Graph Theoretical Algorithms For JVM Operand Stack Visualization And Bytecode Verification

Sergej Alekseev, Andreas Karoly, Duc Thanh Nguyen and Sebastian Reschke

Abstract—The bytecode verification is an important task of the Java architecture that the JVM specification suggests. This paper presents graph theoretical algorithms and their implementation for the data flow analysis of Java bytecode. The algorithms mainly address the extended static visualization and verification of the JVMs operand stack to allow a deeper understanding in bytecode behavior. Compared to the well known algorithms, the focus of our approach is the visualization of the operand stack and a graph theoretical extension of the verification algorithms.

We also show some experimental results to illustrate the effectiveness of our algorithms. All presented algorithms in this paper have been implemented in the Dr. Garbage tool suite. The Dr. Garbage project resulted from research work at the University of Oldenburg and is now further maintained at the University of Applied Sciences Frankfurt am Main. The tool suite is available for download under the Apache Open Source license.

Index Terms—java virtual machine, operand stack, verification, visualization, data flow analysis.

I. INTRODUCTION

THE computational model of the Java Virtual Machine (JVM) corresponds to a stack machine [2]. Some other programming languages are also based on the computer model of a stack machine, for example Forth [4] and PostScript [3]. The algorithms and approaches presented in this paper are applicable to any stack based language, although we present our algorithms based on the JVM.

All bytecode instructions of the JVM take operands from the stack, operate on them and return results to the stack. Each method in a java class file has a stack frame. Each frame contains a last-in-first-out (LIFO) stack known as its operand stack [1. The Java® Virtual Machine Specification].

The stack frame of a method in the JVM holds the method’s local variables and the method’s operand stack. Although the sizes of the local variables get predetermined at the start of the method and always stay constant, the size of the operand stack dynamically changes as the method’s byte code instructions are executed. The maximum depth of a frame’s operand stack is determined at compile-time and is supplied along with the code for the method associated with the frame. Additionally, if a class is loaded by the JVM, the JVM verifies its content and makes sure there is no over- or underflow of the operand stack. But neither the Java compiler nor the JVM verifier perform a deep content analysis of the operand stack because such analyses are very time consuming and usually unnecessary, because the Java compiler generates reliable bytecode. Nevertheless, there are many tools that modify bytecode at runtime or generate it from different sources other than Java. In such cases, a more precise and detailed analysis of the operand stack is needed to localize potential runtime errors. The operand stack errors are very hard to track and most of them do not arise until many bytecode instructions have already been executed.

In this paper we present graph theoretical algorithms for extended static verification and visualization of the operand stack. The algorithm ASSIGN_OPSTACK_STATES (section III-A) computes all possible contents of a method’s operand stack. The following sections describe possible methods of analysis (size, type and content based) which can be performed on the calculated operand stack contents.

Section III-E describes a LOOP_ANALYSIS algorithm to handle the operand stacks of methods which contain cycles.

In section IV we propose a graph theoretical transformation algorithm to represent the operand stack structure and define a very simple grammar which includes the mathematical and logical operations in java similar syntax to visualize the contents and conditions of operand stacks based on the operand stack computation algorithm in section III-A.

All presented algorithms have been implemented in the context of the Dr. Garbage tool suite project [6] and we present some experimental results in section V which can be obtained from the Dr. Garbage tool suite project [6].

Furthermore, these algorithms are suitable as an extension of the Java compiler and JVM verifier.

II. RELATED WORK

Klein and Wildmoser explain improvements of Java bytecode verification in their papers [12, Verified lightweight bytecode verification], [14, Verified Bytecode Subroutines] and [13, Verified bytecode verifiers]. The purpose of a verifier for bytecode regarding the Java operand stack and the possible misbehaviour like underflow and overflow are mentioned. The operand stack is shown as an array of types (e.g. int) per bytecode instruction. The described verification includes the type checking of operand stack entries. Stephen N. Freund and John C. Mitchell present in their paper [11, A Type System for the Java Bytecode Language and Verifier] a specification in the form of a type system for a subset of the bytecode language. And they developed a type checking algorithm and prototype bytecode verifier implementation.

The approach of Klein and Wildmoser, as well as the approach of Freund and Mitchell are partially related to our algorithm for the type based analysis in section III-C. But in addition to these algorithms we present a graph theoretical extension of the type based analysis.

Some other papers that deal with this subject are [17, Simple verification technique for complex Java bytecode
A. Algorithm for assigning stack states to vertices in a DAG

The algorithm \texttt{ASSIGN} _\texttt{OPSTACK} _\texttt{STATES} in fig. 1 identifies all possible control flow paths by visiting vertices of the \textit{DAG} in topological order. This order ensures that all the predecessors of a vertex \(v \) are visited before \(v \) itself.

\begin{verbatim}
/* G is directed acyclic graph defined as \(G = (V, E) \) */
 ASSIGN_OPSTACK_STAT_ES (G) {
 for (each vertex \(v \in V \) in topological order){
 \(S[1] = \text{NULL} \);
 { for (all incoming edges \(l \) of \(v \)) {
 \(v' = \text{otherend}(l, v) \);
 \(S = S \cup v'.\text{stack} \);
 }
 for (each stack state \(s \in S \)) {
 updateStack(s, v);
 }
 } \text{v.stack} = S;
 }
}
\end{verbatim}

Fig. 1. Algorithm for assigning stack states to vertices in a DAG

The algorithm calculates a list of all possible operand stack states for the current vertex \(v \) (fig. 1: lines 2-6) by iterating all the predecessors of the vertex \(v \) and building the set of stack states \(S \) as a disjoint union of all predecessors operand stack lists.

All stack states of the list \(S \) are updated by pop or push operations corresponding to the byte code instruction of the vertex \(v \) (fig. 1: lines 7-9).

After execution of the algorithm a list of all possible operand stack states is assigned to each vertex of the \textit{DAG}.

\textbf{Theorem 3.1:} (Operand Stack Algorithm) Given a directed acyclic graph \(G = (V, E) \), after the algorithm \texttt{ASSIGN} _\texttt{OPSTACK} _\texttt{STATES} in fig. 1 visits a vertex \(v \in V \), the property variable \texttt{stack} of \(v \) contains a list of all possible operand stack states in the vertex \(v \).

\textbf{Proof:} By induction on the depth of a vertex \(v \in V \) and paths from the \texttt{START} vertex to \(v \).

\textbf{Base Case:} \(v \) depth is 0 (\(v = \text{START} \)). The theorem is trivially satisfied.

\textbf{Induction Step:} The list of all possible operand stack states \(S \) for the vertex \(v \) with \(d > 0 \) is calculated by updating all elements of the list \(S = \{s \in S | \text{update}(s)\} \) (lines 7-9). The list \(S \) is a set of all operand stack states of all immediate predecessors \(v_0 \ldots v_n \) of \(v \) with the depth \(d - 1 \), so \(\bigcup_{i=0}^n v_i.\text{stack} \) (lines 3-5). By induction hypothesis, each path section from the \texttt{START} to \(v_j \) must be visited and all operand stack states are assigned to the property variable \(v_j.\text{stack} \).

All successors \(v_0 \ldots v_n \) of \(v \) must have a depth greater than \(d \), because the graph is a \textit{DAG}. So the theorem holds for all \(v \in V \) with depth \(d > 0 \).

Fig. 3 illustrates how the algorithm operates on the example CFG. The vertices in this example are labeled in topological order. The following control paths exist:

\begin{itemize}
 \item \(p_1 = \{ \ldots, v_0, v_1, v_3, v_4, v_6, \ldots \} \)
 \item \(p_2 = \{ \ldots, v_0, v_1, v_3, v_5, v_6, \ldots \} \)
 \item \(p_3 = \{ \ldots, v_0, v_2, v_3, v_4, v_6, \ldots \} \)
 \item \(p_4 = \{ \ldots, v_0, v_2, v_3, v_5, v_6, \ldots \} \)
\end{itemize}

In path \(p_1 \) the vertex \(v_1 \) pushes the variable \(a \) and the vertex \(v_4 \) pushes the variable \(c \) onto the stack. The operand stack states can be assigned to each vertex of path \(p_1 \) as follows: \(p_1 = \{ \ldots, v_0(\ldots), v_1(a), v_3(a), v_4(a, c), v_6(a, c), \ldots \} \).

According to these steps, the stack states in all paths can be calculated and assigned to the vertices in the \textit{DAG}. But this
The number of maximum combinations is variable and can be calculated by the algorithm to limit the memory allocation. In this case, the complexity of the memory allocation can be calculated as $O(n + m)$ where n is the number of vertices and m is the number of arcs. So the complexity of the memory allocation is $O(n + m)$.

Asymmetrical operand stack sizes:

- Leaving objects on stack:
- Stack over or underflow:

An error in one branch of the CFG could lead to asymmetrical operand stack sizes on the incoming edges of a vertex as illustrated in fig. 4. A simple backtrace algorithm to find unused instructions (instructions which push these objects onto the stack).

To calculate all possible stack states in each vertex of a DAG it is not necessary to traverse each control path separately. Instead our algorithm calculates the stack states step by step for all paths by visiting the vertices of a DAG in topological order.

Generally, the runtime complexity of a topological search algorithm for the given directed acyclic graph G with n vertices and m arcs can be found in $O(n + m)$ (see [7] or [8]). The memory allocation complexity to store all possible operand stack combinations in our algorithm grows exponentially. As you can see from the example in fig. 3 the number of combinations N depends on the number of sequential branches in the DAG and equals the multiplication of the number of branches in each branch. In this case $N = 2 \times 2 = 4$. So the complexity of the memory allocation can be calculated as $O(n^m)$. To solve this problem a pragmatic approach is used in our implementation. We define the maximum number of combinations which have to be calculated by the algorithm to limit the memory allocation. The number of maximum combinations is variable and can be redefined for each operand stack.

The algorithm $ASSIGN_OPSTACK_STATES$ in fig. 1 can be easily adapted to calculate the stack depth (used for size based analysis) and the list of variable types (used for type based analysis) in each node. Instead of the operand stack state combinations, a single value is stored in the property variable $stack$ of each vertex. In this case, both the runtime $O(n + m)$ and the memory allocation $O(n)$ have linear complexity. An example of the operand stack representation is illustrated in the fig. 2.

B. Size based operand stack analysis

A size based analysis can be achieved by simply altering the algorithm $ASSIGN_OPSTACK_STATES$ in fig. 1 to calculate the operand stack depth value and store it in the property variable for each vertex in the corresponding CFG. By trivial comparison of the operand stack depth values assigned to the CFG’s vertices, the following types of inconsistencies can be determined:

- **Stack over or underflow:** The max operand stack size is calculated as the algorithm visits the vertices of the corresponding CFG in topological order. By comparing the calculated max size with the max stack size, stored in the class file, over- or underflow stack errors can be determined. The overflow verification is generally available in the JVM as specified in [1, The Java® Virtual Machine Specification]. Our approach also allows to determine the bytecode addresses of the instructions which cause the stack overflow.
- **Leaving objects on stack:**
- **Asymmetrical operand stack sizes:** An error in one branch of the CFG could lead to asymmetrical operand stack sizes on the incoming edges of a vertex as illustrated in fig. 4. A simple backtrace algorithm to find unused instructions, is applied in our implementation. A more complex analysis algorithm and a backtrace implementation is planned for the future.
The runtime complexity for this analysis is in $O(n + m)$ and the memory allocation complexity is in $O(n)$, where n is the number of vertices and m number of arcs in the CFG.

C. Type based operand stack analysis

According to the Java® Virtual Machine Specification [1] the JVM supports the operand stack type verification in general. Gerwin Klein and Tobias Nipkow formalize and describe algorithms for an iterative data flow analysis that statically predicts the types of values on the operand stack and in the register set [14], [12], [13] as mentioned in section II. In this section we present a graph-theoretical approach in addition to the well known verification techniques.

A type based analysis is realized by adaptation of the algorithm ASSIGN_OPSTACK_STATES in fig. 1 to calculate a list of variable types on the stack and store it in the property variable for each vertex in the corresponding CFG. By comparison of the values assigned to the CFG’s vertices the following types of inconsistencies can be determined:

- **Expected type:** To ensure proper code execution at runtime, all operands on the stack have to be type correct in terms of what operand type the bytecode instruction expects. For example an istore instruction cannot handle a float operand.

- **Asymmetrical type lists:** The types of operands on a stack can differ on the incoming edges of a vertex. The backtrace algorithm allows to reference the bytecode instructions which pushed operands with different types onto the stack.

The runtime complexity for this analysis is in $O(n + m)$ and the memory allocation complexity is in $O(n)$, where n is the number of vertices and m number of arcs in the CFG.

D. Content based operand stack analysis

The algorithm ASSIGN_OPSTACK_STATES in fig. 1 calculates a list of variables on the stack for each bytecode instruction and stores it in the property variable of the vertex in the corresponding CFG. In a certain vertex several variable combinations on the stack are possible.

This analysis allows to figure out unnecessary branches in the bytecode. The bytecode example in fig. 5 contains an if-branch. The bytecode instructions (offset 5 and 9) in both branches push the same variable b onto the stack. A backtrace algorithm prints the bytecode addresses of instructions which lead to the duplicated operand stack states.

This kind of analysis is related to compiler optimization techniques, but in our approach the operand stack analysis is used to localize unused instructions. Our approach is partially comparable to the method of Lim and Han described in their paper [16, Analyzing Stack Flows to Compare Java Programs]. Although the goal of their paper is to identify clones of Java programs, the approach is absolutely different.

The runtime complexity for this analysis is in $O(n + m)$, where n is the number of vertices and m number of arcs in the CFG. The memory allocation complexity is in $O(n^3)$ as mentioned in the section III-A.

E. Loop based operand stack analysis

This section extends the analysis algorithms to arbitrary control flow graphs that can contain cycles. The algorithm fig. 1 in section III-A only works for acyclic paths, which correspond to back edge free paths. The main idea of the loop based analysis is that the operand stack states before entering and after leaving a loop have to be equal. Otherwise, each iteration of the loop would push objects onto the stack or pop them from the stack and the state of the stack would be undefined.

A depth-first search algorithm identifies a set of back edges $B \subseteq E$ in a graph $G = (V, E)$, that contains cycles. The graph G is transformed into a directed acyclic graph (DAG) by removing the back edges $D = (V, E'\setminus B)$. Each back edge $b \in B$ lies on a loop.

Theorem 3.2: (Loop Analysis Algorithm) The operand stack of a method represented by a control flow graph G that contains cycles is consistent if:

1. **Size based analysis** (section III-B) and type based analysis (section III-C) have been performed without any error on the directed acyclic graph D transformed from the graph G.
2. and for each back edge $b \in B$ with the start vertex $v_s \in V$ and the end vertex $v_e \in V$ the operand stack state assigned to the start vertex v_s and the states assigned to the start vertices $v_0, \ldots v_n$ of all incoming edges of the end vertex v_e are equal in size and type.

Proof: The point 1 of the theorem does not need to be proofed, because in case of any errors the stack is inconsistent. The point 2 can be proofed by the contradiction of the operand stack states.

Let us consider the directed acyclic graph D produced by removing the back edges and the set of back edges B. For each $b \in B$ holds:
Each back edge \(b \in B \) lies on one loop.

- There are possibly several forward paths \(v_e \rightarrow ... \rightarrow v_s \rightarrow v_e \) in the loop.

Each forward path must have the same operand stack state in the last vertex, because all paths are acyclic and they pass the back edge \(b \). All acyclic paths have already been verified by the point 1 of the theorem.

The back edge \(b \) is a single back edge of the vertex \(v_s \), because all other edges are outside the loop and must belong to the \(DAG \). So all states of other incoming edges have been already verified by the point 1 of the theorem.

If the state of the vertex \(v_s \) would not be equal to the states of vertices \(v_0...v_n \) then the stack would be inconsistent.

The algorithm for the loop based analysis is derived from the theorem 3.2. The algorithm executes the operand stack comparison for all back edges \(b \in B \) identified in the previous step of the analysis. The runtime complexity for this analysis is \(O(n + m) \) where \(n \) is the number of vertices and \(m \) number of arcs in the \(CFG \).

IV. VISUALIZATION OF THE OPERAND STACK

The simplest way to visualize the operand stack is to calculate the state of the operand stack in each instruction of a method and display the complete list of instructions with corresponding states. The calculation of the operand stack states is performed by the algorithm \(\text{ASSIGN_OPSTACK_STATES} \) in section III-A fig. 1. The simple representation of the operand stack is shown in fig. 2, section III-A. To make the operand stack content more comprehensible we have defined a grammar (see appendix A) which includes variable types and names, logical combination and arithmetical operations and developed an algorithm to transform the control flow graph of a method to a tree representation.

The algorithm \(\text{TRANSFORM_GRAPH} \) in fig. 8 creates a basic block graph \(G_b \) for the given control flow graph \(G \) (line 1), removes the back edges in \(G_b \) (line 2) and starts a \(\text{Depth First Search} \) from each start basic block \(B \), where

```
/* D is a directed acyclic graph, \( D = (V, E) \). B is a */
/* set of back edges, \( B \subset E \). The back edge \( b \in B \), */
/* \( b = \{ v_x, v_y \} \), where \( v_x, v_y \in V \). */

LOOPS\_ANALYSIS (\( D, B \))
1 for (each back edge \( b \in B \))
2 for (all incoming edges \( l \) of \( v_c \))
3 \( v = \text{otherend}(l, v_c) \);
4 if (\( v \_stack \neq v_c \_stack \))
5 \( \text{print ERROR; } \)
6 }
```

IV. VISUALIZATION OF THE OPERAND STACK

The simplest way to visualize the operand stack is to calculate the state of the operand stack in each instruction of a method and display the complete list of instructions with corresponding states. The calculation of the operand stack states is performed by the algorithm \(\text{ASSIGN_OPSTACK_STATES} \) in section III-A fig. 1. The simple representation of the operand stack is shown in fig. 2, section III-A. To make the operand stack content more comprehensible we have defined a grammar (see appendix A) which includes variable types and names, logical combination and arithmetical operations and developed an algorithm to transform the control flow graph of a method to a tree representation.

The algorithm \(\text{TRANSFORM_GRAPH} \) in fig. 8 creates a basic block graph \(G_b \) for the given control flow graph \(G \) (line 1), removes the back edges in \(G_b \) (line 2) and starts a \(\text{Depth First Search} \) from each start basic block \(B \), where

```
/* G is a control flow graph, \( G = (V, E) \). */
TRANSFORM\_GRAPH (\( G \))
1 \( G_b = \text{createBasicBlockGraph}(G) \);
2 \( \text{removeBackEdges}(G_b) \);
3 \( T = \text{createTree}() \); /* \( T \) is an empty tree. */
4 for (all start basic blocks \( B \in V_b \))
5 \( \text{CREATE\_TREE}(B, T) \);
6 }
```

An example representation of a Java bytecode is shown in fig. 9.

V. EXPERIMENTAL RESULTS

As stated in section III-A the more combinations of sequential branches are contained in the bytecode of a method, the more memory needs to be allocated. In practice, excessive memory allocation happens very rarely. We analyzed over 500 methods from different Java classes of the Standard Java Library with the implementation based on the Dr. Garbage tools [6], [5]. The five most representative methods are listed in the table 1 which have been selected by the following criteria:

- methods with a large number of bytecode instructions
- methods that contain a large number of if or switch instructions
- methods that hold a decent amount of stacks
The experimental results have shown that despite a number of conditional branch operators or stack entries along with method instructions, the amount of stack combinations stay in limit.

VI. CONCLUSION

This paper describes new algorithms for operand stack analysis and visualization based on graph theoretical methods. Although the algorithms partially execute trivial operand stack visualizations, they can be obtained as a supplement to the well known algorithms. The operand stack visualization algorithms presented in this paper are the first that can represent the operand stack in such a comprehensive way.

Experimental results showed that the performance and memory consumption do never deviate from linearity, although the theoretical memory consumption has exponential complexity. It is obviously possible with the synthetically generated code to reach the limits, but such code constructs do not occur in practice. We are convinced that a lot of new tools can be designed and implemented based on these algorithms and results.

ACKNOWLEDGMENT

The authors would like to thank the Dr. Garbage Project Community for supporting the implementation of proposed algorithms and tools [5].

REFERENCES