
 

  
Abstract—The 0/1 Multiple Knapsack Problem is an 

important class of combinatorial optimization problems, and 
various heuristic and exact methods have been devised to solve 
it. Genetic Algorithm (GA) shows good performance on solving 
static optimization problems. However, sometimes lost of 
diversity makes GA fail adapt to dynamic environments where 
evaluation function and/or constraints or environmental 
conditions may change over time. Several approaches have 
been developed for increasing the diversity of GA into dynamic 
environments. This paper compares two of these approaches 
named Random Immigrants Based GA (RIGA) and Memory 
Based GA (MBGA). Results show that MBGA is more effective 
than RIGA for The 0/1 Multiple Knapsack Problem in a 
changing environment. 
 

Index Terms—Genetic Algorithms, Multiple Knapsack 
Problem, Dynamic Environments 
 

I. INTRODUCTION 

KP is a well-known NP-hard optimization problem 
since any dynamic programming solution will 

produce results in exponential time [1].  Other names given 
to this problem in related literature are “the multi-constraint 
knapsack problem”, “the multi-knapsack problem”, “the m-
dimensional knapsack problem” and “the multidimensional 
knapsack problem” [2].  Lots of researchers also include 
“zero-one” in their name for the problem. The problem can 
be represented as follows: 

maximize                                     (1) 

subject to      ≤ , i=1,2,…,m,        (2) 

         є{0,1}, j=1,2,…,n.                (3) 

Constraints are defined in (2) for m knapsacks. Each 
knapsack has a capacity . We have n objects, each has 

profit . Unlike the simple version in which the weights of 

the objects are fixed, the weight of the jth object in the 
multiple knapsack problem takes m values. The jth object 
weighs  when it is considered for possible inclusion in the 

ith knapsack of capacity . As shown in (3), the x can only 

takes binary values. We are interested in finding a vector 
=(  that guarantees no knapsack is overfilled 

and that yields the maximum profit. 
Several approaches have been suggested to solve MKPs. 

Different proposed algorithms can be broadly grouped into 
two classes; (i) exact algorithms, and (ii) heuristics and 
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metaheuristics. A good review of these approaches is given 
in [3].  

Both practitioners and theoreticians are interested in the 
knapsack problems. Practitioners enjoy the fact that these 
problems can model many industrial opportunities such as 
cutting stock, cargo loading, capital budgeting, menu 
planning, project selection and processor allocation [1,4]. 
On the other hand theoreticians think that these simple 
structured problems can be used as sub problems to solve 
more complicated ones [4].  

There is a huge amount of literature on genetic algorithms 
for various problems and different phases of the algorithm. 
However, this project is restricted to a specific benchmark 
problem (i.e. weingartner2 multiple knapsack problem). For 
this reason only necessary explanation (used techniques in 
this paper) is given about genetic algorithms and the given 
problem (i.e. dynamic MKP) through following paragraphs. 

 The first step of designing a genetic algorithm is creating 
an initial population that consists of individuals 
(chromosomes). We need to devise a suitable representation 
scheme to represent individuals in the population. It’s 
proper to use standard GA 0-1 binary representation for the 
MKP since it represents the underlying 0-1 integer variables 
[2]. An example chromosome of the seven-item knapsack 
problem is illustrated in Fig.1. 

 
1 2 3 4 5 6 7 
0 1 0 1 0 1 0 

Fig. 1.  Binary code for knapsack problem [5]. 
 

The upper numbers in Fig. 1 represent the order number 
of the items and the lower numbers represent the selection 
of the items. But this code scheme might generate infeasible 
solutions. An infeasible solution means that at least one of 
the knapsack constraints is violated.  

There are number of  standard ways of dealing with 
constraints and infeasible solutions in GAs [2] such as; (i) 
using a representation that automatically ensures that all 
solutions are feasible, (ii) separating the evaluation of 
fitness and infeasibility, (iii) designing a heuristic operator 
which guarantees to transform any feasible solution into a 
feasible one, and finally (iv) applying a penalty function to 
penalize the fitness of any infeasible solution without 
distorting the fitness landscape.   

In this paper, infeasible solutions are allowed to join the 
population by adding a penalty term to its fitness, as in [4]. 
In their work [4], they emphasize that the farther away from 
feasibility the string is, the higher its penalty term should be. 
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Taking this explanation into consideration, the fitness 
function to be maximized is: 

 -s.max{ }                               (4) 

where s denotes the number of overfilled knapsacks. 
For Weingartner 2 benchmark problem, there are  

possible solutions of the problem regardless of the 
feasibility assumption. But it can be said that, the more 1s in 
any chromosome the higher probability to violate the 
constraints. For this reason, it’s suggested biasing the 
random number generator so as to produce strings in which 
the number of zeros is greater than the number of ones [4]. 
This suggestion is adopted in this paper to deal with the 
benchmark problem.  

For selection phase of genetic algorithms, several 
methods are used in literature such as roulette wheel, 
stochastic universal sampling, sigma scaling, rank selection, 
tournament selection and steady state selection. For a 
detailed explanation for these methods, reader should refer 
to [6].  

In this paper the tournament selection is used for parent 
selection. The tournament selection strategy provides 
selective pressure by holding a tournament competition 
among individuals. The best individual (the winner) from 
the tournament is the one with the highest fitness value,. 
The tournament competition is repeated until the mating 
pool for generating new offspring is filled. The mating pool 
comprising of the tournament winner has higher average 
population fitness. The fitness difference provides the 
selection pressure, which drives GA to improve the fitness 
of the succeeding genes. This method is more efficient and 
leads to an optimal solution [7]. For this paper, tournament 
size is determined as 5.  

After creating the mating pool, the next phase is 
crossover. For binary representations, several methods are 
explained in [8]. Among these crossover operators (i.e., one 
point crossover, N-point crossover and uniform crossover), 
one point crossover is used in this paper. It works by 
choosing a random number in the range [0, l-1] (l denotes 
the length of encoding) and then splitting both parents at 
this point and creating the two children by exchanging the 
tails [8]. Fig. 2 illustrates the process. 

 
Parents Children 
0 1 0 1 1 0 0 0 1 0 1 0 0 0 
1 0 0 1 0 0 0 1 0 0 1 1 0 0 

Fig. 2.  One point crossover. 

 
Once crossing over is applied to the population, a 

mutation procedure is performed. The chosen procedure 
(e.g., bitwise mutation, creep mutation, random resetting, 
uniform mutation, swap mutation and etc.) depends on the 
encoding used [8]. The most common mutation operator 
used for binary encodings is called bitwise mutation, for this 
reason in this paper bitwise mutation is implemented to the 
random individuals through random bits.  Fig. 3 illustrates 
an example for bitwise mutation. 

 
Before 1 0 1 0 0 0 0 1 0 
After 1 0 0 1 0 0 0 0 0 

Fig. 3.  Bitwise mutation 

 
As shown in Fig. 3, the 3rd, 4th, and 8th bits are changed.  
Mutation is often interpreted as a “background operator” 

supporting the crossover operator [4, 9]. For this reason the 
rate of mutation is generally set to be a small value (e.g., 1 
or 2 bits per string) [2]. In this paper mutation probability 
for an individual is 0.01 and, 2 bits per string.  

MKPs can be solved using genetic algorithms like many 
other combinatorial optimization problems (COPs)[10].  
Because of their ability to sample the search space, their 
ability to simultaneously manipulate a group of solutions, 
and their potential for adaptability, evolutionary algorithms 
(EAs) have been successfully applied to most COPs [11]. 
This judgment is mostly true for stationary environments.  

When the environment changes over time, resulting in 
modifications of the fitness function from one cycle to 
another, we say that we are in the presence of a dynamic 
environment [12]. Genetic algorithms’ tendency to converge 
rapidly to an optimum is a disadvantage in dynamic 
environments. Lack of diversity is another problem. 
Maintenance of the diversity is an essential requirement to 
apply the GA to dynamic environments [13].  

Several approaches have been developed into GAs to 
address dynamic optimization problems, such as 
maintaining diversity during run via random immigrants, 
increasing diversity after a change, using memory schemes 
to reuse old good solutions and multi-population approaches 
[14]. In this paper the random immigrants approach and 
memory based approach are implemented separately.  

The random immigrants approach is a quite natural and 
simple way around the convergence problem [14]. It 
maintains the diversity level of the population by replacing 
some individuals of the current population with randomly 
created individuals for every generation. The outgoing 
individuals from the current population may be either the 
worst ones or randomly chosen individuals.  In this paper 
the replacement rate is 0.1. The worst individuals in the 
current population are replaced with randomly generated 
immigrants. According to [12] the best results for RIGA 
approach achieved with a replacement rate of 0.1.  

The memory based approach works by storing useful 
information from the current environment. The stored 
information can be reused later in changing environments 
[14]. Storing useful information may be either implicitly 
through redundant representations or explicitly by storing 
good solutions in an extra memory space. 

For explicit memory scheme, when the environment 
changes, old good solutions in the memory that well fit the 
new environment will be reactivated. Especially, when the 
environment changes periodically, the memory approach 
can work very well because with time going, an old 
environment will reappear exactly and the associated 
solution in the memory, which exactly remembers the old 
environment, will instantaneously move the algorithm to the 
reappeared environment [14]. The memory retrieval can be 
done periodically every generation or only when the 
environment changes.  

For updating memory, several replacement strategies can 
be used [14]. These strategies are; (i) replacing the least 
important one with respect to the age, contribution to 
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diversity and fitness, (ii) replacing the one with least 
contribution to memory variance, (iii) replacing the most 
similar one if the individual is better or (iv) replacing the 
less fit one of a pair of memory points that have the 
minimum distance among all pairs.  

In this paper, explicit memory scheme is used. The 
memory size is 10 (0.1*population size).  Firstly, the 
memory is initialized choosing the best 10 solutions from 
the initial population. This memory is now fixed, and will 
not be updated through generations. When the environment 
changes, the memory is mounted to the population (i.e., 
replacing the last 10 orders of the population matrix with 
memory). 

II. METHODS 

Experiments were carried out to compare RIGA and 
MBGA in a dynamic environment. Weingartner 2 
benchmark multiple knapsack problem was used. This 
problem can be downloaded from 
http://elib.zib.de/pub/Packages/mp‐testdata/ip/sac94‐

suite/. In this problem there exist 28 objects and 2 
knapsacks. Each knapsack has a capacity of 500. The 
optimal solution for this problem is reported as 130.883. 
MATLAB 7.6.0 was used for coding the algorithm.  

For each of the two approaches, parameters were set as 
follows: generational GA with elitism of only 1 individual, 
one point crossover with probability 0.7, bitwise mutation 
with probability 0.01 and 2 bits per individual and 
tournament selection to create mating pool (parent 
selection). Population size was 100 and tournament size for 
selection was 5. Generation number was set to 2000. For 3 
different statement (i.e., no action for changing 
environment, RIGA and MBGA), 50 independent runs with 
the same seed values were executed.  

Environmental change was implemented periodically for 
3 different period values for both GAs and the results were 
compared. Period values are 10, 100 and 500. It means that 
when the change period value is 10, at every 10 generation 
the first knapsack’s capacity oscillates between 400 and 500 
(i.e., after the 10th generation the capacity is 400, after the 
20th generation the capacity is 500 again and so on so 
forth). For the period value 10, 2000/10=200 changes are 
counted totally. At each iteration, the best fitness values of 
the population through the 50 runs were recorded.  

The overall performance of the approaches is formulated 
as follows [14]:  

1/g                             (5) 

Where g is the number of generations for a run, n=50 is 
the total runs,  is the best-of-generation fitness of 

generation i of run j, and   is the offline performance, 

i.e., the best-of-generation fitness averaged over the 50 runs 
and over the data gathering period.  

III. RESULTS AND DISCUSSION 

First of all, for the benchmark static 0/1 Multiple 
Knapsack Problem, 50 runs were executed.  The best result 
achieved through 50 runs is 130883 (items included: 
3,5,7,8,10,11,14,19,21,23,24). This shows that the algorithm 
can find the optimal solution within 50 runs. The optimal 
value was reached at 40th run. The seed value for this run 
was set to 40. 

When the algorithm find the optimal solution, the path of 
algorithm with respect to fitness values through 2000 
iterations is shown in Fig. 4. 

 
Fig. 4.  Fitness value through generations for static problem. 
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After checking the algorithm works properly for static 
environments, it’s time to run it for the dynamic 
environment that was mentioned above in Section 3. To 
compare the “RIGA approach”, the “MBGA approach” and 
“no action” for changing environment each other, 50 runs 
for each algorithm was executed with same parameters and 
same random seeds for 3 different environment. The offline 
performances of the used approaches are compared, and the 
results are shown in Table 1. 

 
TABLE 1 

THE OVERALL PERFORMANCE OF 50 RUNS. 

 PERIOD VALUES 
APPROACHES   10  100  500 
NO ACTION  106744  107870  115069 
RIGA 110102  110771  115476 
MBGA 119035  118837  119799 

 
As shown in Table 1, both methods that was used to 

increase diversity seem to work well compared to doing 
nothing (i.e., no action). Furthermore, the MBGA 
outperforms the RIGA for all period values. It was 
necessary to test whether the results were statistically 
significant. To this end, hypothesis testing was applied to 
the data gathered. 

When the population variances unknown, the sample 
variances can be used to test a hypothesis for large samples 
(n>40) using  test statistic, and also the normality 
assumption is not necessary (Montgomery & Runger, 2003, 
p. 329). Results for hypothesis testing are shown in Table 2. 

Test statistic values in Table 2 confirm the claims 
mentioned above. Both MBGA and RIGA are better than 
doing nothing for changing environment, but the case the 
period value equals 500. When the period value is 500, the 
change in environment is considerably slow. The MBGA 
outperforms the others again, but we don’t have strong 
evidence to conclude that RIGA is more effective than 
doing nothing. For such a slow changing environment, 
using the RIGA and “no action” preference does not seem to 
have a difference at all.  

From Fig. 5 to 7, it can be seen the dynamic behavior of 
the GA for different environmental change periods. In these 
figures, the average fitness values of each run through 
iterations are plotted, (i.e., the sum of first iterations’ fitness 
values over 50 runs is divided by 50). As shown in the 
figures below, the MBGA outperforms the others for all 
environments. 

 
 

 
TABLE 2 

HYPOTHESIS TESTING (ONE-TAILED) 

         
Test Statistic 

 
Reject/Fail to reject 

P
er

io
d 

va
lu

es
 

10
 

No action MBGA  106744 119035 8695 3563 -9.2490 Reject 

No action RIGA  106744 110102 8695 6411 -2.1980 Reject 

RIGA MBGA  110102 119035 6411 3563 -8.6121 Reject 

10
0 

No action MBGA  107870 118837 6952 3757 -9.8135 Reject 

No action RIGA  107870 110771 6952 6338 -2.1805 Reject 

RIGA MBGA  110771 118837 6338 3757 -7.7411 Reject 

50
0 

No action MBGA  115069 119799 5608 3434 -5.0862 Reject 

No action RIGA  115069 115476 5608 5005 -0.3829 Fail to reject 

RIGA MBGA  115476 119799 5005 3434 -5.0361 Reject 

= =50, α=0.05,- =-1.645 

 
 

 
Fig. 5.  Dynamic behavior of the GA for period value 10. 
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Fig. 6.  Dynamic behavior of the GA for period value 100. 

 
 

 
Fig. 7.  Dynamic behavior of the GA for period value 500. 

 
 

 

III. CONCLUSION 

In this paper a GA for the 0/1 Multiple Knapsack 
Problem (MKP) is developed and its performance for 
dynamic environments is compared using 2 different 
approaches, namely random immigrants based genetic 
algorithm (RIGA) and memory based genetic algorithm 
(MBGA). Offline performance is used a measure to 
compare two approaches, among 3 different changing 
environment (period values, 10, 100, 500).  

The GA that is developed using simple genetic operators 
(binary encoding, one point crossover, bitwise mutation, 
tournament selection) is highly effective for 0/1 MKP. For 
dynamic environments both RIGA and MBGA is useful to 

increase diversity. The results show that MBGA 
outperforms RIGA for all statements. For the period value 
500 using the RIGA does not seem effective at all, 
compared to doing nothing. 
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