

 
Abstract—The 0/1 Multiple Knapsack Problem is an

important class of combinatorial optimization problems, and
various heuristic and exact methods have been devised to solve
it. Genetic Algorithm (GA) shows good performance on solving
static optimization problems. However, sometimes lost of
diversity makes GA fail adapt to dynamic environments where
evaluation function and/or constraints or environmental
conditions may change over time. Several approaches have
been developed for increasing the diversity of GA into dynamic
environments. This paper compares two of these approaches
named Random Immigrants Based GA (RIGA) and Memory
Based GA (MBGA). Results show that MBGA is more effective
than RIGA for The 0/1 Multiple Knapsack Problem in a
changing environment.

Index Terms—Genetic Algorithms, Multiple Knapsack
Problem, Dynamic Environments

I. INTRODUCTION

KP is a well-known NP-hard optimization problem
since any dynamic programming solution will

produce results in exponential time [1]. Other names given
to this problem in related literature are “the multi-constraint
knapsack problem”, “the multi-knapsack problem”, “the m-
dimensional knapsack problem” and “the multidimensional
knapsack problem” [2]. Lots of researchers also include
“zero-one” in their name for the problem. The problem can
be represented as follows:

maximize (1)

subject to ≤ , i=1,2,…,m, (2)

 є{0,1}, j=1,2,…,n. (3)

Constraints are defined in (2) for m knapsacks. Each
knapsack has a capacity . We have n objects, each has

profit . Unlike the simple version in which the weights of

the objects are fixed, the weight of the jth object in the
multiple knapsack problem takes m values. The jth object
weighs when it is considered for possible inclusion in the

ith knapsack of capacity . As shown in (3), the x can only

takes binary values. We are interested in finding a vector
=(that guarantees no knapsack is overfilled

and that yields the maximum profit.
Several approaches have been suggested to solve MKPs.

Different proposed algorithms can be broadly grouped into
two classes; (i) exact algorithms, and (ii) heuristics and

Manuscript received July 19, 2013; revised August 12, 2013. Ali Nadi

Ünal is with the Aeronautics and Space Technologies Institute (ASTIN) ,
İstanbul, Türkiye (Phone: +90-530-520-0950; e-mail: anunal@ hho.edu.tr).

metaheuristics. A good review of these approaches is given
in [3].

Both practitioners and theoreticians are interested in the
knapsack problems. Practitioners enjoy the fact that these
problems can model many industrial opportunities such as
cutting stock, cargo loading, capital budgeting, menu
planning, project selection and processor allocation [1,4].
On the other hand theoreticians think that these simple
structured problems can be used as sub problems to solve
more complicated ones [4].

There is a huge amount of literature on genetic algorithms
for various problems and different phases of the algorithm.
However, this project is restricted to a specific benchmark
problem (i.e. weingartner2 multiple knapsack problem). For
this reason only necessary explanation (used techniques in
this paper) is given about genetic algorithms and the given
problem (i.e. dynamic MKP) through following paragraphs.

 The first step of designing a genetic algorithm is creating
an initial population that consists of individuals
(chromosomes). We need to devise a suitable representation
scheme to represent individuals in the population. It’s
proper to use standard GA 0-1 binary representation for the
MKP since it represents the underlying 0-1 integer variables
[2]. An example chromosome of the seven-item knapsack
problem is illustrated in Fig.1.

1 2 3 4 5 6 7
0 1 0 1 0 1 0

Fig. 1. Binary code for knapsack problem [5].

The upper numbers in Fig. 1 represent the order number
of the items and the lower numbers represent the selection
of the items. But this code scheme might generate infeasible
solutions. An infeasible solution means that at least one of
the knapsack constraints is violated.

There are number of standard ways of dealing with
constraints and infeasible solutions in GAs [2] such as; (i)
using a representation that automatically ensures that all
solutions are feasible, (ii) separating the evaluation of
fitness and infeasibility, (iii) designing a heuristic operator
which guarantees to transform any feasible solution into a
feasible one, and finally (iv) applying a penalty function to
penalize the fitness of any infeasible solution without
distorting the fitness landscape.

In this paper, infeasible solutions are allowed to join the
population by adding a penalty term to its fitness, as in [4].
In their work [4], they emphasize that the farther away from
feasibility the string is, the higher its penalty term should be.

A Genetic Algorithm for the Multiple Knapsack
Problem in Dynamic Environment

Ali Nadi Ünal

M

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Taking this explanation into consideration, the fitness
function to be maximized is:

 -s.max{ } (4)

where s denotes the number of overfilled knapsacks.
For Weingartner 2 benchmark problem, there are

possible solutions of the problem regardless of the
feasibility assumption. But it can be said that, the more 1s in
any chromosome the higher probability to violate the
constraints. For this reason, it’s suggested biasing the
random number generator so as to produce strings in which
the number of zeros is greater than the number of ones [4].
This suggestion is adopted in this paper to deal with the
benchmark problem.

For selection phase of genetic algorithms, several
methods are used in literature such as roulette wheel,
stochastic universal sampling, sigma scaling, rank selection,
tournament selection and steady state selection. For a
detailed explanation for these methods, reader should refer
to [6].

In this paper the tournament selection is used for parent
selection. The tournament selection strategy provides
selective pressure by holding a tournament competition
among individuals. The best individual (the winner) from
the tournament is the one with the highest fitness value,.
The tournament competition is repeated until the mating
pool for generating new offspring is filled. The mating pool
comprising of the tournament winner has higher average
population fitness. The fitness difference provides the
selection pressure, which drives GA to improve the fitness
of the succeeding genes. This method is more efficient and
leads to an optimal solution [7]. For this paper, tournament
size is determined as 5.

After creating the mating pool, the next phase is
crossover. For binary representations, several methods are
explained in [8]. Among these crossover operators (i.e., one
point crossover, N-point crossover and uniform crossover),
one point crossover is used in this paper. It works by
choosing a random number in the range [0, l-1] (l denotes
the length of encoding) and then splitting both parents at
this point and creating the two children by exchanging the
tails [8]. Fig. 2 illustrates the process.

Parents Children
0 1 0 1 1 0 0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 1 1 0 0

Fig. 2. One point crossover.

Once crossing over is applied to the population, a

mutation procedure is performed. The chosen procedure
(e.g., bitwise mutation, creep mutation, random resetting,
uniform mutation, swap mutation and etc.) depends on the
encoding used [8]. The most common mutation operator
used for binary encodings is called bitwise mutation, for this
reason in this paper bitwise mutation is implemented to the
random individuals through random bits. Fig. 3 illustrates
an example for bitwise mutation.

Before 1 0 1 0 0 0 0 1 0
After 1 0 0 1 0 0 0 0 0

Fig. 3. Bitwise mutation

As shown in Fig. 3, the 3rd, 4th, and 8th bits are changed.
Mutation is often interpreted as a “background operator”

supporting the crossover operator [4, 9]. For this reason the
rate of mutation is generally set to be a small value (e.g., 1
or 2 bits per string) [2]. In this paper mutation probability
for an individual is 0.01 and, 2 bits per string.

MKPs can be solved using genetic algorithms like many
other combinatorial optimization problems (COPs)[10].
Because of their ability to sample the search space, their
ability to simultaneously manipulate a group of solutions,
and their potential for adaptability, evolutionary algorithms
(EAs) have been successfully applied to most COPs [11].
This judgment is mostly true for stationary environments.

When the environment changes over time, resulting in
modifications of the fitness function from one cycle to
another, we say that we are in the presence of a dynamic
environment [12]. Genetic algorithms’ tendency to converge
rapidly to an optimum is a disadvantage in dynamic
environments. Lack of diversity is another problem.
Maintenance of the diversity is an essential requirement to
apply the GA to dynamic environments [13].

Several approaches have been developed into GAs to
address dynamic optimization problems, such as
maintaining diversity during run via random immigrants,
increasing diversity after a change, using memory schemes
to reuse old good solutions and multi-population approaches
[14]. In this paper the random immigrants approach and
memory based approach are implemented separately.

The random immigrants approach is a quite natural and
simple way around the convergence problem [14]. It
maintains the diversity level of the population by replacing
some individuals of the current population with randomly
created individuals for every generation. The outgoing
individuals from the current population may be either the
worst ones or randomly chosen individuals. In this paper
the replacement rate is 0.1. The worst individuals in the
current population are replaced with randomly generated
immigrants. According to [12] the best results for RIGA
approach achieved with a replacement rate of 0.1.

The memory based approach works by storing useful
information from the current environment. The stored
information can be reused later in changing environments
[14]. Storing useful information may be either implicitly
through redundant representations or explicitly by storing
good solutions in an extra memory space.

For explicit memory scheme, when the environment
changes, old good solutions in the memory that well fit the
new environment will be reactivated. Especially, when the
environment changes periodically, the memory approach
can work very well because with time going, an old
environment will reappear exactly and the associated
solution in the memory, which exactly remembers the old
environment, will instantaneously move the algorithm to the
reappeared environment [14]. The memory retrieval can be
done periodically every generation or only when the
environment changes.

For updating memory, several replacement strategies can
be used [14]. These strategies are; (i) replacing the least
important one with respect to the age, contribution to

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

diversity and fitness, (ii) replacing the one with least
contribution to memory variance, (iii) replacing the most
similar one if the individual is better or (iv) replacing the
less fit one of a pair of memory points that have the
minimum distance among all pairs.

In this paper, explicit memory scheme is used. The
memory size is 10 (0.1*population size). Firstly, the
memory is initialized choosing the best 10 solutions from
the initial population. This memory is now fixed, and will
not be updated through generations. When the environment
changes, the memory is mounted to the population (i.e.,
replacing the last 10 orders of the population matrix with
memory).

II. METHODS

Experiments were carried out to compare RIGA and
MBGA in a dynamic environment. Weingartner 2
benchmark multiple knapsack problem was used. This
problem can be downloaded from
http://elib.zib.de/pub/Packages/mp‐testdata/ip/sac94‐

suite/. In this problem there exist 28 objects and 2
knapsacks. Each knapsack has a capacity of 500. The
optimal solution for this problem is reported as 130.883.
MATLAB 7.6.0 was used for coding the algorithm.

For each of the two approaches, parameters were set as
follows: generational GA with elitism of only 1 individual,
one point crossover with probability 0.7, bitwise mutation
with probability 0.01 and 2 bits per individual and
tournament selection to create mating pool (parent
selection). Population size was 100 and tournament size for
selection was 5. Generation number was set to 2000. For 3
different statement (i.e., no action for changing
environment, RIGA and MBGA), 50 independent runs with
the same seed values were executed.

Environmental change was implemented periodically for
3 different period values for both GAs and the results were
compared. Period values are 10, 100 and 500. It means that
when the change period value is 10, at every 10 generation
the first knapsack’s capacity oscillates between 400 and 500
(i.e., after the 10th generation the capacity is 400, after the
20th generation the capacity is 500 again and so on so
forth). For the period value 10, 2000/10=200 changes are
counted totally. At each iteration, the best fitness values of
the population through the 50 runs were recorded.

The overall performance of the approaches is formulated
as follows [14]:

1/g (5)

Where g is the number of generations for a run, n=50 is
the total runs, is the best-of-generation fitness of

generation i of run j, and is the offline performance,

i.e., the best-of-generation fitness averaged over the 50 runs
and over the data gathering period.

III. RESULTS AND DISCUSSION

First of all, for the benchmark static 0/1 Multiple
Knapsack Problem, 50 runs were executed. The best result
achieved through 50 runs is 130883 (items included:
3,5,7,8,10,11,14,19,21,23,24). This shows that the algorithm
can find the optimal solution within 50 runs. The optimal
value was reached at 40th run. The seed value for this run
was set to 40.

When the algorithm find the optimal solution, the path of
algorithm with respect to fitness values through 2000
iterations is shown in Fig. 4.

Fig. 4. Fitness value through generations for static problem.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

After checking the algorithm works properly for static
environments, it’s time to run it for the dynamic
environment that was mentioned above in Section 3. To
compare the “RIGA approach”, the “MBGA approach” and
“no action” for changing environment each other, 50 runs
for each algorithm was executed with same parameters and
same random seeds for 3 different environment. The offline
performances of the used approaches are compared, and the
results are shown in Table 1.

TABLE 1

THE OVERALL PERFORMANCE OF 50 RUNS.

 PERIOD VALUES
APPROACHES 10 100 500
NO ACTION 106744 107870 115069
RIGA 110102 110771 115476
MBGA 119035 118837 119799

As shown in Table 1, both methods that was used to

increase diversity seem to work well compared to doing
nothing (i.e., no action). Furthermore, the MBGA
outperforms the RIGA for all period values. It was
necessary to test whether the results were statistically
significant. To this end, hypothesis testing was applied to
the data gathered.

When the population variances unknown, the sample
variances can be used to test a hypothesis for large samples
(n>40) using test statistic, and also the normality
assumption is not necessary (Montgomery & Runger, 2003,
p. 329). Results for hypothesis testing are shown in Table 2.

Test statistic values in Table 2 confirm the claims
mentioned above. Both MBGA and RIGA are better than
doing nothing for changing environment, but the case the
period value equals 500. When the period value is 500, the
change in environment is considerably slow. The MBGA
outperforms the others again, but we don’t have strong
evidence to conclude that RIGA is more effective than
doing nothing. For such a slow changing environment,
using the RIGA and “no action” preference does not seem to
have a difference at all.

From Fig. 5 to 7, it can be seen the dynamic behavior of
the GA for different environmental change periods. In these
figures, the average fitness values of each run through
iterations are plotted, (i.e., the sum of first iterations’ fitness
values over 50 runs is divided by 50). As shown in the
figures below, the MBGA outperforms the others for all
environments.

TABLE 2

HYPOTHESIS TESTING (ONE-TAILED)

Test Statistic

Reject/Fail to reject

P
er

io
d

va
lu

es

10

No action MBGA 106744 119035 8695 3563 -9.2490 Reject

No action RIGA 106744 110102 8695 6411 -2.1980 Reject

RIGA MBGA 110102 119035 6411 3563 -8.6121 Reject

10
0

No action MBGA 107870 118837 6952 3757 -9.8135 Reject

No action RIGA 107870 110771 6952 6338 -2.1805 Reject

RIGA MBGA 110771 118837 6338 3757 -7.7411 Reject

50
0

No action MBGA 115069 119799 5608 3434 -5.0862 Reject

No action RIGA 115069 115476 5608 5005 -0.3829 Fail to reject

RIGA MBGA 115476 119799 5005 3434 -5.0361 Reject

= =50, α=0.05,- =-1.645

Fig. 5. Dynamic behavior of the GA for period value 10.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig. 6. Dynamic behavior of the GA for period value 100.

Fig. 7. Dynamic behavior of the GA for period value 500.

III. CONCLUSION

In this paper a GA for the 0/1 Multiple Knapsack
Problem (MKP) is developed and its performance for
dynamic environments is compared using 2 different
approaches, namely random immigrants based genetic
algorithm (RIGA) and memory based genetic algorithm
(MBGA). Offline performance is used a measure to
compare two approaches, among 3 different changing
environment (period values, 10, 100, 500).

The GA that is developed using simple genetic operators
(binary encoding, one point crossover, bitwise mutation,
tournament selection) is highly effective for 0/1 MKP. For
dynamic environments both RIGA and MBGA is useful to

increase diversity. The results show that MBGA
outperforms RIGA for all statements. For the period value
500 using the RIGA does not seem effective at all,
compared to doing nothing.

REFERENCES
[1] A. Zaheed and I. Younas, “A Dynamic Programming based GA for 0-

1 Modified Knapsack Problem” International Journal of Computer
Applications , vol. 16, No. 7, pp. 1-6, 2011.

[2] P.C. Chu and J. Beasley, “A Genetic Algorithm for the
Multidimensional Knapsack Problem”, Journal of Heuristics , vol. 4,
No.1, pp 63-86, June 1998.

[3] M. Varnamkhasti, “Overview of the Algorithms for Solving the
Multidimensional Knapsack Problems” Advanced Studies in Biology ,
vol. 4, No. 1, pp. 37-47, 2012.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

[4] S. Khuri, T. Baeck and J. Heitkötter, “The Zero/One Multiple
Knapsack Problem and Genetic Algorithms”, in Proc. ACM
Symposium on Applied Computing (SAC'94), New York, 1994, pp.
188-193.

[5] X. Yu and M. Gen, Introduction to Evolutionary Algorithm, London:
Springer Verlag-London Limited, 2010, p. 272.

[6] M. Mitchell, An Inroduction to Genetic Algorithms, Cambridge: The
MIT Press, 1998, pp. 124-127.

[7] S. N. Sivanandam and S.N. Deepa, Introduction to Genetic
Algorithms, Berlin: Springer-Verlag, 2008, pp. 48-49.

[8] A. Eiben and J. Smith, Introduction to Evolutionary Computing,
Berlin: Springer, 2003, ch. 4.

[9] T. Baeck, D. B. Fogel, D. Whitley, and P. J. Angeline, “Mutation
Operators” in Evolutionary Computation 1: Basic Algorithms and
Operators, T.Baeck, D.B. Fogel and Z. Michalevicz, Eds., Bristol:
Institute of Physics Publishing, 2000, pp. 237-255.

[10] M. Gen and R. Cheng, R Genetic Algorithms and Engineering
Optimization, New York: John Wiley and Sons, 2000, p. 78.

[11] A. Younes, S. Aeribi, P. Calamai, and O. Basir, “Adapting Genetic
Algorithms for Combinatorial Optimization Problems in Dynamic
Environments” in Advances in Evolutionary Algorithms, W. Kosinski,
Ed., Viena: I-Tech Education and Publishing, 2008, pp. 207-230

[12] A. Simoes and E. Costa, “ Using Genetic Algorithms to Deal with
Dynamic Environments: A Comparative Study of Several Approaches
Based on Promoting Diversity”, in Proc. Genetic and Evolutionary
Computation Conference (GECCO’02), San Francisco, California:
July, 2002, p. 698.

[13] N. Mori and H. Kita, “ Genetic Algorithms for Adaptation to Dynamic
Environments-A Survey”, in Proc. Industrial Electronics Society,
2000. IECON 2000. 26th Annual Conference of the IEEE, Nagoya:
2000, pp. 2947-2952.

[14] S. Yang, “Memory-Based Immigrants for Genetic Algorithms in
Dynamic Environments”, in Proc. Genetic and Evolutionary
Computation Conference (GECCO’05), Washington DC: June, 2005,
pp. 1115-1122.

[15] D.C. Montgomery and G. C. Runger, “Applied Statistics and
Probability for Engineers 3rd ed”, New York: John Wiley and Sons
Inc, 2003, p. 329.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

