
 
 

 
 

Matrix Multiplication on FPGA-Based Platform
 
 

Tai-Chi Lee, Mark White, and Michael Gubody 
 
 

Abstract—In this paper, the implementation of matrix 
multiplication using FPGA-Based computing platform is 
investigated. Because the highly parallel nature of matrix 
multiplication it makes an ideal application for using such 
platform. The computations are done in parallel by multipliers 
and adders, which are implemented on multiple FPGA boards. 
The major challenge of this task is I/O interfaces between PC and 
FPGA board. In our approach, we adopt the software/hardware 
codesign to exploit the highly parallel nature of operations, which 
cannot be exploited in our purely software implemen-tation.  Our 
matrix multiplier is modeled in VHDL and runs on an ARC-PCI 
FPGA board. The purpose of the software part of our codesign 
system is to provide I/O to the hardware.  This part is 
implemented on a PC with a C program and a device driver to 
communicate with the board.  We present the performance 
comparison of our codesign and purely software implementation, 
as well as the performance comparison of existing parallel 
implementations. 
  Examples of applications that require large, fast matrix 
multiplication are bipartite graph determination (non-existence 
of odd cycles), Economics (Leontief input-output model), power-
invariant transformations (power systems), Cryptography, and 
Genetics modeling (Markov chains), and Fractal image 
compressions . 

 

Index Terms—VHDL, FPGA, Codesign, Multiplier, Cycle 

  

I. INTRODUCTION 
 
Matrix multiplication is an important operation in 

applications such as bipartite graph determination (non-
existence of odd cycles), Economics (Leontief input-
output model), power-invariant transformations (power 
systems), Cryptography, and genetics modeling (Markov 
chains).  Consider the following n × n matrix 
multiplication [1]. 

 

 

Manuscript received June 17, 2013; revised August 20, 2013. This 

work was supported in part by the Foundation Resource Grant at Saginaw 

Valley State University. 

Tai Chi Lee is with the Department of Computer Science & 

Information Systems, Saginaw Valley State University, University Center, 

MI 48710 USA (phone: 989-964-4483; e-mail: lee@svsu.edu). 

Mark H. White is a student in the Department of Computer Science & 

Information Systems, Saginaw Valley State University, University Center, 

MI 48710 USA (e-mail: mhwhite@svsu.edu). 

Michael J. Gubody is a student in the Department of Computer Science 

& Information Systems, Saginaw Valley State University, University Center, 

MI 48710 USA (email: mjgubody@svsu.edu. 

An n x n Matrix Multiplication Example for n =2  
 
a a

a a

b b

b b

c c

c c

c a b a b
c a b a b
c a b a b
c a b a b

11 12

21 22

11 12

21 22

11 12

21 22

11 11 11 12 21
12 11 12 12 22
21 21 11 22 21
22 21 12 22 22

 

 
 
 
 

   

As shown above, the multiplication of matrix a by 
matrix b consists of many multiplication and addition 
operations, which can be easily modeled in a software 
program  The C language code for n × n matrix 
multiplication may be given as follows:  

 
#define N 2 
 
void main() { 
 
 unsigned int a[N][N], b[N][N], c[N][N]; 
 unsigned int i, j, k; 
  
 // initialize matrix values 
 for (i = 0; i < N; i++) { 
  for (j = 0; j < N; j++) { 
   a[i][j] = 15; 
   b[i][j] = 15; 
  } 
 } 
  
 // do matrix multiplication 
 for (i = 0; i < N; i++) { 
        for (j = 0; j < N; j++) { 
            c[i][j] = a[i][N - 1] * b[N - 1][j]; 
            for (k = 0; k < (N - 1); k++) { 
                 c[i][j] += a[i][k] * b[k][j]; 
  } 

       } 
 } 
} 
 
In particular, let aij =  bij = 5 , for all i = 1,2, 3 and j 

= 1,2, 3 then the resulting matrices are: 
 

อ
5	5	5
5	5	5
5	5	5

อ 	ൈ 	 อ
5	5	5
5	5	5
5	5	5

อ 	ൌ 	 อ
75	75	75
75	75	75
75	75	75

อ 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



 This purely software implementation of matrix 
multiplication is accomplished through iterative 
processing. Observation of the matrix multiplication 
equations shows that the multiplications can be 
performed concurrently, and then the additions can be 
performed concurrently.  This parallelism can be 
exploited to increase processing speed via a codesign, 
which is the simultaneous design of hardware and 
software subsystems [2]. 

 
 

II. IMPLEMENTATION 
 
The hardware part of our codesign system is 

responsible for performing the arithmetic operations. 
This includes the matrix multiplier, which performs 
concurrent multiplication and addition operations of 
matrix multiplication. Our matrix multiplier is modeled 
in VHDL and runs on an ARC-PCI FPGA board [3]. 
The purpose of the software part of our codesign system 
is to provide I/O to the hardware.  This part is 
implemented on a PC with a C program and a Windows 
XP device driver to communicate with the board. Figure 
1 shows our codesign system interaction. 

 
 

 
Fig. 1.  Layout of Codesign Sceme. 

 
 
In our purely software implementation, an n x n 

matrix multiplication requires n3 multiplications and (n2 

* (n – 1)) additions. We define f(n) as the total number 
of arithmetic operations required.  Therefore, 

 
f(n) = n3 + (n2 * (n – 1)) 

+= 2n3 - n2
 

 
The complexity is of O(n3). 
 

In an ideal hardware implementation of matrix 
multiplication, all of the multiplications can be 
performed in parallel by multipliers on multiple FPGA 
boards, which take one clock cycle and then all of the 
additions can be performed concurrently by adders after 
that. Since the result can be computed in these two sets 
of concurrent arithmetic operations, f(n) = 1+(n-1) = n,  
which has the complexity of O(n). 

This ideal method may require an impractically large 
amount of hardware. A more realistic algorithm takes 
advantage of the parallel nature of matrix multiplication, 
but partitions the algorithm into groups of sequential 
block operations.  For an n x n matrix, we use a 
partitioning scheme that divides the algorithm into n 
distinct sequential blocks. The following shows an 
example of our partitioning scheme. 

 
Sequential Block Partitioning Example (n = 2) 
 

อ
ܽ11	ܽ12

ܽ21	ܽ22
อ 	ൈ	 อ

ܾ11	ܾ12

ܾ21	ܾ22
อ 	ൌ 	 อ

ܿ11	ܿ12

ܿ21	ܿ22
อ 

 
 

Block 1 
 

c11 = a11b11 + a12b21 
c12 = a11b12 + a12b22 

 
Block 2 

 
c21 = a21b11 + a22b21 
c22 = a21b12 + a22b22 

 
 
Each sequential block is composed of one parallel 

multiplication and one parallel addition cycle, so 2 
arithmetic computation cycles are required for 2x2 
matrix multiplication. And two additional cycles are 
required to clock data through the matrix multiplier. So a 
total of 6clock cycles is required for 2x2 matrix 
multiplication.  

For  n x n matrix multiplication,  each sequential 
block (see ith Block below) is composed of one parallel 
multiplication and (n-1) addition cycle, so 1+(n-1) 
arithmetic computation cycles are required for each 
block . And an additional cycle is required to clock data 
through the matrix multiplier. So a total of (n+1) clock 
cycles is required for each block. Therefore, the total 
number of clock cycles for such partitioning for n x n 
matrix multiplication is  f(n) = n*( n+1) = n2 + 1, which 
is O(n2), a slight improvement of one order over the 
purely software approach. 

The following shows the ith Block containing the ith 
row entries of the product matrix C. 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



 
 
 
 
 
 
 
 
 
 
The multiplier’s operations resulted in lst entry ci1 

of the block i can be shown as follows: 
 

ai1 -- 
        × --- 
b11-- 
             + ----- 
ai2 --  
       ×--- 
b21-- 
   .                     . 
   .                     . 
   .                     . 
   .                     .       ---- 
ain --                            +           ci1 
        × --------------------- 
bnn-- 
 

  Note that, if the partition blocks are executed in 
parallel with one cycle to clock data to all multipliers at 
the same time, then the complexity would have been 
reduced to f(n) = 1+(n-1) +1 = (n+1), which is O(n), an 
improvement of two orders over purely software 
approach, but at a greater cost of hardware.   

 
III. TEST RESULTS AND ANALYSIS 

 
We implemented an unsigned, 4-bit, 3 x 3 matrix 

multiplier in VHDL for testing our codesign.  In our 
purely software implementation, we have f(n) = 2n3 = 54 
arithmetic cycles. In our codesign, we have f(n) = 4n = 
12 arithmetic cycles. Our purely software 
implementation took 10 s to run, whereas our codesign 
took 120 s to run. In this case where n = 3, our purely 
software implementation greatly outperforms our 
codesign. We will show how our codesign outperforms 
our purely software implementation as n increases. 

First, we will examine the arithmetic computation 
part of our codesign. In our test PC, the CPU runs at 233 
MHz, and the ARC-PCI board runs at the PCI bus 
frequency of 33 MHz. We know that our parallel-
oriented codesign has fewer arithmetic computation 

cycles than our serial-oriented purely software 
implementation, but our purely software arithmetic 
computation rate of 233 MHz is faster than our codesign 
arithmetic computation rate of 33 MHz. We would like 
to find n for the break-even point in arithmetic 
computation time for our codesign and purely software 
implementations. Our purely software arithmetic 
computation time is (2n3 – n2 cycle seconds) / 
(233,000,000 cycles). Our codesign arithmetic 
computation time is (4n cycle seconds) / (33,000,000 
cycles). The following shows the breakeven point in the 
arithmetic computation time for our two 
implementations. 

 
Breakeven Point for Arithmetic Computation Time 

 
2n3 - n2   4n 

-----------     ------ 
233          33 

 
n = 4.02   5 

 
Our codesign outperforms our purely software 

implementation for n >= 5. In our 3 x 3 matrix 
multiplication test, our purely software implementation 
slightly outperforms our codesign. 

Secondly, we will examine the data communication 
part of our codesign. Our codesign also requires time 
that our purely software implementation does not:  PCI 
bus time to transfer data between the ARC-PCI board 
and the PC.  In our codesign, there are 3n2 PCI bus data 
transfers for an n x n matrix multiplication.  2n2 of these 
transfers are writes (data from the PC to the ARC-PCI 
board), and n2 of these transfers are reads (data from the 
ARC-PCI board to the PC).  A write takes at least 9 PCI 
cycles, and a read takes at least 8 PCI cycles [4]. 
Therefore, the total number of data communication 
cycles for our codesign is 

 
 
f(n) = (2 * 9)n2 + (1 * 8)n2 

                     = 26n2 
 
Adding the number of data communication cycles to 

the number of arithmetic computation cycles for our 
codesign, we now have 

 
f(n) = 26n2 + 4n, which is O(n2) 
 
The following shows the breakeven point in the total 

processing time for our two implementations. 
 
 

ci1 =  ai1b11+ai2b21+…+ainbn1 

ci2 =  ai1b12+ai2b22+…+ainbn2 
                            . 
                            . 
                            .                          
cin =  ai1b1n+ai2b2n+…+ainbnn 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



Breakeven Point for Total Processing Time 
 

2n3 - n2        26n2 + 4n 
  ---------     = -------------- 
233       33 

 
n = 92.4 ≈ 93 

 
After factoring in the data communication overhead, 

our codesign outperforms our purely software 
implementation for n >= 93. This explains why our 
purely software implementation is much faster than our 
codesign for n = 3. Figure 2 shows the performance 
comparison of our two implementations. 

 

Performance Comparison 
 

 
Fig. 2.  Performance comparison of codesign vs. purely software for n<100. 

 

 
Fig. 3.  Performance comparison of codesign vs. purely software for n<2000. 

 
A significant observation in Figure 3 is that for n = 

2000, our codesign takes 3.2 seconds to perform the 
matrix multiplication, compared to 68.7 seconds for our 
purely software implementation. The processing times in 
the graphs of this figure do not include system bus time, 
because this time is approximately equal in both of the 
implementations.  These times are also estimates 
because they do not consider caching, branch prediction, 
pipelining, etc. 

It is important to observe the computer architecture 
speed relationship for future considerations. As the CPU 
speed increases over time, the peripheral bus speed must 
also increase in order for our codesign to maintain 
significant speedup over our purely software 
implementation.  In the future, the system and bus 
speeds in computers should naturally grow along with 
the CPU speed to achieve overall system performance 
gain. 

 
IV. RELATED WORK 

 
Comparison of our codesign to existing parallel 

matrix multiplication implementations on multi-
processor systems shows favorable performance results 
for us. A BMR-Strassen algorithm on a 64 processor 
system has an implementation time of 25 seconds for n 
= 2000 [5], compared to 3.2 seconds for n = 2000 with 
our codesign. Strassen and Winograd algorithms on a 4 
processor system have an execution time of 12 seconds 
for n = 1200 [6], compared to 1.1 seconds for n = 1200 
with our codesign. Figure 4 shows the performance 
comparison of these parallel implementations. 

 

 
Fig. 4.  Performance comparison of codesign with BMR-Strassen and 
Strassen/Winograd. 

 
V. CONCLUSION 

 
We have shown that a working codesign for matrix 

multiplication can be implemented with a PC and a PCI-
interfaced FPGA board. Our codesign for n x n matrix 
multiplication outperforms our purely software 
implementation for n >= 93. Our performance results 
are favorable to existing parallel matrix multiplication 
implementations on multi-processor systems. 

 
 

0
1
2
3
4
5
6
7
8
9

m
il

lis
ec

o
n

d
s

n

n < 100

Codesign

Purely 
Software

0
10
20
30
40
50
60
70
80

se
co

n
d

s

n

n < 2000

Codesign

Purely 
Software

0
50

100
150
200
250
300
350
400
450

se
co

n
d

s

n

Performance Comparison of Parallel 
Implementations

Codesign

BMR-
Strassen

Strassen/
Winograd

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



ACKNOWLEDGMENT 
 
We would especially like to thank SVSU Foundation 

for providing the support for this work and the Altera 
ARC-PCI software used in the study.    

 
REFERENCES 

 
[1]   Golub, Gene, and Charles Van Loan, eds. Matrix Computations. 

Baltimore: Johns Hopkins University Press, 1996. 
 

[2]    Thomas, Donald E., and Jay K. Adams, eds. A Model and Methodology 
for Hardware-Software Codesign.  IEEE Design & Test of Computers, 
10(3) 1993:  6–15. 

 
[3]  Altera Corporation, San Jose, California.  The Altera Reconfigurable 

Computer with PCI interface (ARC-PCI). This reconfigurable 
computing platform is  targeted towards researchers who want to 
investigate the benefits of reconfigurable computing; in other words, to 
improve the performance of computing systems by using applications to 
adapt computing hardware.  February 1998. 

 
[4] Bishop, William D.  Configurable Computing for Mainstream Software 

Applications.  Ph.D. Thesis, Parallel and Distributed Systems (PADS) 
research group, Department of Electrical & Computer Engineering, 
University of Waterloo, Ontario, Canada, February 2003. 

 
[5]   Luo, Qingshan and John B. Drake, eds.   A Scalable Parallel Strassen’s 

Matrix Multiplication Algorithm for Distributed-Memory Computers.  
Proceedings of the 1995 ACM Symposium on Applied Computing, 
Nashville, Tennessee, USA.  New York:  ACM Press, 1995:  221–226.  
ISBN:  0-89791-658-1. 

 
[6] Chatterjee, Siddhartha, and Alvin R. Lebeck, eds.  Recursive Array 

Layouts and Fast Parallel Matrix Multiplication.  Proceedings of the 
Eleventh Annual ACM Symposium on Parallel Algorithms and 
Architectures, Saint Malo, France, 1999.  New York:  ACM Press, 1999:  
222–231.  ISBN:  1-58113-124-0. 

 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013




