

Abstract— In this paper, we present application of a Discrete

Event Simulator (DES) for performance modeling of optical

switching devices in computer networks. Network simulators

are valuable tools in situations where one cannot investigate

the system directly. This situation may arise if the system

under study does not exist yet or the cost of studying the system

directly is prohibitive. Most available network simulators are

based on the paradigm of discrete-event-based simulation. As

computer networks become increasingly larger and more

complex, sophisticated DES tool chains have become available

for both commercial and academic research. Some well-known

simulators are NS2, NS3, OPNET, and OMNEST. For this

research, we have applied OMNEST for the purpose of

simulating multi-wavelength performance of optical switch

matrices in computer interconnection networks. Our results

suggest that the application of DES to computer

interconnection networks provides valuable insight in device

performance and aids in topology and system optimization.

Index Terms—discrete event simulator (DES), distributed

computing, high performance computing (HPC), optical

switches, performance modeling.

I. INTRODUCTION

HE use of simulation is becoming increasingly

prevalent in the networking research community [1].

Network simulators allow one to model/analyze/evaluate an

arbitrary computer network by specifying both the behavior

of the computer hosts/nodes and the communication

channels. A computer simulation model for a system is a

representation of the system in terms of a set of states,

events, and behavior functions. A discrete event-driven

simulation is defined if the system’s state transitions are

based on discrete event activities. The DES maintains an

event queue organized by the event execution schedule and

successively processes the events in the queue [2]. The

major network simulators available today all follow the

discrete event paradigm. Examples of well known DE

simulators are Network Simulator 2 NS2, Network

Simulator 3 NS3, OPNET, and OMNEST [3]-[5]. These

Manuscript received June 17, 2013; revised August 13, 2013. This work

was supported by the United States Department of Defense and used
resources of the Extreme Scale Systems Center at Oak Ridge National

Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle,

LLC under Contract No. De-AC05-00OR22725 for the U.S. Department of
Energy.

N. Imam is with the Computer Science and Mathematics Division of

Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA (phone: 865-
574-8701; email: imamn@ornl.gov).

S. W. Poole is with the Computer Science and Mathematics Division of

Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA (email:
spoole@ornl.gov)

simulators are widely employed in network research and are

considered to be important tools complementary to the

analytical and experimental studies for investigating and

understanding the behavior of complex computer networks.

The next generation of high performance computing

systems will be distributed systems with hundreds of

thousands of processing nodes interconnected via large and

complex interconnection networks. In the design and

development of such new systems, performance modeling of

interconnection networks is as important as the modeling of

processor performance. In this paper, we present the

modeling of computer interconnection networks based on

the Benes design. The Benes network has been studied for

decades as a typical example of a rearrangeably non-

blocking network [6]-[7]. In the next section, we present the

reader with some background material related to our

network simulator of choice, OMNEST, and optical

switches. In Section 3, we discuss our simulation framework

and implementation details. Section 4 presents simulation

results and discussion. Our approach and results should be

of considerable interest to the computer network community

in general and the network simulation/modeling community

in particular.

II. TECHNICAL BACKGROUND

A. Overview of the Network Simulator OMNEST

OMNEST is the commercial version of OMNeT++, a

C++ based discrete event simulator developed at the

Technical University of Budapest by Andras Varga [8].

Although OMNEST can be used for a wide variety of

applications, its primary application area is the simulation of

computer/communication networks and other distributed

systems. OMNEST has a modular structure and allows the

creation of models composed of hierarchically nested

modules. In OMNEST, the user works with simple and

compound modules. The simple modules are at the bottom

of the hierarchy level and implement the activity/behavior of

the system. Several simple modules are combined to form

compound modules. Inter-module communication happens

by two way message passing that may contain timestamps

and complex data about the sender/receiver modules. The

user defines the higher level configuration and module

interconnection of the discrete event model by using the

topology description language (NED) of OMNEST. The

atomic elements of the model are the simple modules

implemented in C++. These simple modules are constructed

of algorithms written as C++ functions, using the simulation

class library. OMNEST has a powerful simulation class

library to represent a wide variety of simulation objects as

C++ classes. These classes include messages, data

Discrete Event Simulation of Optical Switch

Matrix Performance in Computer Networks

N. Imam and S. W. Poole

T

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

mailto:imamn@ornl.gov
mailto:spoole@ornl.gov

collection, statistics and probability distributions, and

routing protocols. OMNEST also supports parallel

distributed DES. OMNEST’s object-oriented modular

programming approach is suitable for flexible extension and

scalability of the software for simulating very large scale

systems such as HPC networks and interconnects.

B. Optical Switches and Benes Networks

The prediction of network performance and reliability is

becoming progressively more difficult due to the fusion of

different technologies, the exploding growth of the internet,

and the hybrid nature of HPC platforms. The role of the

interconnection networks in computer systems has become

increasingly more important since performance in

multiprocessor systems is highly dependent on

communication processes between distributed processors,

I/O devices, and processors and memory. Therefore,

choosing the right interconnection network is important for

efficiency and optimum throughput. Interconnection

networks can be categorized according to topology with two

main topologies being fixed and reconfigurable.

Reconfigurable connections allow for dynamic

configurations to match individual tasks thereby optimizing

overall system performance. Several reconfigurable

connection schemes exist such as crossbar switch

connections and multistage interconnection networks

(MINs). The Benes network is an example of a widely used

multistage interconnection network. As a multistage

interconnection network, a Benes network can scale with

additions of 2X2 switch elements. An NXN Benes network

is constructed by 2log2N - 1 stages and N/2 switch elements

per each stage, so a total of N(log2N – 1/2) switch elements

are required. Under the recursive configuration, an NXN

Benes network consists of two N/2XN/2 Benes networks

and two outer stages. The Benes permutation network is

broadly adopted for photonic space division switching. In

Figure 1, we show an N = 8 Benes network consisting of

2X2 basic switching elements. The basic switch is shown at

the bottom of the figure and illustrates that each input port

can be connected to both output ports via either the bar or

the cross state connection.

A switching fabric constructed as a Benes network can be

utilized in a switching node of optical networks. In optical

packet switching networks, packet contentions and

communication latency may occur when packets at different

input ports need to reach the same destination output ports

within the same timeslot. Processors will suffer frequent idle

time due to inefficient data movement if the interconnection

network cannot minimize its message latency. The use of

multiple wavelengths may be useful in resolving packet

contentions and increasing the capacity and connectivity of

the network.

III. SIMULATION FRAMEWORK AND IMPLEMENTATION

This section describes our framework for implementing

Benes 4X4 and Benes 8X8 switching fabrics in OMNEST.

The OMNEST model for the Benes network consists of both

compound and simple modules that communicate with each

other via message passing. From a hierarchical perspective,

the simple modules are nested within the top level Benes

network modules and are grouped together to form

compound modules. The active modules are also simple

modules that are written in C++ and use the object classes

contained in the powerful simulation class library within

OMNEST.

A. Simulation Model

Our Benes network discrete event simulation model

consists of the following parts:

 Network Description (NED) language topology

description files: The NED language produces

.ned files that describe the various module

structures with parameters and gates and create

the network topology.

 Simple modules sources: These are C++ files

that define the behavior of the modules. The

typical functions in these simple modules are

used to specify the initialization behavior, the

message processing (such as message forwarding

and deletion) procedures, simulation termination

criteria, and statistics collection.

 Message definitions: These are .msg files which

describe the message structures and may contain

time stamp and node identity.

Table 1 shows the files that comprise our Benes network

project and the relationship of the simple NED files,

compound NED files, and simple module sources. Figure 2

shows the relationships within the model between simple

Fig. 1. An 8X8 Benes network constructed from five stages.

Fig. 2. Benes network model module relationship.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

and compound modules, module interfaces, networks,

channels, and channel interfaces. The functionality of each

of the modules is described in further detail below.

B. Model Subcomponents

1) Benes Network Compound Module

Benes Network is the compound module that

encompasses the sub-modules Node, Switch, Benes Router

and Call Generator. While Benes Router and Call Generator

are simple modules, Node and Switch are themselves

compound modules. Figures 3 and 4 are screen-shots of the

OMNEST Eclipse GUI showing the 4X4 and 8X8 Benes

network simulations.

2) Node Compound Module

The nodes within the network are defined by the

Node.ned network description file. The node definition

within the model is a compound module. The node is

comprised of the following simple modules: App, Queue,

and Routing. The hierarchical structure of the Node

compound module is shown in Figure 2.

App Simple Module: Our App simple module is defined

by the App.ned network description file and the App.cc

simple module source file. The App module is responsible

for traffic generation in the network. The App simple

module is responsible for generating the packet that is

defined by the Packet.msg message definition file. Defined

within the App simple module are the local node address,

the destination addresses of the packet, the packet length,

and the packet generation interval parameters. When a call

has to be instantiated by a specific node, the ScheduleCall()

function is invoked by the global Call Generator module.

The scheduleCall() function in turn calls handleMessage()

function of the App module with a “generatePacket”

command to generate the packets with the packet parameters

and activities defined in App simple module.

Routing Simple Module: The Routing simple module,

which is defined by the Routing.ned network description file

and the Routing.cc simple module source file, queries the

Benes Router to check availability of a route to the

destination of the call. If a route is available, the Benes

Router returns the route bits (route_bits) to be used for the

call and the wavelength () value. This information is

embedded in the packet to be transmitted by the router. If

the “no route available” message is returned by the Benes

Router, the call is blocked.

 Queue Simple Module: The Queue simple module,

which is defined by the Queue.ned network description file

and the Queue.cc simple module source file, is responsible

for queuing up packets to be sent out on the network as well

as for their transmission. Incoming packets are held in the

queue while the previous packet transmission is completed.

Queue parameters such as the queue capacity and the queue

service time are defined within the Queue simple module.

These parameters are important in determining the overall

throughput of the system.

3) Switch Compound Module

The crossbar switches in the network are defined by the

Switch.ned network description file. The switch definition

within the model is a compound module. The switch is

comprised of the following simple modules: Queue, and

Switch Routing. The hierarchical structure of the switch

module is shown in Figure 2.

Switch Routing Simple Module: The switch routing

module is contained in the switch and is different from the

Routing module described earlier (contained in the Node).

The Switch Routing simple module, which is defined by the

SwitchRouting.ned network description file and the

SwitchRouting.cc simple module source file, checks the

route_bits contained in the packet that was received. Based

on the bit for the current level, it chooses between upper and

lower connections out to the next level. For example, for

route_bits 011, a second level switch will route the packet in

the lower connection out to the next level (discussed in

detail in subsection III.5).

4) Benes Router and Call Generator Simple Modules:

These two simple modules implement incoming call

generation functions and the global routing algorithm of the

network. The Benes Router is responsible for checking the

availability of a route from a given source to a given

destination and allocating the route and the wavelength

channel. The route discoverer checks the route_bit of every

switch in the route to check if it has already been allocated.

If the switch’s particular channel has already been allocated

the route cannot be used. Thus it has to check for an

alternate route. If no alternate route is available in the

current wavelength, then an alternate wavelength is

TABLE 1

BENES NETWORK MODEL FILES AND THEIR RELATIONSHIPS

NED File Compound

File

Simple Module

Source File

Message

File

BenesNetwork.

ned

BenesNetwork

.ned

--- ---

BenesRouter.ne
d

BenesNetwork
.ned

BenesRouter.cc ---

CallGenerator.n

ed

BenesNetwork

.ned

CallGenerator.cc ---

Node.ned BenesNetwork
.ned

App.ned Node.ned App.cc Packet.msg

Routing.ned Node.ned Routing.cc ---

Queue.ned Node.ned Queue.cc ---

Switch.ned BenesNetwork
.ned

SwitchRouting.

ned

Switch.ned SwitchRouting.cc ---

Fig. 3. Screen shot of a 4X4 Benes network in OMNEST

graphical user interface.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

assigned.

5) Routing Algorithm

The routing algorithm for a 4X4 Benes network is

illustrated in Figure 5 below. The black dots represent the

“nodes” (sources and destinations) and the white dots

represent the switches. The nodes on the left are the sender

nodes and the nodes on the right side of the switch matrix

are the destination nodes. The destination node IDs are

numbered 0 to 3. As discussed previously, these nodes are

connected to the input and output ports of the switches. The

switches have two input ports and two output ports. The

connection that takes to the upper port is always numbered 0

and the connection that takes to the lower port is always

numbered 1. In the diagram of Figure 5, the dashed

connections represent 0 (upper) and the solid connections

represent 1(lower).

 The binary representation of the destination node ID is

used in the routing algorithm. Destination node 0 is

represented as x00. Where “x” denotes “don’t care” bit i.e.,

it can be either 0 or 1. Each bit represents the route that

needs to be taken at each level. Benes 4X4 network consists

of 3 stages of switches. The bits of the destination ID is used

to make the routing decision at each level. For example, to

reach destination 0 (x00) from source 3, the routes are 100

and 000 (since the most significant bit is a don’t care bit). At

level 0, either the upper connection (0) or the lower

connection (1) could be used. At level 2 and level 3

switches, the packet can only be routed via the upper

connections (0).

6) Using Multiple Wavelengths

To improve throughput, we implement a multiple

wavelength switch network. In our multiple wavelength

network, we have four available wavelengths (1, 2, 3, 4).

The algorithm looks for a route at the lowest wavelength 1

from source to destination. If a route is not available in 1, a

route is checked in the next wavelength 2 and so on until

all available wavelengths are exhausted. It should be noted

that for our implementation, it is not necessary to assign

specific values to the wavelengths in the array. Suppose a

network had only wavelength 1 available to it in order to

make all the requested connections. The first two

connections were established using 1. A third connection is

requested but is blocked due to switch contention. In this

case, the wavelength used for the third connection is

changed to 2 and the device is allowed to be shared by the

two signals of wavelengths 1 and 2. The call is allowed to

go through and the probability of call blockage is reduced.

The routing algorithm is the same for the 8X8 network

with differences in the number of rows, number of levels,

and the numbers of source and destination nodes. An 8X8,

5-stage Benes network has 4 rows, 8 source and 8

destination nodes. The number of route_bits is equal to the

number of levels in the Benes network. The number of don’t

care bits in the route_bits = number of route_bits –

log2(number of destination nodes). Thus for the 8X8, 5-

stage Benes network, the number of don’t care bits in the

route_bits = 5 –log2(8) i.e., the first 2 bits of the 5 route_bits

are don’t care bits. Therefore, during the first two levels,

either the upper or the lower route can be taken. This is an

important consideration in the routing algorithm to find

alternate routes when a route is blocked. For example, in a

five-stage (8X8) Benes network, the route to destination

node 1 is represented as xx001. In a three-stage (4X4) Benes

network, the route will be represented as x01.

7) Call Generation

The Call Generator simple module is responsible for

generating calls at user specified intervals between a source

and a destination node. The source and destination nodes for

the calls are chosen from the parameters sources and

destinations listed in the OMNEST initialization file

(omnet.ini). If the random address flag is set in the

omnet.ini file, the Call Generator chooses random source

and destination nodes and invokes the scheduleCall function

on the source node’s “app” (application) object. If the

random address flag is set to “false” the sources and

destinations will be chosen in the order listed in the

“omnet.ini” file. For example, sources = “0 0 1 2” and

destinations = “0 1 2 3” will result in calls (s=0, d=0), (s=0,

d=1), (s=1, d=2), (s=2, d=3), etc. For the results presented

in this paper, the sources and destinations were chosen at

random. The call inter-arrival time was exponentially

distributed.

IV. RESULTS AND DISCUSSION

In Figure 6, we present the discrete event simulation

results for a 4X4 Benes network with four wavelengths

available to reduce call blocking probability. The calls

were generated at random. The call generator chose a

source and destination pair at random. The arrival time

between the calls were exponentially distributed. Each

call routing was initially attempted using 1. If call

blockage occurred then the next available wavelength was

used. However, wavelength switching between different

Fig. 5. The routing algorithm in a 4X4 network.

Fig. 4. Screen shot of an 8X8 Benes network in OMNEST

graphical user interface.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

stages of the network was not allowed. A call was

completed in its entirety using a single wavelength. As

can be expected, the number of blocked calls dropped as

the number of available wavelengths (W=1, 2, 3, and 4)

was increased. Figure 7 shows that the percentage of the

blocked calls converges asymptotically as the simulation

reaches steady state. For W = 1, this percentage is 44.5

and for w = 4, this percentage drops to about 1.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

N
u

m
b

er
 o

f
B

lo
ck

ed
 C

a
ll

s

Number of Generated Calls

W = 1

W = 2

W = 3

W = 4

Fig. 6. Reduced call blocking for 4X4 Benes network as number of wavelength (W) increases.

0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
er

ce
n

ta
g

e
 o

f
B

lo
ck

ed
 C

a
ll

s

Number of Generated Calls

W = 1

W = 2

W = 3

W = 4

Fig. 7. Asymptotic convergence of the percentage of blocked calls for a 4X4 Benes network.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

V. CONCLUSION AND FUTURE RESEARCH

Due to the rapidly growing complexity of computer

networks, simulation tools play a crucial role in

characterizing the behavior of the current system, predicting

resilience and fault tolerance capabilities of new

technologies, and evaluating new data transfer protocols. In

this paper, we demonstrate that discrete event simulation

approach is a valuable tool for evaluating interconnection

networks that play a central role in determining the overall

performance of a multiprocessor system. In addition, DES

tools such as OMNEST can be applied to choose from a

wide variety of HPC system design options, to optimize the

processor and interconnection network performance, and to

aid in the design of intelligent software [9]-[10]. For future

research, we propose to examine the scalability of the switch

matrices in an interconnection network for very large scale

systems such as the exascale machines that are currently

being investigated. We also aim to include details of the

device physics in our DES simulation model.

REFERENCES

[1] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-Event

System Simulation. 5th Ed. New Jersey: Prentice-Hall, 2009.
[2] M. Guizani, A. Rayes, B. Khan, and A. Al-Fuqaha, Network

Modeling and Simulation: A Practical Perspective. West Sussex,

United Kingdom: John Wiley and Sons Ltd., 2010.
[3] The Network Simulator 2 project. http://nsnam.isi.edu/nsnam/.

[4] The OPNET Modeler suite. https://www.opnet.com/.

[5] The OMNeT++ discrete event simulator. http://www.omnetpp.org/.
[6] V. E. Benes, Mathematical Theory of Connecting Networks and

Telephone Traffic. New York: Academic Press, 1965.

[7] H. S. Hinton, J. R. Erickson, T. J. Cloonan, F. A. P. Tooley, F. B.
McCormick, and A. L. Lentine, An Introduction to Photonic

Switching Fabrics. New York: Plenum Press. 1993.

[8] A. Varga, “The OMNeT++ discrete event simulation system,” in
Proc. European Simulation Multiconference, Prague, Czech Republic,

June 2001, pp. 319-325.

[9] P. Huang, D. Estrin, and J. Heidemann, “Enabling large-scale
simulations: selective abstraction approach to the study of multicast

protocols,” in Proc. Sixth International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunications
Systems, Montreal, Canada, July 1998, pp. 241-248.

[10] C. Minkenberg and G. R. Herrera, “Trace-driven co-simulation of

high-performance computing systems using OMNeT++,” Second
International Conference on Simulation Tools and Techniques,

Rome, Italy, March 2009, article 65.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

http://nsnam.isi.edu/nsnam/
https://www.opnet.com/
http://www.omnetpp.org/

