi (2.4.10)

where
Wy = a(ezmi /1 _1) , d =11 -the zeros of the equation.
(w+ a)l —al =0, a Wo=-0;

To simplify further calculations, we introduce a new
variable y=1,-x (y-time remaining till the end of the block
transfer). By substituting new variables mentioned above in
the equations (2.4.5), (2.4.9) and (2.4.10) then they have the
following form

dy ik (5.5, - y)
—L 0 Y ray

dy
but taking into account that:

(kv)(S % (k+1,v)(S % —y)=0

—y)+ay

k
y/gkv)(t,x) _ U/Ekv)(t,fb _ (kV)(t y) ( V)(S y)
We have:
4V s,y) K k (2.4.11)
JT+(S+(Z)V/( (s,y) - aip ( sy =0 o

(//gkv)(t,O):N(.kV)(t,rb): oKt =1 t=0

(k")(sO) y/(kv)(sz') qn(kv)(so)

‘PE' Hoy)—e @ (|1)

j+l(s 0)
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- + S—W 1-1-k
ol

k=1 p=0
I +
{n 1977: p WPWU)J ]
+ (2.4.12)
(1v+1) I ’LS w }y I
s 0! = p 7711 1[Wp - wq)
n#p
¥ o= Mol 50t
g(s)e_ Sy(l—e_ ay)a(jl’l)(s,o) ; (2.4.13)

Applying the Laplace transform of the argument y
(respectively, operator ®) k (2.4.11),(2.4.12) u (2.4.13), we
obtain:

(a)+s+a)y7gkv)(s,w)= E(jk )(so)+ \yg L")( o)
(2.4.14)
j:].,n, k=m: V:H;

(S,a)) (Il) (S O)/((o+s+a)+

j+l

-1 ' I I-1+k
s akellY +1](s,o) 5 [w + a)
k=1 J p=1\ P

[Iv+1‘(80)p|2:0 /Ull;lo(Wp—wq) (m+s—wp)

n#p

‘nglrj (s,0) = (I)(;? 1(5,0)/(a) +s+a)t
lag$)[is+ s+ o+ @]}qﬂj@ (5.0)
(2.4.17)

(2.4.15)

kv
CDE1 +J1(S’0) = %

(2.4.16)
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As a result of solutions of algebraic equations (2.4.14), —(11 —(21
(2.4.15), (2.4.16) and taking into account (2.4.17) we find ‘D§ )(S’O) = A(s,T)+E(s,T)®; )(890);
=kv) Tk —1lv_ir. Defining the reverse _ _

vi e, (=tmk=tlv=Ln) : q>11’2)(s,0) = A(.T)+ F(s,T)ch’Z)(S,O);
conversion ﬁjk")(s,w) and after substituting in it y=0 (x=1y),
we determine the value of (kv o). Let us solve the Conditional mean is equal to:
peb —lso@Ds 0 =
equation (2.4.14) by successive substitutions, starting from ‘ : ‘5=0 , X
k=1-1, k=I-2 ..., let I-m=k; m=I-k, then we have: -t -7, +2a-e Py 2e b e T PA (o)
Solving the rest of the equations, we finally obtain:
ke O (s o= blaK (g )
o Iij(wwa)("k‘c)a(c‘l)]+a'*k*1+3a'*kv7§'v)(s,w) 17 8.0=b(a)K(a) Ssr
k) & -
T S(0+5+a) D12 (s,0) :M[w(wg@)ws)]
(2.4.18) st
K(a)e .
i —  {1+b(a)e(a)e
DD(s.0) = S {1+b(a)e(a)
St

Let us calculate the following equations (2.4.15), (2.4.16) b[1+d(a)g(S)M(S)]+b(f%f§°‘)M(S)}
and (2.4.18), we give an example for this, where K(a)e b

=2 r= =1, i= 2i _ i=1.2. (2,2) _——— [1+b(a)f(c)M(s

1=2, r=2, n=1, j=1, ®§1)(S’O)7% ,i1=1,2 cD] (5,0) = S [1+b(a)f()M(s)]

t(g)= R '
o @0)= _|sp(l:D(s0|  =ble)k(@)M(0)
l;(ll)(s ) = 1+ Sa(//:EZI)(S,a)) | _ LZ , ‘ 1 ' ‘S:O
L st | 0= Jsoft 25 f _ = ROk
in accordance with (2.4.18) f(a)lz\Al(O)]+b(a)f(a)k(a)M ©)
7@ ’(0):,‘Sq,§2,1)(3,0)‘5 Oz-k(a)rb[l-Zb(a)e(a)]-
$(2’2)(S v)- 1 .\ k(a)b(o){e(o)d(o)[totTs]-
1 S o) - ,
Ss+o+a) (o) IM(0)+b(o)k(e) ()l (o) +(o)]M (0)
as) |50 2(0)= [0 Dis.0)_ =mk(e)-wk(eb(@)f(@M(O)+
(S+a))s+a)+a) 1 ’ , 1 S=0
b(a)k(c)f(c)M (0)
~ —(1,2
\Pf’l)(s,w) L+ a®§ )(S’O)X e
sro+a) a(o)=1/2+e"[(1/2) 1)
b(a)=1+as
X X c(0)=1/2-e"*%[(1/2) e *5-01t5)
{ : + ! + a26£2’2)(s,0) d(a)=1+ e “5(1-ate)
(wl - wz)(.w - w]) (WZ - )(.v+ - WZ) e(a):(l/Z) [1_ e.2a16]
f(o)=1- &%
x 1 ; , b k)=

M(s)=[1+ e b(a)+ [1- e®%(d +f
(Wo‘w1)(wo‘wz)(““"wo) (v w5+ o) (5)=[1+ e™5(a(a)b(a)+c(a)))/[1- e75(d(a)g(s)+ f(a))]

(5w )(y vy s 0~ WzJ

I11. CONCLUSION
_(21) (s+a)z In this paper, we investigated queueing models,
@) (s.0) = 1, b + represented as wireless system, where time intervals between
s failures are Erlang distributed. We present some advantages
l[e— s7, _e—(5+2“)’b]¢(12)(5’0) + of the Erlang model we proposed for mobility modeling. We
2 1 show the generality of such model, which can be used to
+[1 -sq, 1 —(s+2a)5  —(s+a)y, [(2.2) model not only interarriaval time between neighboring
¢ 5t -¢ @ " (s.0) failures but also other time variables in wireless networks
and mobile computing systems.
Similar to:
—(2,2 —(11] .
qng )(s,o)z A(s,T)+ D(s,T)(I)g )(s,o),
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