
 

 

Abstract—This paper presents the study of special Erlang 

distribution model in wireless networks and mobile computing. 

We demonstrate that the Erlang family provides more 

flexibility in modeling that exponential family, which only has 

one parameter. In practical situations, the Erlang family 

provides more flexibility in fitting a distribution to real data 

that the exponential family provides. The Erlang distribution is 

also useful in queueing analysis because of its relationship to 

the exponential distribution. To demonstrate the applicability 

of the Erlang distribution, we consider queueing model,  

represented as wireless channel where the interarrival times 

between failures have the Erlang Distribution. 

 
Index Terms—Erlang distribution, interarrival time between 

failures, probabilistic approach, queueing model. 

 

I. INTRODUCTION 

An accurate estimation of network performance is vital for 

the success of a network of any kind. Networks, whether 

voice or data, are designed around many different variables. 

Two of the most important factors that you need to consider 

in network design are service and cost. Service is essential 

for maintaining customer satisfaction. Cost is always a factor 

in maintaining profitability. One way that you can factor in 

some of the service and cost elements in network design is to 

optimize circuit utilization. 

Also to a large extent, the success of a network depends 

on the development of effective congestion control 

techniques that allow for optimal utilization of a network's 

capacity. Performance modeling is necessary for deciding 

the type of congestion control policies to be implemented. 

Performance models in turn, require very accurate traffic 

models that have the ability to capture the statistical 

characteristics of the actual traffic on the network. 

 

The design of robust and reliable networks and network 

services is becoming increasingly difficult in today's world. 

The only path to achieve this goal is to develop a detailed 

understanding of the traffic characteristics of the network. 

Managing performance of networks involves optimizing 

the way networks function in an effort to maximize capacity, 
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minimize latency and offer high reliability regardless of 

bandwidth available and occurrence of failures. Network 

performance management consists of tasks like measuring, 

modeling, planning and optimizing networks to ensure that 

they carry traffic with the speed, capacity and reliability that 

is expected by the applications using the network or required 

in a particular scenario. 

Networks are of different types and can be categorized 

based on several factors. However, the factors that affect the 

performance of the different networks are more or less the 

same. 

If the underlying traffic models do not efficiently capture 

the characteristics of the actual traffic, the result may be the 

under-estimation or over-estimation of the performance of 

the network. This would totally impair the design of the 

network. Traffic Models are hence, a core component of any 

the performance evaluation of networks and they need to be 

very accurate. Depending upon the type of network and the 

characteristics of the traffic on the network, a traffic model 

can be chosen for modeling the traffic. 

II. TRAFFIC MODELS AND ERLANG DISTRIBUTION 

Special Erlang Distribution lends itself well to modeling 

packet interarrival time for a number of reasons. The first is 

the fact that The Erlang distribution is a 

continuous probability distribution with wide applicability 

primarily due to its relation to the exponential and 

Gamma distributions. The exponential function is a strictly 

decreasing function of t. This means that after an arrival has 

occurred, the amount of waiting time until the next arrival is 

more likely to be small than large. 

To begin modeling we define Т as fixed length of packet.  

Simple traffic consists of single arrivals of discrete entities, 

packets. This kind of traffic can be expressed 

mathematically as a Point Process. Point processes can be 

described as a Counting Process or Inter-Arrival Time (IAT) 

Process.  

We also assume that T is the length of the messages, let n 

be  the number of packets in the message; we define l to be a 

number of phases in the Erlang distribution of failures,  i.e.  

there  is the scheme of failures arrival, according to which 

the failures must go through l phases (stages), before they 

actually will arrive;  

   
b

tuF 1
 

is Distribution function (DF) of packet 

length with a cyclic check redundancy (CRC), where 1(t) – 

unit function, and  b=Т/n block length; r- the number of 

allowed repetitions of  transmitting a block, G(u)- 

Distribution function of recovery time; - the distribution  

intensity of each phase, i.e. the duration of time intervals 

between subsequent moments of occurrence of failure follow 

the Erlang Distribution given by : 
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Our task is to find Distribution Function of transfer time 

of fixed length message depending on number of the packets 

included in it and number of their retransmissions for a given 

network characteristics.  

 

 

We denote by  Ф
j
( )

( , , )
k

t x T
  the probability that the 

message transfer of fixed length of T (consisting of n 

packets, each of length of b) starting from j-th block will be 

completed in a time less than t under the condition that: 1) at 

the t=0 moment data channel (DCH) is in K phase according 

to failures and x-th part (x[0,б]) of j-th block has been 

transferred without distortion; 2) An attempt was made to 

transfer the j-the block without distortion  times. 
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  k l 1,  ,   1,r  , j n 1,  ; 

We denote by Ф(t,T) the DF of  the probability of transfer 

time of fixed length message (T=nб) and by 
~
( )F u   Df of 

random length message, then we have the following 

notation: 
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The model  mentioned  above can be described by the 

following system of equations: 
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The boundary conditions have the form: 
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By Integrating the product of the probabilities of events 

according to u,  and summing the probabilities of 

incompatible events, we obtain  (2.4.2). 

Using the Laplace Transform in (2.4.2), we obtain: 
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Moving on to differential equation (2.1.4), we obtain: 
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We apply the Laplace transform to (2.4.2). For this 

purpose, first of all, let u+=y; d=dy. We rewrite (2.4.2) as 
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Applying the Laplace-Stieltjes, we get: 
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where C * is the abscissa of convergence of the improper 

integral, which lies in the domain of analyticity of under the 

integral sign function; i  1   
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Applying the Laplace-Stieltjes to (2.1.3), we obtain:     
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By the method of deductions, we calculate (2.4.8): 
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 2 1/ ,  d l 1,  -the zeros of the equation. 
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To simplify further calculations, we introduce a new 

variable y=b-x  (y-time remaining till the end of the block 

transfer). By substituting new variables mentioned above in 

the equations (2.4.5), (2.4.9) and (2.4.10) then they have the 

following form 

 

 

d
j
k s

b
y

dy

dy

dx
s

j
k s

b
y

j
k s

b
y

  
      

( ) ( , )
( ) ( ) ( , ) ( , ) ( , )


      1 0

  

but taking into account that: 







 





j
k

t x
j
k

t
b

y
j
k

t y j
k

s y
( )

( , )
( )

( , ) ~( )
( , )

( )
( , )      

We have: 

d
j
k

s y

dy
s

j
k

s y
j
k

s y

~( )
( , )

( ) ~
( )

( , ) ~( , )
( , )




 





  



1

0
  (2.4.11) 

 










j
k

t
j
k

t
b

k
t t

( )
( , ) ~( )

( , )
( )

( , ) ; .0 0 1 0   Ф
j+1

 

~( )
( , )

( )
( , )

( )
( , ).








j
k

s
j
k

s
b

k
s0

1
0


 Ф

j +1
 

 
 

j

l
s y


, 

   
 e

s y

j

l
s

 






1

1
0, + 

+
 

j

k
s

k

l k e

s w
p

y

p

l,
,













 






 
















1

0

1

1

0

w
p

l k



 



 


1 /

w
p

w

p

l



 




 
















 1,

+ 

+

 
j

l
s l e

s w
p

y

p

l,
,




  














 
















1

0

0

/

w
p

w

p

l



 













































1

     (2.4.12) 

 
 

~ ,
, j

l r
s y 

   
 e

s y

j

l
s

 






1

1
0, +

 
 

 g s e
sy

e
y

j
s






 


1

11
0



,

,  ;                          (2.4.13)      

Applying the Laplace transform of the argument y 

(respectively, operator ) к (2.4.11),(2.4.12) и  (2.4.13), we 

obtain: 
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As a result of solutions of algebraic equations (2.4.14), 
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b()=1+б 
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-
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d()=1+ e
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б(1-б) 

e()=(1/2)[1- e
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-

б 

k()=e
-

б 

M(s)=[1+ e
-s

б(а()b()+с())]/[1- e
-2s

б(d()g(s)+ f())] 

 

 

 

III. CONCLUSION 

In this paper, we investigated queueing models, 

represented as wireless system, where time intervals between 

failures are Erlang distributed. We  present some advantages  

of the Erlang model we proposed for mobility modeling. We 

show the generality of such model, which can be used to 

model not only interarriaval time between neighboring 

failures but also other time variables in wireless networks 

and mobile computing systems. 
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