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On the Numerical Solution of Three-
Dimensional Diffusion Equation with an
Integral Condition

A. Cheniguel and M. Reghioua

Abstract— In this paper, we investigate solution of three-
dimensional diffusion equation with non local condition using
decomposition method. This method is reliable and gives a
solution in a series form with high accuracy. It also guarantees
considerable saving of calculation volume and times as
compared to traditional methods. The obtained results show
that the decomposition method is efficient and yields a solution
in a closed form.

Index Terms—Adomian decomposition method, non local
boundary conditions conditions, exact solution,  partial
differential equations.

. INTRODUCTION

Ver the last few years, various processes in science and

engineering have led to the non classical parabolic

initial/boundary value problems which involve non-
local integral terms over the spatial domain [1-10, 12,14].
These include chemical diffusion, heat conduction
population dynamics and control. Up to now partial
differential equations with non local boundary conditions
have been one of the fastest growing areas in various fields.
In this paper we consider a three-dimensional diffusion
equation with a non local boundary condition. The two-
dimensional case was solved by many authors using
traditional numerical techniques such as finite difference
method, finite elements method, spectral techniques, etc..
for example Siddiq [7] proposed a fourth-order finite
difference padé scheme and Cheniguel [2] has solved the
same problem using new techniques the obtained results are
all exact.
The aim of this work is to study and to implement the
decomposition method for solving a three-dimensional
diffusion equation with non local condition[11,13-15]. The
decomposition method can also be applied to a large class of
system of partial differential equations with approximates
that converges rapidly to accurate solutions. The
implementation of the method has shown reliable results in
that few terms are needed to obtain either exact solution or
to find an approximate solution of a reasonable degree of
accuracy in real physical models. Numerical example are
presented to illustrate the efficiency of the decomposition
method, the obtained results are in good agreement with
exact ones. We consider the three-dimensional diffusion
equation given by:
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Up = Upy + Uyy U, 0<x,y,2<1,t>0 Q)
Initial condition is given by:

u(x,v,2,0) = f(x,y,2),(x,y,2)eQUaN

And the dirichelet time-dependent boundary conditions are
u(0,v,2,t) =Yy(y,2,1t),0<y,z<1,0<t<T (2)
u(l,y,zt) =,(y,21t),0<y,z<1,0<t<T

u(x,0,2,t) = 9o (x,2,t) xy(t),0<x,2z<1,0<t<T

u(x,1,z,t) = 01(x,2,t),0<x,z<10<t<T
u(x,y,0,t) = 0o(x,v,6),0<x,y<10<t<T
u(x,y, L,t) =0,(x,y,1t),0<xy<10<t<T

And non local boundary condition

fol f01 folu(x, v,z t)dxdydz = m(t), (x,y,z) € 2 U 02 (3)

Where f, 10,4, @9, @1, and m are known functions and y(t)

is to be determined.

Il. ADOMIAN DECOMPOSITION METHOD

A. Operator form

In this section we outline the steps to obtain a solution to the
above problem using Adomian decomposition method,
which was initiated by G. Adomian [11,13,15]. For this
purpose we reformulate the problem in an operator form:

Lt(u) = Lxx(u) + Lyy + Lzz (4)

Where the differential operators L.(.) = %(.) and
9? a2 a2

Lyx = 2 VY T m'l’zz =z

assuming that the inverse L;?! exists and is defined as:

L7t = [, ()dt (5)

B. Application to the problem

Applying the inverse operator on both the sides of
equation (4) and using the initial condition yields:
u(x,y,z,t = L (L (u(x, y,2,t) + Ly, (u(x,y, 2, t) +
L,,(u(x,y,2,1))

Or
u(x,y,z,t) =ulx,y,20) + Li (L (u(x, y, 2z, t) +
Lyy(u(x’yiz’ t) + Lzz(u(x:y: Z, t)) (6)

Now, we decompose the unkown function u(x,y, zt) asa
sum of components defined by the series :

‘U,(X,y,Z, t) = Z?:Ouk(xnylz' t) (7)

Where u, is identified as u(x, y, z, 0). Substituting equation
(7) into equation (6) one obtains:
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Z(I){O=0 Uy (X, Y,z t) =

LEI{(Lxx + Lyy + L) (Z?cozo w(x,y,2, t))} (8)
Or:

uO(x!y!Z't) zf(x'y,z) (9)
And:

uk+1(x' Y,z t) =

LY (Lyx (we (%, 3, 2,8)) + Ly, (uie(x, v, 2, ) +

Lzz(uk (X, 2 t))), k 2 0

The components are obtained by the recursive formula:

(10)

ug(x,y,z) = f(x,5,2) (11)
U1 (X, Y, 2,1) =

L (L (ue (0,9, 2,0) + Ly (ue (x, v, 2, 0) +

Lzz(uk (X, V.2, t))) (12)

From equation (9) and (10) we obtain the first few terms as:

Uy (%,9,2,8) = L (Lyx (w0 (6,3, 2,0)) + Ly (uo(x, 3, 2, 1))
+ Lzz(uo(xr Yz, t)

u,(x,y,z,t) =

LFI(Lxx(ul(x' Yz, t)) + Lyy(u1 (x, v,z t) +

Lzz(ul(xﬁ }’; Z, t)))

us(x,y,z,t) =

LFI(Lxx(uZ (x' Y, Z, t)) + Lyy(uz (x, vz, t)) +

Lzz(uz(x' }’; Z, t)))

and so on. As a result, the components u, ,uq,uy, ... are
identified and the series solution is thus entirely determined.
However, in many cases the exact solution in a closed form
may be obtained as we can see in our examples:

I1l. EXAMPLES

A. Example 1
We consider the three-dimensional diffusion equation :

Up = Uyy + Uyy + Uy,

In which u = u(x,y,z1t). The Dirichelet time-dependent
boundary conditions on the boundary dn of the cube 12
defined by the lines
x=0y=0z=0x=1y=1z=1

Avre given by:

u(0,y,z,t) =e?*?3t 0<y,z<1,0<t<T (13)
u(l,y,z,t) =et*t3t 0<y,z<1,0<t<T
u(x,0,z,t) =e 3 0<x,z2<1,0<t<T

u(x,1,z,t) = e 213 0 < x,2<1,0<t<T
u(x,y,0,t) =e*V*3 0<x,y<1,0<t<T

u(x,y, 1,t) = et 0 < x,y<1,0<t<T

And non local boundary condition

fol fol folu(x, y,z,t)dxdydz = (e — 1)3e3t (14)
With the initial condition:

u(x,y,z,0) = eXtytz (15)
Analytic solution is given by:

u(x, v,z t) — ex+y+z+3t (16)

Using the decomposition method, described above, equation
(9) gives the first component

uO(x' Y,z t) = f(x; bz Z) = ex+y+z (17)
And equation (10) gives the following components of the
series :

u (x,y,2,t) =

L (Lyx(uo (%, 9, 2,8)) + Ly (uo (x, ¥, 2,) +

Ly, (o (x,y,2,0))) = [ 3e¥+7+7 dt = 3te**¥+2 (18)
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Uy = L7 (Lo (uy (%, 7,2,0)) + Ly, (uy (%, y, 2, £)
+ Lzz (ul (x, y: Z, t)))

t 32
— f 9tex+y+zdt — _tzex+y+z
2!

0
Uz = L7 (L (u2(x, ¥, 2,0)) + Ly, (uy(x, v, 2,0)) +
3
Lzz(uz (x,v,2, t))) = f0f22_7tzex+y+zdt — % t3eXty+z (19)
And so on.
Then the solution in the series form is given by:

ulx,y,zt) = Z ur(x,v,2,t)

k=0
With the above results:
u(x,y, z,t) = eXtv+z (1 TELE i R )
T 12! 3!
Which can be rewritten as:
u(x’ V.2, t) — ex+y+z+3t (20)
It can be easily observed that (20) is equivalent to the exact

solution. Table I shows the numerical results for h, = h, =

h,=—,h =—

10’ "t 7 250

B. Example 2
Consider the
diffusion problem:
Up = Uyy +Uyy + Uy, —e 2+ Y2 +2244),0< x,y,2

<1,t>0
with the initial condition

three-dimensional non homogeneous

u(x,y,2,0) =1+ x% +y2 + z2 (21)
And the boundary conditions
u(0,y,z,t) =3+ (y?2+2z2-2)et,0<y,z< 1,

0<t<T
u(l,y,zt) =3+ (-1+y2+z)et,0<y,z<1

O0<t<T
u(x,0,z,t) =3+ (x?2+2z>-2e t,0<x,2z< 1
O0<t<T
ulx,1,z,t) =3+ (-1+x%2+z%)e t,0<x,2z< 1,
0<t<T
u(x,y,0,t) =3+ (x2+y2—-2)et,0<x,y<1,
0<t<T
ulx,y, 1,t) =3+ (x?+y?—1Det,0<x,y <1,
0<t<T
And the non local boundary condition
fol f01 folu(x,y,z, dxdydz=3—-e5,0<t<T (22)

Theoretical solution is given by:

u(x,y,z,t) =3+ (x2+y?+2z2—-2)et

Writing the problem in operator form and applying the
inverse operator one obtains:

Lt (Lt(u(x, y,2, t))) = Li (L (u(x,v,2,t) +

Ly, (u(x, y,z,t) + Lzz(u(x, v, 2, t))) + L7l (—e t(x?% +

y2 + 2% +4)) (23)
L7t (Lt(u(x, ¥, 2, 0))) =u(x,y,z0) (24)
From which we obtain :

u(x,y,2,t) =u(x,y,20) + Li (L (u(x,y,2,1)) +
Lyy(u(x, v,Z, t)) + L, (ulx,y,2,6)) + L' (—e t(x? +

y2 + 2% 4+ 4)) (25)
Using Adomian decomposition, the zeroth component is
given by:

uo(x,y,z,t) =u(x,y,z,0) + L; (—e *(x? + y2 + z2 +
+4)) (26)
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And
uk+1(xl Y,z t) =
L{t(Lxx(uk(x, ¥, 2, t)) + Lyy(uk(x, ¥,z t)) +

LZZ (uk (X, y! Z, t))) (27)
Applying these formula, we obtain the components of the
series solution as:

u(x,y,z,t) =1+ x> +y?+z%2 + fot—e‘t(x2 +y%+

z2+4)dt = -3+ (x2+y?+z2+4)et (28)
u (x,y,2,t) =
Lt (Lxx (uo(x, ¥, 2,t)) + Ly, (uo(x,v,2,0)) +
L, (uo(x,y,2, t))) = fot 6e~tdt=6—6et (29)
uy(x,y,z,t) =
Lt (Lxx (u1 (x,y,2, t)) +Lyy (u1 (x,y,2, t)) +
LZZ(ul(x! y’ Z: t))) = fot Odt = 0 (30)
Then :
ur(x,y,2z,t) =0,k =2 (31)
Finally , we obtain the approximate solution:
ulx,y,z,t) =ug(x,y,z,t) + u (x,y,2,t)
u(x,y,z,t) = -3+ x> +y2+2z2+4)+ 6 —6e”¢
Or:
u(x,y,z,t) =3+ (x2+y? +z? —2)et (32)
And we can observe that the obtained result is exact.
Table 11 shows the numerical results for
_ _ _ 1 _ 1

hx—hy—hz—ﬁ,ht—ﬁ

C. Example 3
Consider the problem
Up = Upy +Uyy U5, 0<x,y,2<1,t>0 (33)
Subject to the initial condition
ulx,y,2z0)=010-y—-2)e*0<x,y,z<1 (34)

And the boundary conditions

u(0,y,z,t) =(1—-y—2)et,0<y,z<10<t<1
u(l,y,z,t) =1 —y—2)e*,0<y,z<1,0<t<1
u(x,0,z,t) =(1—2)e**t,0<x,z<10<t<1
u(x,1,z,t) = —ze*"t,0<x,z<10<t <1
ulx,y,0,t) =(1—y)e**,0<x,y<10<t<1

ulx,y,1,t) = —ye**tt,0<x,y<10<t<1 (35)
And the local boundary condition
fol f01 fox(l_x) u(x,y,z t)dxdydz = 175 (1-e)et (36)

Consider the equation (33) in an operator form
Lt(u(x, v, 2, t)) = Lxx(u(x, Y,2, t)) + Lyy(u(x, Y, 2, t)) +

Ly, (u(x,y,2,1) @37)

Where, Ly, Lyy, Lyy, Ly, Ly* are defined as above.
Assume that the inverse operator L;! exists operating with
L7t on both sides of equation (37) we obtain

u(x,y,2,t) = Li* (L (u(x, y,2,0)) + Ly, (ulx, y, z,0)) +

Ly (u(x,,2,6) ) (38)

Using the decomposition method, the zeroth component is
given by

uy(x,y,z,t) =u(x,vy,20) (39)
And

uk+1(x’ y’ Z’ t) =

L{l(Lxx(uk(x, Y, 2, t)) + Lyy(uk(x, ¥, 2, t)) +

Lzz(uk(x' y' Z, t))) (40)

Applying these formula, we have
ug(x,y,z,t) =1 —y—2z)e*
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u (x,y,2,t) = Lt (Lxx (uo(x,7,2,0)) + Ly, (uo(x, 3,2, 1))
+ Ly, (uo(x,y,2, t)))

= ft(l—y—z)e"dt =(1-y—2)e*t
u(x,y,2,t) = ’
Lt (Lxx(u1 (,9,2,0)) + Lyy(uy (x, y,2,t)) +
L (w(r,y,2,0)) = [[(1 =y —2)e* tdt = (1 -y —

2
z)e* x &

21
u’3(x y; Z, t) =
Lt (Lxx (u2 (x,y,2, t)) +Lyy (u2 (x,y,2, t)) +
2
LZZ(uZ(x'ylZl t))) = fot(l -y - Z)ex%dt = (1 -y—

z)e"t3

u,(x,y,2,t) = Lt (Lxx(uk_l(x, y,2,t))
+ Lyy(uk_l(x, y,7,t))
+Lzz(uk I(x Yz, t)))

k-1
f (1- (k i

=(1-
kl
And so on , once the components are determined then, the
series solution is given by:
ulx,y,z,t) = Yo u,\;((x, v,z,t) =
o t

(1—y - 2e*(Tle)
Or equivalently:

ulx,y,z,t) =1 —-y—2)e
This result is in good agreement with the exact one.

—z)e*

x+t

Table 1l shows the numerical results  for
1 1
hx—hy—hz—ﬁ,ht—ﬁ.

IV. CONCLUSION

In this work, we have detailed the study of the Adomian
decomposition method ADM and using it for finding the

solution of the three-dimensional heat equation with
energy specification . This method is employed without
using linearization, discretization, transformation, or

restrictive assumptions. It is very much compatible with the
diversified and versatile nature of physical problems, the
results obtained are all in good agreement with the exact
solutions under study. Moreover this method is efficient,
reliable, accurate, easier to implement as compared to the
traditional techniques.
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Table | : Example 1

Xi Vi Zx  Uex Upa [tex — Uaal
0.00.00.0 1.021 1.021 0.0
0.10.10.1 13662 1.3662 0.0
0.20.20.2 18441 1.8441 0.0
0.30.30.3 2.4893 2.4893 0.0
040404 33602 3.3602 0.0
0.50.50.5 4.5358 4.5358 0.0
060.60.6 6.1227 6.1227 0.0
0.70.70.7 8.2648 8.2648 0.0
0.80.80.8 11.156 11.156 0.0
0.9;0.909 15.059 15.059 0.0 N
1.01.01.0 20.328 20.328 0.0
Table Il Example 2

Xi Vi Zk Uex Upa [Uex — Ugal

0.00.00.0 1.0080 0.98403 0.02397

0.10.10.1 1.0976 1.0737 0.0239

0.20.20.2 1.3665 1.3426 0.0239

0.30.30.3 1.8148 1.7908 0.024

040404 24422 2.4183 0.0239 Fig 2Variation of the approximate solution for different
0.50.50.5 3.249 3.225 0.024 values of x,y and z when t=1/2500
060.60.6 4.235 4.2111 0.0239

0.70.70.7 5.4004 5.3764 0.024

0.80.80.8 6.7450 6.721 0.024

090909 8.2689 8.2429 0.024

1.01.01.0 99721 9.9481 0.024

Table Il Example 3

Xi Vi Zg Uex Uaa Iuex - uAdl

0.00.0 0.0 1.004  1.004 0.0

010101 088768 0.88767 0.00001

020202 073578 0.73577 0.00001

030303 054211 054210 0.00001 ASRRY
040404 029956 0.29956 0.0 . SSSESY
0.5050.5 0.0 0.0 0.0 ===
0.6 0.6 0.6 —0.36588 —0.36588 0.0 =
0.7 0.7 0.7 —0.80873 —0.80872 0.00001 <
0.80.80.8 —1.3407 —1.3407 0.0

0.90.90.9 —1.9756 —1.9756 0.0

1.01.0 1.0 —2.7292 —2.7292 0.0

Fig. 3 Variation of the approximate solution for different
values of X, y and z when t=1/250
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