

Integrating Reactive Systems Design
in Systems of Systems Framework

R. Guillerm and A. Sahraoui

Abstract—As technology advances, systems perform more

functions and become more interconnected. The result is an

increasing level of complexity. Those charged with acquiring such

systems need to ask whether or not they have the right skills to

successfully complete them. A comprehensive technique is

proposed for addressing reactive systems, such technique is based

on systems engineering concepts. The work is illustrated through

two systems engineering standard as IEEE P1220 and ANSI-EIA

632.

Index Terms Reactive systems; systems engineering
deployment; systems of systems; systems engineering standards;
IEEE-P1220; ANSI-EIA-632.

I. INTRODUCTION: ABOUT SYSTEMS OF SYSTEMS

FRAMEWORK, NEEDS AND REQUIREMENTS

In [1], a roadmap in SE research and mainly on systems families
(known as systems of systems), it is explained that large systems
are often formed from a variety of component systems: custom
systems that are newly engineered from the “ground up”;
existing commercial-off-the-shelf (COTS) systems, which are
custom tailored for a particular application; and existing or
legacy systems. Such related terms as systems of systems
(SOS), federations of systems (FOS), federated systems of
systems (F-SOS), and coalitions of systems (COS) are often
used to characterize these systems. These appellations capture
important realities brought about by the fact that modern
systems are not monolithic. Rather, they have five characteristics
initially well summarized by Mark Maier (1998) that make one
of the system family designations appropriate:

1) Operational independence of the individual systems. A
system of systems is composed of systems that are
independent and useful in their own right. If a system of
systems is disassembled into the constituent systems,
these constituent systems are capable of independently
performing useful operations by themselves and
independently of one another.

R. Guillerm and A. Sahraoui are with LAAS-CNRS, 7 avenue du Colonel Roche,

F-31400 Toulouse, France, Univ de Toulouse;UTM; LAAS, F-31100 Toulouse,

France (email : sahraoui@mail.fr)

2) Managerial independence of the systems. The component
systems not only can operate independently, but generally
they do operate independently in order to achieve the
technological, human, and organizational purposes of the
individual unit that operates the system.

These component systems are generally individually
acquired, serve an independently useful purpose, and
often maintain a continuing operational existence that is
quite independent of the larger system of systems.

 3) Geographic distribution. Geographic dispersion of the
constituent systems in a system of systems is often quite large.
Often, these constituent systems can readily exchange only
information and knowledge with one another, and not
substantial quantities of physical mass or energy.
 4) Emergent behavior. The system of systems performs
functions and carries out purposes that do not reside uniquely in
any of the constituent systems. These behaviors arise as a
consequence of the formation of the entire system of systems
and are not the behavior of any constituent system. The principal
purposes supporting engineering of these individual systems and
the composite system of systems are fulfilled by these emergent
behaviors.
 5) Evolutionary and adaptive development. A system of
systems is never fully formed or complete. Development of
these systems is evolutionary and adaptive over time. Structures,
functions, and purposes are added, removed, and modified as
experience of the community with the individual systems and
the composite system grows and evolves.

II. THE REACTIVE SYSTEMS: SYSTEMS INTEGRATION

PROBLEMS

2.1. Characterizing systems

As any information systems engineering, timing is not
necessarily high level criteria but the reactivity of system in
a global environment. In this respect, embedded real-time
systems must react continuously to stimuli from their
environment. Therefore, their control-flow patterns differ
from those of traditional systems that transform a given
input to an output at their own pace. Reactive processors
provide direct hardware support for reactive control flow,
which keeps executables fast and compact and results in
lower power consumption compared to traditional
architectures.
 Many embedded systems belong to the class of reactive
systems, which continuously react to inputs from the

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

environment by generating corresponding outputs. The
programming of reactive systems typically requires the use
of non-standard control flow constructs, such as concurrency
and exception handling. Most programming languages,
including languages such as C and Java that are commonly
used in embedded systems, either do not support these
constructs at all, or their use induces non-deterministic
program behavior, regarding both functionality and timing.
Furthermore, the concurrent behavior of reactive programs is
typically very fine-grained. Measurements indicate that it is
not uncommon to have a context switch after, on average,
fewer than five instructions. This makes traditional context
switch mechanisms, based on an operating system that
consumes thousands of instructions per context switch,
impractical.

2.2. The general framework

A lot of work has been carried in systems integration
through SoS framework and many application for systems
design as at aircraft engine (Roll Royce) by [2] as illustrated
in figure 1.

Fig. 1. General framework of integration and test for aircraft engine

 From such experience (Pickard and Paisley) proned the
following statement which is fundamental in systems
integration in general concerning such issue “From the
analysis, we noticed that component testing (testing single
software code modules) in general did not find any error
types that could not have been found by other means e.g.
code reviews. However, the cost to find an error by
component testing was nearly 100 times more expensive
then code review. If a project wanted to optimize its costs
and timescales the intelligent option would be to minimize
component testing. Note that component testing does gather
product certification data that cannot be gathered by any
other means and is therefore required during certification
BUT can be optimized out during development.
 Similarly, it was noticed that software/software
integration testing and hardware/software integration testing
found very similar error types. It would be possible to omit
one method OR optimize the use of the methods depending
on the aspects of the system under test e.g. hardware aspects
to be testing with hardware integration. In principle, when

two processes find the same type of error, it is possible to
select between the processes depending on the value they
each bring”.

III. LEVELS OF COMPETENCY

3.1. Missions

Often, appropriate missions exist for relatively large systems
of systems in which there is a very limited amount of
centralized command-and-control authority. Instead, a
coalition of partners has decentralized power and authority
and potentially differing perspectives of situations. It is
useful to term such a system a “federation of systems” and
sometimes a “coalition of systems”. The participation of the
federation or coalition of partners is based upon
collaboration and coordination to meet the needs of the
federation or coalition. The notions of autonomy,
heterogeneity, and geographic dispersion are not
independent of one another. Increasing geographic
dispersion will usually lead to greater autonomy and
consequently also increase heterogeneity. The Internet is
perhaps the best example of a system that began under the
aegis of a single sponsor, the U.S. Department of Defense,
and has grown to become a federation of systems.

3.2. Support for innovation

Support for innovation and change of all types is a desirable
characteristic of these system families [3]. Innovation
includes both technological innovation and organizational
and human conceptual innovation. Accomplishing this
requires continuous learning, a reasonable tolerance for
errors, and experimental processes to accomplish both the
needed learning and the needed change. The systems fielded
in order to obtain these capabilities will not be monolithic
structures in terms of either operations or acquisition.
Rather, they will be systems of systems, coalitions of
systems, or federations of systems that are integrated in
accordance with appropriate architectural constructs in order
to achieve the evolutionary, adaptive, and emergent
cooperative effects that will be required to achieve human
and organizational purposes and to take advantage of rapid
changes in technology. They can potentially accommodate:
system lifecycle change, in which the life cycle associated
with use of a system family evolves over time; system
purpose change, in which the focus in use of the system
emerges and evolves over time; and environment change, in
terms of alterations in the external context supporting
differing organizational and human information and
knowledge needs, as well as in the technological products
that comprise constituent systems.

IV. THE APPROACH AND ASSOCIATED TECHNIQUE

Our approach is hence to consider deployment of existing
methods of systems operation in general and make
particularities of reactive systems as a whole.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

 The followings steps can be implemented by using the
traditional method developed in [4]:
• define processes,
• develop associated technique,
• search for tools or develop if needed.

4.1. Defining the process

Here we directly make use of existing standards; our
experience has been developed with ANSI-EIA 632. We
focus our work on the three main processes: system design
(with the requirements and the solution definitions), product
realization (with the implementation), and technical
evaluation (with the verification and validation).
 For the requirements in reactive systems, we have to set up
the general architecture between the final product as part of
general systems: reactive systems is subsystems with its own
enabling product. At this level we have to take into
consideration the systems views and application software
view, even we may consider the co-design issue at the later
step.
The same follow for implementation, and validation and
verification.

4.2. Develop associated technique for reactive systems requirements
design and verification/validation

It is at the level where the techniques are addressed depending
to each process.
 Two leading alternative approaches to the grand design
approach for the engineering of systems were initially termed
incremental and evolutionary, although the term evolutionary
is now generally used to characterize both of these.

1) In incremental development, the system is delivered in

pre-planned phases or increments, in which each delivered
module is functionally useful. The overall system capability
improves with the addition of successive modules. The
desired system capability is planned to change from the
beginning, as the result of “build N” being augmented and
enhanced through the phased increment of “build N+1.” This
approach enables a well-functioning implementation to be
delivered and fielded within a relatively short time and
augmented through additional builds. It also allows time for
system users to thoroughly implement and evaluate an initial
system with limited functionality compared to the ultimately
desired system. Generally, the notion of preplanning of
future builds is strong in incremental development. As
experience with the system at build N is gained, requirements
changes for module N+1 may be more easily incorporated
into this, and subsequent, builds.

2) Evolutionary lifecycle development technique is similar

in approach to its incremental complement; however, future
changes are not necessarily pre-planned. This approach
recognizes that it is impossible to initially predict and set forth
engineering plans for the exact nature of these changes. The
system is engineered at build N+1 through reengineering the

system that existed at build N. Thus, a new functional
system is delivered at each build, rather than obtaining build
N+1 from build N by adding a new module. The
enhancements to be made to obtain a future system are not
determined in advance, as in the case of incremental builds.
Evolutionary development approaches can be very effective in
cases where user requirements are expected to shift
dramatically over time, and where emerging and innovative
technologies allow for major future improvements. They are
especially useful for the engineering of unprecedented
systems that involve substantial risk and allow potentially
enhanced risk management. Evolutionary development may
help program managers adjust to changing requirements and
funding priority shifts over time since new functionality
introductions can be advanced or delayed in order to
accommodate user requirements and funding changes. Open,
flexible, and adaptable system architecture is central to the
notion of evolutionary and emergent development. These
are major elements in the contemporary U.S. Department of
Defense Initiatives in evolutionary acquisition and such issues
as Network Centric Warfare.

4.3. The tools

Many conventional systems are special-purpose-built, as a
mixture of commercial-off-the-shelf systems and custom
developments of hardware and software. These constituents
are generally provided by multiple contractors who are used
to supporting a specific customer base and working under the
leadership of a single vertical program management structure.
For best operation, these systems should be managed as a
system of systems, network of networks, federation of
systems, or coalition of systems.
 A system of systems generally has achieved integration of
the constituent systems across communities of contractors,
and sometimes across multiple customer bases, and is
generally managed by more horizontally organized program
management structures, such as integrated product and
process development (IPPD) teams. When the IPPD team
effort is well coordinated, the team is generally well able to
deal with conflict issues that arise due to business, political,
and other potentially competing interests [4].

V. MODEL SPECIFICATION METHOD

This section describes general model-based system design

process, around architectural alternative assessment.

When developing hybrid systems in terms of mixed

mechanical, electronic equipment, there is a need for a high

level of abstraction when devising architecture. The system

view is preferred for its effectiveness in tackling such types

of systems. The choice of SysML is meant to have an

independent method rather than choosing specific technology

method; also VHDL-AMS is a general purpose notation for

hybrid systems even it is known that it was devised initially

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

for electronics systems.

During physical solution definition, some functional and

performance requirements are identified as key architecture

efficiency indicators. These indicators will be assessed by an

executable model, by translating them into a set of measurable

values on physical model. Two goals must be satisfied when

building such a model :

First, try to completely simulate parameters that have been

identified as key efficiency indicators. This corresponds to a

top-down view of the model specification, starting from high

level, stakeholder needs, and allows to ensure that purpose of

system is done according to functional specification.

Next, allow identification of unexpected or undesirable effect

that can lead to reject an architecture. This issue is tightly

linked to system internal and external interfaces, and

operating environment. As it is depends on technical solutions,

this corresponds to the bottom-up aspect of model

specification. (For example, one model does not simulate

heat transfer between two part of system, resulting in

unrealistic gas temperature in pneumatic actuator, and

therefore unrealistic operating performance).

Following steps propose a way to specify and build physical

models trying to improve efficiency and benefits of modeling

and simulation tasks.

1. Identify technical effectiveness metrics on Logical

Architecture Solutions. Architecture effectiveness metrics

should be expressed in a solution independent point-of-view.

This effectiveness metrics should be approved by stakeholders,

for example during logical solution review. In SysML, we

specify attributes to component block in order to specify

internal values that have to be simulated in the dynamic

executable model. For example, electrical consumption, speed

profile, mechanical effort). Expected discrete event properties

are specified as sequence or activity diagrams that will be

compared to simulation results (for example: aural warning

triggering, sensor measurement time).

2. Allocate effectiveness metrics on system components and

interfaces. As alternative architectures are explored, efficiency

metrics have to be translated and allocated on system parts.

Such characteristics are key performance parameters such as

effort/torque, speed, response time, hydraulic pressure...

These are considered key characteristic in that they are

directly traceable against technical efficiency criteria and

stakeholders expectations. This allocation process can be

based on engineering judgment, or based on trade-off analysis.

Exploring design alternative will usually bring to refine or

complete set of efficiency metrics previously defined. This is

not an issue as long as set of design alternatives refers to the

same efficiency metrics reference. For example, assessing

one electro-mechanical system against a human powered

system can bring designers to asses system energetic

autonomy.

3. Specifying simulation sequence and stimulus. In

conjunction with effectiveness metrics allocation, one should

define simulation conditions, stimuli, and measuring means to

ensure that simulation will provide expected benefits. This

step is tightly coupled with architecture definitions and may

require to develop some additional model parts. For example

measuring a numeric response time on a continuous signal

shall require developing a measuring component with

measured signal being compared to thresholds values and

returning required response time value.

4. Derive components internal parameters from key physical

characteristics. This task has a great impact on model

accuracy. Once key characteristics have been allocated, one

should consider component internal parameters that could

impact its key characteristics. This is actually a bottom-up

analysis, in that it highly depends on intrinsic, physical

structure of each component. It is usually performed by

engineering judgment, and requires a careful analysis of both

the component intrinsic properties and its operating

conditions and environment. For example, consider one

component as a mechanical damper used in an emergency

mechanical system. In this example efficiency metrics

naturally brings to allocate a minimum damping effort to this

component. Then, the use of a hydraulic actuator should bring

to add the oil temperature as an internal parameter to be

monitored as it has a great impact on damping effort which

will be produced.

5. Identify additional parameters to raise undesired effect

simulation. Such task should be derived by engineering

analysis such as safety and maintainability analysis. It should

also result from a bottom-up analysis of previously identified

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

key physical characteristics and internal parameter.

6. Model dynamic behavior. In this task, modeler should

ensure that instructions that models dynamic behavior covers

computation of key, internal parameters, and also particular

parameters. Depending on model abstraction level, these

instructions can be differential or algebraic, conservative or

non-conservative equations, or transfer functions.

VI. A CASE STUDY

We have an example of application for the engineering of a
complex system which can be considered as a system of
systems itself. In this case study, we have chosen to focus in
particular on the safety properties which must be analyzed at
system level.
6.1. Context
In fact, we follow the EIA-632 standard and some extra
recommendations that we have defined [5]; at the process
level. This recommendations detail the necessary activates for
define, manage, integrate, decline, verify, and valid the safety
properties, and explain at which steps (“when?”) do these
activities. At the same time, we have proposed one
methodology for complete some of these activities, with the
use of famous safety methods (FMECA [6] and fault trees [7]);
at the method level. Our approach is also accompanied by an
information model [8] which uses SysML language [9]; at
tool level. Indeed, as said previously, designing system of
systems involves necessarily a way to share the system
information between the different trades of studies
(mechanical, electrical, thermal, safety…) who need different
views on the system in order to perform their analysis.

6.2. Presentation of the example
The case study concerns the deceleration function of an
airliner on the ground. The subsystems involved in the
deceleration function are: the reverses, the spoilers and the
wheel brakes The reverses are related to reactors and can
invert the direction of the thrust. They can be used only above
a certain speed (otherwise reactors re-ingest hot gas and
deteriorate themselves). The spoilers are moving surfaces on
the wings that reduce lift and increase drag. As a consequence,
they slow down the aircraft speed, preventing from re-launch
and transferring more weight on the wheels. They are
effective only above a certain speed. Finally, the wheel brakes
are used at all speeds and are located on the main landing gear
(not on the nose landing gear). They can be used
dissymmetrical, to counter the wind or make sharp turns.
6.3. Results of the study
First, the study was able to produce several safety
requirements at system level for counter some risks with high
gravity potential effects on the system or the environment.
Examples of these requirements are:
• the frequency of an un-annunciated loss of the deceleration
capabilities must be lower than 10-9/fh,
• the frequency of an annunciated loss of the deceleration

capabilities must be lower than 10-7/fh,
• the frequency of an un-annunciated loss of the wheel brakes
must be lower than 10-5/fh. (fh: flight hour)

 Another result is the declination of these system-level
requirements into other safety requirements at sub-system
level. In order to satisfy the system-level requirements, all the
subsystem-level requirements must be satisfy. For example
with the first requirement quoted above, this one is declined
into three subsystem-level requirements which are:
• for the “wheel brakes” subsystem:

o the frequency of the impossibility to actuate the brakes
must be lower than 10-7/fh,
o the frequency of the impossibility to fully actuate the
brakes must be lower than 10-7/fh,

• for the “reverses” subsystem:
o the frequency of the impossibility to operate the
reverses must be lower than 10-3/fh.

 The study was also a way to demonstrate the use of the
SysML information model. In this model understandable by
all the actors concern by the development, one significant
advantage come from the traceability links. Indeed, when deal
with complex system, it’s extremely important to have a
strong management of traceability [10], [11]. By this way, it’s
possible to perform faster impact analysis after a change, a
modification or a non-compliance of a requirement.

VII. CONCLUSION

Thus, it’s still very difficult to develop reactive system, with
all its characteristics and constraints, all the involved “actors”
(humans or other systems), and the intrinsic complexity.
Fortunately we have the system engineering field described
by standards, which we add specific points for these systems.
 So, our credo is to follow the following paradigm:
processes, methods/techniques, and tools. We adapt the
processes, propose techniques, and find or describe tools.
 Our experience in the safety field describes the efficiency
and the benefit of this work. But it is only little part of the
reactive system design framework. So, still a lot of analysis,
studies and synthesis will follow; the work must continue.

REFERENCES

[1] Sahraoui A.-D.-K., Buede D. M., Sage A. P., Systems
engineering research, Journal of Systems Science and Systems
Engineering, vol. 17, n°3, 2008.

[2] Pickard A., Nolan A., Beasley R., Certainty, Risk and Gambling
in the Development of Complex Systems, INCOSE 20th
International Symposium, Chicago, 2010.

[3] Sage A. P., Sustainable Development: Issues in Information,
Knowledge, and Systems Management, Journal of Information,
Knowledge, Systems Management, vol. 1, n°3-4, pp. 185-223,
1999.

[4] Sahraoui A.-D.-K., Processes for Engineering a System: An
introduction to Processes, Methods and Tools, IEEE
International Conference ICTTA, 2006.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

[5] Guillerm R., Sadou N., Demmou H., Safety Evaluation of
complex system – Integration in system engineering process,
IEEE International Systems Conference, San Diego (California,
USA), 2010.

[6] Buzzatto J. L., Failure mode, effects and criticality analysis
(FMECA) use in the Federal Aviation Administration (FAA)
reusable launch vehicle (RLV) licensing process, Digital
Avionics Systems Conference, Proceedings 18th, vol. 2, pp.
7.A.2-1/7, St Louis (MO, USA), 1999.

[7] Lee W. S., Grosh D. L., Tillman F. A., Lie C. H., Fault tree
analysis, methods, and applications. A review, IEEE
Transactions on Reliability, vol. 34, n°3, pp. 194-203, 1985.

[8] Guillerm R., Sadou N., Demmou H., Information model for
model driven design of complex system based on system
engineering approach, International Conference on Complex
Systems Design and Management (CSDM), pp. 99-111, Paris
(France), 2010.

[9] Friedenthal S., Moore A., Steiner R., A Practical Guide to
SysML: The Systems Modeling Language, Morgan Kauffmann,
2008.

[10] Gotel O. C. Z., Finkelstein C. W., An analysis of the
requirements traceability problem, International Conference on
Requirements Engineering, pp. 94– 101, 1994.

[11] Sahraoui A.-E.-K., Requirements Traceability Issues: Generic
Model, Methodology and Formal Basis, International Journal of
Information Technology and Decision Making, vol. 4, n°1, pp.
59–80, 2005.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

