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Abstract—As technology advances, systems perform more 

functions and become more interconnected. The result is an 

increasing level of complexity. Those charged with acquiring such 

systems need to ask whether or not they have the right skills to 

successfully complete them. A comprehensive technique is 

proposed for addressing reactive systems, such technique is based 

on systems engineering concepts. The work is illustrated through 

two systems engineering standard as IEEE P1220 and ANSI-EIA 

632.  

 
Index Terms Reactive systems; systems engineering 
deployment; systems of systems; systems engineering standards; 
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I. INTRODUCTION: ABOUT SYSTEMS OF SYSTEMS 

FRAMEWORK, NEEDS AND REQUIREMENTS 

In [1], a roadmap in SE research and mainly on systems families 
(known as systems of systems), it is explained that large systems 
are often formed from a variety of component systems: custom 
systems that are newly engineered from the “ground up”; 
existing commercial-off-the-shelf (COTS) systems, which are 
custom tailored for a particular application; and existing or 
legacy systems. Such related terms as systems of systems 
(SOS), federations of systems (FOS), federated systems of 
systems (F-SOS), and coalitions of systems (COS) are often 
used to characterize these systems. These appellations capture 
important realities brought about by the fact that modern 
systems are not monolithic. Rather, they have five characteristics 
initially well summarized by Mark Maier (1998) that make one 
of the system family designations appropriate: 

1) Operational independence of the individual systems. A 
system of systems is composed of systems that are 
independent and useful in their own right. If a system of 
systems is disassembled into the constituent systems, 
these constituent systems are capable of independently 
performing useful operations by themselves and 
independently of one another.  
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2) Managerial independence of the systems. The component 
systems not only can operate independently, but generally 
they do operate independently in order to achieve the 
technological, human, and organizational purposes of the 
individual unit that operates the system.  
 
These component systems are generally individually 
acquired, serve an independently useful purpose, and 
often maintain a continuing operational existence that is 
quite independent of the larger system of systems.  

  3) Geographic distribution. Geographic dispersion of the 
constituent systems in a system of systems is often quite large. 
Often, these constituent systems can readily exchange only 
information and knowledge with one another, and not 
substantial quantities of physical mass or energy.  
  4) Emergent behavior. The system of systems performs 
functions and carries out purposes that do not reside uniquely in 
any of the constituent systems. These behaviors arise as a 
consequence of the formation of the entire system of systems 
and are not the behavior of any constituent system. The principal 
purposes supporting engineering of these individual systems and 
the composite system of systems are fulfilled by these emergent 
behaviors.  
  5) Evolutionary and adaptive development. A system of 
systems is never fully formed or complete. Development of 
these systems is evolutionary and adaptive over time. Structures, 
functions, and purposes are added, removed, and modified as 
experience of the community with the individual systems and 
the composite system grows and evolves. 

II. THE REACTIVE SYSTEMS: SYSTEMS INTEGRATION 

PROBLEMS  

2.1. Characterizing systems 

As any information systems engineering, timing is not 
necessarily high level criteria but the reactivity of system in 
a global environment. In this respect, embedded real-time 
systems must react continuously to stimuli from their 
environment. Therefore, their control-flow patterns differ 
from those of traditional systems that transform a given 
input to an output at their own pace. Reactive processors 
provide direct hardware support for reactive control flow, 
which keeps executables fast and compact and results in 
lower power consumption compared to traditional 
architectures. 
  Many embedded systems belong to the class of reactive 
systems, which continuously react to inputs from the 
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environment by generating corresponding outputs. The 
programming of reactive systems typically requires the use 
of non-standard control flow constructs, such as concurrency 
and exception handling. Most programming languages, 
including languages such as C and Java that are commonly 
used in embedded systems, either do not support these 
constructs at all, or their use induces non-deterministic 
program behavior, regarding both functionality and timing. 
Furthermore, the concurrent behavior of reactive programs is 
typically very fine-grained. Measurements indicate that it is 
not uncommon to have a context switch after, on average, 
fewer than five instructions. This makes traditional context 
switch mechanisms, based on an operating system that 
consumes thousands of instructions per context switch, 
impractical.  

2.2. The general framework 

A lot of work has been carried in systems integration 
through SoS framework and many application for systems 
design as at aircraft engine (Roll Royce) by [2] as illustrated 
in figure 1. 
 

 
Fig. 1. General framework of integration and test for aircraft engine 

 
  From such experience (Pickard and Paisley) proned the 
following statement which is fundamental in systems 
integration in general concerning such issue “From the 
analysis, we noticed that component testing (testing single 
software code modules) in general did not find any error 
types that could not have been found by other means e.g. 
code reviews. However, the cost to find an error by 
component testing was nearly 100 times more expensive 
then code review. If a project wanted to optimize its costs 
and timescales the intelligent option would be to minimize 
component testing. Note that component testing does gather 
product certification data that cannot be gathered by any 
other means and is therefore required during certification 
BUT can be optimized out during development. 
  Similarly, it was noticed that software/software 
integration testing and hardware/software integration testing 
found very similar error types. It would be possible to omit 
one method OR optimize the use of the methods depending 
on the aspects of the system under test e.g. hardware aspects 
to be testing with hardware integration. In principle, when 

two processes find the same type of error, it is possible to 
select between the processes depending on the value they 
each bring”. 

III. LEVELS OF COMPETENCY 

3.1. Missions 

Often, appropriate missions exist for relatively large systems 
of systems in which there is a very limited amount of 
centralized command-and-control authority. Instead, a 
coalition of partners has decentralized power and authority 
and potentially differing perspectives of situations.  It is 
useful to term such a system a “federation of systems” and 
sometimes a “coalition of systems”. The participation of the 
federation or coalition of partners is based upon 
collaboration and coordination to meet the needs of the 
federation or coalition. The notions of autonomy, 
heterogeneity, and geographic dispersion are not 
independent of one another.  Increasing geographic 
dispersion will usually lead to greater autonomy and 
consequently also increase heterogeneity. The Internet is 
perhaps the best example of a system that began under the 
aegis of a single sponsor, the U.S. Department of Defense, 
and has grown to become a federation of systems. 

3.2. Support for innovation 

Support for innovation and change of all types is a desirable 
characteristic of these system families [3]. Innovation 
includes both technological innovation and organizational 
and human conceptual innovation. Accomplishing this 
requires continuous learning, a reasonable tolerance for 
errors, and experimental processes to accomplish both the 
needed learning and the needed change. The systems fielded 
in order to obtain these capabilities will not be monolithic 
structures in terms of either operations or acquisition.  
Rather, they will be systems of systems, coalitions of 
systems, or federations of systems that are integrated in 
accordance with appropriate architectural constructs in order 
to achieve the evolutionary, adaptive, and emergent 
cooperative effects that will be required to achieve human 
and organizational purposes and to take advantage of rapid 
changes in technology. They can potentially accommodate: 
system lifecycle change, in which the life cycle associated 
with use of a system family evolves over time; system 
purpose change, in which the focus in use of the system 
emerges and evolves over time; and environment change, in 
terms of alterations in the external context supporting 
differing organizational and human information and 
knowledge needs, as well as in the technological products 
that comprise constituent systems. 

IV. THE APPROACH AND ASSOCIATED TECHNIQUE 

Our approach is hence to consider deployment of existing 
methods of systems operation in general and make 
particularities of reactive systems as a whole. 
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  The followings steps can be implemented by using the 
traditional method developed in [4]: 
• define processes, 
• develop associated technique, 
• search for tools or develop if needed. 

4.1. Defining the process 

Here we directly make use of existing standards; our 
experience has been developed with ANSI-EIA 632. We 
focus our work on the three main processes: system design 
(with the requirements and the solution definitions), product 
realization (with the implementation), and technical 
evaluation (with the verification and validation). 
  For the requirements in reactive systems, we have to set up 
the general architecture between the final product as part of 
general systems: reactive systems is subsystems with its own 
enabling product. At this level we have to take into 
consideration the systems views and application software 
view, even we may consider the co-design issue at the later 
step. 
The same follow for implementation, and validation and 
verification. 

4.2. Develop associated technique for reactive systems requirements 
design and verification/validation 

It is at the level where the techniques are addressed depending 
to each process. 
  Two leading alternative approaches to the grand design 
approach for the engineering of systems were initially termed 
incremental and evolutionary, although the term evolutionary 
is now generally used to characterize both of these. 

 
1) In incremental development, the system is delivered in 

pre-planned phases or increments, in which each delivered 
module is functionally useful. The overall system capability 
improves with the addition of successive modules.  The 
desired system capability is planned to change from the 
beginning, as the result of “build N” being augmented and 
enhanced through the phased increment of “build N+1.” This 
approach enables a well-functioning implementation to be 
delivered and fielded within a relatively short time and 
augmented through additional builds.  It also allows time for 
system users to thoroughly implement and evaluate an initial 
system with limited functionality compared to the ultimately 
desired system.  Generally, the notion of preplanning of 
future builds is strong in incremental development.  As 
experience with the system at build N is gained, requirements 
changes for module N+1 may be more easily incorporated 
into this, and subsequent, builds.  

 
2) Evolutionary lifecycle development technique is similar 

in approach to its incremental complement; however, future 
changes are not necessarily pre-planned.   This approach 
recognizes that it is impossible to initially predict and set forth 
engineering plans for the exact nature of these changes. The 
system is engineered at build N+1 through reengineering the 

system that existed at build N.  Thus, a new functional 
system is delivered at each build, rather than obtaining build 
N+1 from build N by adding a new module.  The 
enhancements to be made to obtain a future system are not 
determined in advance, as in the case of incremental builds.  
Evolutionary development approaches can be very effective in 
cases where user requirements are expected to shift 
dramatically over time, and where emerging and innovative 
technologies allow for major future improvements. They are 
especially useful for the engineering of unprecedented 
systems that involve substantial risk and allow potentially 
enhanced risk management. Evolutionary development may 
help program managers adjust to changing requirements and 
funding priority shifts over time since new functionality 
introductions can be advanced or delayed in order to 
accommodate user requirements and funding changes.  Open, 
flexible, and adaptable system architecture is central to the 
notion of evolutionary and emergent development.  These 
are major elements in the contemporary U.S. Department of 
Defense Initiatives in evolutionary acquisition and such issues 
as Network Centric Warfare. 

4.3. The tools 

Many conventional systems are special-purpose-built, as a 
mixture of commercial-off-the-shelf systems and custom 
developments of hardware and software.  These constituents 
are generally provided by multiple contractors who are used 
to supporting a specific customer base and working under the 
leadership of a single vertical program management structure.  
For best operation, these systems should be managed as a 
system of systems, network of networks, federation of 
systems, or coalition of systems. 
  A system of systems generally has achieved integration of 
the constituent systems across communities of contractors, 
and sometimes across multiple customer bases, and is 
generally managed by more horizontally organized program 
management structures, such as integrated product and 
process development (IPPD) teams. When the IPPD team 
effort is well coordinated, the team is generally well able to 
deal with conflict issues that arise due to business, political, 
and other potentially competing interests [4]. 

V. MODEL SPECIFICATION METHOD 

This section describes general model-based system design  

process, around architectural alternative assessment.  

When developing hybrid systems in terms of mixed 

mechanical, electronic equipment, there is a need for a high 

level of abstraction when devising architecture. The system 

view is preferred  for its effectiveness in tackling such types 

of systems. The choice of SysML is meant to have an 

independent method rather than choosing specific technology 

method; also VHDL-AMS is a general purpose notation for 

hybrid systems even it is known that it was devised initially 
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for electronics systems. 

During physical solution definition, some functional and 

performance requirements are identified as key architecture 

efficiency indicators. These indicators will be assessed by an 

executable model, by translating them into a set of measurable 

values on physical model. Two goals must be satisfied when 

building such a model :  

First, try to completely simulate parameters that have been 

identified as key efficiency indicators. This corresponds to a 

top-down view of the model specification, starting from high 

level, stakeholder needs, and allows to ensure that purpose of 

system is done according to functional specification.  

Next, allow identification of unexpected or undesirable effect 

that can lead to reject an architecture. This issue is tightly 

linked  to system internal and external interfaces, and 

operating environment. As it is depends on technical solutions, 

this corresponds to the bottom-up aspect of model 

specification.  (For example, one model does not simulate 

heat transfer between two part of system, resulting in 

unrealistic gas temperature in pneumatic actuator, and 

therefore unrealistic operating performance). 

 

Following steps propose a way to specify and build physical 

models trying to improve efficiency and benefits of modeling 

and simulation tasks. 

 

1. Identify technical effectiveness metrics on Logical 

Architecture Solutions. Architecture effectiveness metrics 

should be expressed in a solution independent point-of-view. 

This effectiveness metrics should be approved by stakeholders, 

for example during logical solution review. In SysML, we 

specify attributes to component block in order to specify 

internal values that have to be simulated in the dynamic 

executable model. For example, electrical consumption, speed 

profile, mechanical effort). Expected discrete event properties 

are specified as sequence or activity diagrams that will be 

compared to simulation results (for example: aural warning 

triggering, sensor measurement time).  

2. Allocate effectiveness metrics on system components and 

interfaces. As alternative architectures are explored, efficiency 

metrics have to be translated and allocated on system parts. 

Such characteristics are key performance parameters such as 

effort/torque, speed, response time, hydraulic pressure... 

These are considered key characteristic in that they are 

directly traceable against technical efficiency criteria and 

stakeholders expectations. This allocation process can be 

based on engineering judgment, or based on trade-off analysis. 

Exploring design alternative will usually bring to refine or 

complete set of efficiency metrics previously defined. This is 

not an issue as long as set of design alternatives refers to the 

same efficiency metrics reference.  For example, assessing 

one electro-mechanical system against a human powered 

system can bring designers to asses system energetic 

autonomy. 

 

3. Specifying simulation sequence and stimulus. In 

conjunction with effectiveness metrics allocation, one should 

define simulation conditions, stimuli, and measuring means to 

ensure that simulation will provide expected benefits. This 

step is tightly coupled with architecture definitions and may 

require to develop some additional model parts. For example 

measuring a numeric response time on a continuous signal 

shall require developing a measuring component with 

measured signal being compared to thresholds values and 

returning required response time value.  

 

4. Derive components internal parameters from key physical 

characteristics. This task has a great impact on model 

accuracy. Once key characteristics have been allocated, one 

should consider component internal parameters that could 

impact its key characteristics. This is actually a bottom-up 

analysis, in that it highly depends on intrinsic, physical 

structure of each component. It is usually performed by 

engineering judgment, and requires a careful analysis of both 

the component intrinsic properties and its operating 

conditions and environment. For example, consider one 

component as a mechanical damper used in an emergency 

mechanical system. In this example efficiency metrics 

naturally brings to allocate a minimum damping effort to this 

component. Then, the use of a hydraulic actuator should bring 

to add the oil temperature as an internal parameter to be 

monitored as it has a great impact on damping effort which 

will be produced.  

 

5. Identify additional parameters to raise undesired effect 

simulation. Such task should be derived by engineering 

analysis such as safety and maintainability analysis. It should 

also result from a bottom-up analysis of previously identified 
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key physical characteristics and internal parameter.  

 

6. Model dynamic behavior. In this task, modeler should 

ensure that instructions that models dynamic behavior covers 

computation of key, internal parameters, and also particular 

parameters. Depending on model abstraction level, these 

instructions can be differential or algebraic, conservative or 

non-conservative equations, or transfer functions. 

VI. A CASE STUDY 

We have an example of application for the engineering of a 
complex system which can be considered as a system of 
systems itself. In this case study, we have chosen to focus in 
particular on the safety properties which must be analyzed at 
system level. 
6.1. Context 
In fact, we follow the EIA-632 standard and some extra 
recommendations that we have defined [5]; at the process 
level. This recommendations detail the necessary activates for 
define, manage, integrate, decline, verify, and valid the safety 
properties, and explain at which steps (“when?”) do these 
activities. At the same time, we have proposed one 
methodology for complete some of these activities, with the 
use of famous safety methods (FMECA [6] and fault trees [7]); 
at the method level. Our approach is also accompanied by an 
information model [8] which uses SysML language [9]; at 
tool level. Indeed, as said previously, designing system of 
systems involves necessarily a way to share the system 
information between the different trades of studies 
(mechanical, electrical, thermal, safety…) who need different 
views on the system in order to perform their analysis. 
 
6.2. Presentation of the example 
The case study concerns the deceleration function of an 
airliner on the ground. The subsystems involved in the 
deceleration function are: the reverses, the spoilers and the 
wheel brakes The reverses are related to reactors and can 
invert the direction of the thrust. They can be used only above 
a certain speed (otherwise reactors re-ingest hot gas and 
deteriorate themselves). The spoilers are moving surfaces on 
the wings that reduce lift and increase drag. As a consequence, 
they slow down the aircraft speed, preventing from re-launch 
and transferring more weight on the wheels. They are 
effective only above a certain speed. Finally, the wheel brakes 
are used at all speeds and are located on the main landing gear 
(not on the nose landing gear). They can be used 
dissymmetrical, to counter the wind or make sharp turns. 
6.3. Results of the study 
First, the study was able to produce several safety 
requirements at system level for counter some risks with high 
gravity potential effects on the system or the environment. 
Examples of these requirements are: 
• the frequency of an un-annunciated loss of the deceleration 
capabilities must be lower than 10-9/fh, 
• the frequency of an annunciated loss of the deceleration 

capabilities must be lower than 10-7/fh, 
• the frequency of an un-annunciated loss of the wheel brakes 
must be lower than 10-5/fh. (fh: flight hour) 
 
  Another result is the declination of these system-level 
requirements into other safety requirements at sub-system 
level. In order to satisfy the system-level requirements, all the 
subsystem-level requirements must be satisfy. For example 
with the first requirement quoted above, this one is declined 
into three subsystem-level requirements which are: 
• for the “wheel brakes” subsystem: 

o  the frequency of the impossibility to actuate the brakes 
must be lower than 10-7/fh, 
o  the frequency of the impossibility to fully actuate the 
brakes must be lower than 10-7/fh, 

• for the “reverses” subsystem: 
o  the frequency of the impossibility to operate the 
reverses must be lower than 10-3/fh. 

 
  The study was also a way to demonstrate the use of the 
SysML information model. In this model understandable by 
all the actors concern by the development, one significant 
advantage come from the traceability links. Indeed, when deal 
with complex system, it’s extremely important to have a 
strong management of traceability [10], [11]. By this way, it’s 
possible to perform faster impact analysis after a change, a 
modification or a non-compliance of a requirement. 

VII. CONCLUSION 

Thus, it’s still very difficult to develop reactive system, with 
all its characteristics and constraints, all the involved “actors” 
(humans or other systems), and the intrinsic complexity. 
Fortunately we have the system engineering field described 
by standards, which we add specific points for these systems. 
  So, our credo is to follow the following paradigm: 
processes, methods/techniques, and tools. We adapt the 
processes, propose techniques, and find or describe tools. 
  Our experience in the safety field describes the efficiency 
and the benefit of this work. But it is only little part of the 
reactive system design framework. So, still a lot of analysis, 
studies and synthesis will follow; the work must continue. 
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