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Abstract—The circle-packing problem is a problem of pack-
ing circles into a two dimensional area such that none of
them overlap with each other. The authors have proposed SPC
(Sequence-pair for circle packing), a method of representing
relative location of circle pairs, which is an extended version
of sequence-pair for rectangles. The authors have proposed
also a method of obtaining an approximate solution of the
circle-packing problem, where all constraints are replaced by
approximate linear inequalities. This method does not always
give an optimal solution; sometimes the solution obtained is
even infeasible. In the present paper, we propose a new method
using nonlinear programming.

Index Terms—circle-packing, Sequence-pair, linear program,
nonlinear program

I. I NTRODUCTION

T HE circle-packing problem is a problem of packing
circles into a two dimensional area such that none of

them overlap with each other. This problem is NP-hard and
has a wide variety of application, e.g., fiber packing in a tube
or transportation of pipes by a ship, since they are equivalent
to the problem of packing rigid cylinders.

One idea of solving the circle-packing problem is to
formulate the problem as a nonlinear programming problem
and solve it by some nonlinear optimization solver. This is an
ideal method, because it assures the exact optimal solution
especially if the given circles are of the same size [1]. If the
sizes of the circles are not the same, however, the constraints
are often very complex, and obtaining the optimal solution
in practical computational time is almost impossible [5].

Thus, it is widely considered to be practical to obtain a
quasi-optimal solution rather than the exact optimal solution
for the case that the sizes of the circles are not the same.
Most of the existing methods are based on heuristic search
that locates circles sequentially; some of them are followed
by relocation via beam search or simulated annealing [2],
[3], [4], [5].

Each of the above methods, however, has its own diffi-
culty; some of them are only applicable to the case that the
area the circles are to be packed into has a special shape;
some of them require different search technique according as
the shape of the area. Also, most of the above methods search
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in a restricted neighbor. In addition, there exist unsearchable
location of circles. These facts mean above methods cannot
assure global optimization.

Apart from the circle-packing problem, many promising
algorithms have been proposed for the rectangle packing
problem. There are two main streams in the existing rectangle
packing algorithms; locating sequentially rectangles and lo-
cating via relative position. The boundary method [6] belongs
to the former, whereas the Sequence-pair method [7] belongs
to the latter.

It is a natural extension to apply these methods to the
circle-packing problem. As previously mentioned, most of
the existing methods of the circle packing are based on
sequentially locating. That is, these methods are classified
into the extension of the boundary method, which cause the
above difficulties.

To avoid the difficulties, we can use relative position for
the circle packing problem rather than sequential locating.
The authors proposed SPC (Sequence-pair for circle packing)
[8], a method of representing relative location of circle
pairs, which is an extended version of sequence-pair for
rectangles. SPC can represent any location of circles and
does not require any special search technique if the shape
of the area is convex. The authors proposed also a method
of obtaining an approximate solution of the circle-packing
problem, where all constraints are replaced by approximate
linear inequalities. This method, however, does not always
give an optimal solution; sometimes the solution obtained is
even infeasible.

Hence, in the present paper, we examine and improve the
method in our former research [8]. We first propose a method
of obtaining an exact optimal solution of the circle-packing
problem by a nonlinear optimization technique using the SPC
code. We also compare several approximation methods and
investigate more efficient search. Thus we show that our
search method gives an exact optimal solution.

This paper constitute as follows: in section 2 we introduce
SPC for circle representation; in section 3 we propose
an algorithm using nonlinear optimization to obtain dense
packing solution from SPC code; in section 4 we report the
computational result; in section 5 we conclude and discuss
the related topics.

II. REPRESENTATION OF CIRCLES BYSPCAND CIRCLE

PACKING BY LINEAR APPROXIMATION

Our problem is to locate given circles in a convex region
such that all circles do not overlap with each other. We denote
the center of circle and radius of circlei by (xi, yi) andri.
Since any circlesa andb do not overlap, we have
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(a) (b)

Fig. 1. Grid representation and location of circles corresponding SPC
(132456; 214635)

√
(xa − xb)2 + (ya − yb)2 ≥ (ra + rb). (1)

In order to represent relative location of circle pairs by two
sequences of circle names, we adopt SPC (Sequence-pair for
circle packing). We denote an SPC as(Γ+,Γ−), whereΓ+

andΓ− are sequences of circles. Given an SPC, the relative
location of circles are determined as follows:

• If two circles appear in the same order inΓ+

and Γ−, i.e., both Γ+ and Γ− are of the form
(. . . , a, . . . , b, . . . ; . . . , a, . . . , b, . . .), then centers of cir-
clesa andb satisfy

xa≤xb, (2)

ya≤yb. (3)

• If two circles appear in the opposite order inΓ+

and Γ−, i.e., both Γ+ and Γ− are of the form
(. . . , a, . . . , b, . . . ; . . . , b, . . . , a, . . .) then centers of cir-
clesa andb satisfy

xa≤xb, (4)

ya≥yb. (5)

It is possible to transform the relative location among
circles by the aboveΓ+ and Γ− to a grid representation
in the same way to synthesize the relative location among
rectangles in sequence-pair representation through oblique
grid [7]. A grid representation of SPC is a rotated form by
45 degrees clockwise of the oblique grid for a sequence-pair.
An example of the grid representation for an SPC (132456;
214635) is shown in Fig.1(a).

Suppose a vertexa in the grid representation is the origin
of x and y axes. Then centers of circles corresponding to
vertices in the first (second, third, or fourth) quadrant are in
up-right (up-left, down-left, or down-right, respectively) of
the center of the circlea. Thus, from Fig.1(a), we can see
that the centers of circles 5 and 6 are up-right, the center
of circle 3 is up-left, and the centers of circles 1 and 2 are
down-left of circle 4.

SPC can represent any location of circles. In a simi-
lar way as sequence-pair we can obtain from any SPC
the corresponding consistent constraints of relative location
among circles. Unlike sequence-pair, however, we have to
make elaborate computation of mathematical optimization
in order to obtain the most dense location of circles, since
x and y direction of the constraints of relative location
corresponding to an SPC. Especially the constraint (1) that
prevents overlapping of circles is nonlinear, our problem

Fig. 2. Angleθi,j : the angle of the line passing through the centers of the
circles i,j

of obtaining the most dense location of circles is that of
nonlinear optimization. Fig. 1(b) shows the most dense
location of circles corresponding SPC (132456; 214635).

A. Linear approximation of constraints

Since we are going to search the optimal location of circles
by simulated annealing as is often done for Sequence-pair,
we have to decode SPC as quick as possible. Thus, we obtain
an approximate optimal location corresponding the given
SPC by linear programing solver by expressing constraints
with linear inequality.

Let us denote byθi,j the angle of the line passing through
the centers of circlesi ad j and thex axis, as shown in Fig.
2. Using this notation, we can translate constraints (2), (3),
(4), and (5) with (1) as

(ra + rb) cos(θa,b) ≥ xb − xa, (6)

(ra + rb) sin(θa,b) ≥ yb − ya. (7)

Note that if circlesa and b appear in the same order in
Γ+ and Γ−, i.e., (. . . , a, . . . , b, . . . ; . . . , a, . . . , b, . . .), then
0 ≤ θa,b ≤ π

2 ; if circles a and b appear in the reverse order
in Γ+ andΓ−, i.e.,(. . . , a, . . . , b, . . . ; . . . , b, . . . , a, . . .), then
−π

2 ≤ θa,b ≤ 0.
Now we approximate trigonometric function by piecewise

linear function in order to apply linear programming. The
idea is as follows. Letθ1 satisfy0 ≤ θ ≤ π

2 .
1) When 0 ≤ θ ≤ θ1, we replacesin θ by following

equation (8).

f1(θ) = α1 · θ + β, (8)

2) When θ1 < θ ≤ π
2 , we replacesin θ by following

equation (9).

f2(θ) = α2 · θ + β2. (9)

Fig.3 shows an instance of approximation ofsin θ with
θ1 = π

4 .
In order to select appropriate approximation we introduce

a 0-1 variable. For example, the above (8) and (9) are
expressed as

M · P + θ − θ1 ≥ 0,

M · (1− P ) + f1(θ)− α1 · θ − β1 ≥ 0,

M · (1− P )− f1(θ) + α1 · θ + β1 ≥ 0,

M · (P − 1) + θ1 − θ ≥ 0,

M · P + f2(θ)− α2 · θ − β2 ≥ 0,

M · P − f2(θ) + α2 · θ + β2 ≥ 0,
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Fig. 3. Linear approximation ofsin θ

Fig. 4. The case that constraints for the pair of circlesα, γ are not necessary

whereP = 1 implies 0 ≤ θ ≤ θ1, andP = 0 implies θ1 <
θ ≤ π

2 . Also, M is a sufficiently large number. In the same
way we can approximatecos θ as linear constraints. If we use
more 0-1 variables, we can approximate nonlinear function
by linear constraints with the range of variable into more
than two subsets, to obtain more accurate approximation.

In the present paper we call the way of dividing uniformly
the range of variable asm division. When the numberm of
division grows, the approximation will be more accurate, but
at the same time the number of constraints becomes large and
computational time required grows larger.

B. Elimination of redundant constraints

When for three circlesα, β, and γ such that SPC
(. . . , α, . . . , β, . . . , γ; . . . , α, . . . , β, . . . , γ, . . .) or SPC
(. . . , α, . . . , β, . . . , γ; . . . , γ, . . . , β, . . . , α, . . .) satisfies

rα + rγ ≤
√
(rα + rβ)2 + (rβ + rγ)2,

then constraints for the pair of circlesα, γ are not necessary,
because these constraints are transitive result of those for
the pair of circlesα, β and those for the pair of circlesβ, γ.
Therefore, we can eliminate these redundant constraints to
make the computational time short.

III. C IRCLE PACKING IN SPCBY NONLINEAR

OPTIMIZATION

The authors proposed a quick method of obtaining an
approximate optimal solution of the circle-packing problem,

Fig. 5. Approximation 1

Fig. 6. Approximation 2

where all constraints are replaced by approximate linear
inequalities. This method, however, does not always give a
feasible solution. In this section we propose an algorithm
using nonlinear optimization to remove the defects of the
above approximation.

A. Circle packing by nonlinear optimization

Since existing nonlinear optimization algorithms require
considerable amount of computational time as compared as
linear optimization, we first search by simulated annealing
on linear approximation. This does not always a feasible
solution, so next we execute nonlinear optimization, which
removes infeasibility and will give a nearly optimal solution
in practical computational time.

It is known that appropriate initial solution will accelerate
nonlinear optimization algorithm. Thus, after linear approx-
imation search we do not make use of only the SPC code
but also the coordinate data of location of circles.

As mentioned before, different circles do not overlap in an
SPC representation yields constraints (2), (3), (4), (5), and
(1). By transforming these constraints, we have constraints
(7) and (6). We call the former constraint (A) and the latter
constraint (B). We tried two types of nonlinear optimization
both under constraint (A) and under constraint (B) and
compared.

IV. COMPUTATIONAL EXPERIMENT

As an experiment we carried out our circle packing
algorithm. As for linear optimization solver we used CPLEX
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(a)

(b)

Fig. 7. Circle packing in a rectangle by approximation 1 and nonlinear
optimization（(a) packing density 77.91%, (b) packing density 79.81%）

12.4 and as for nonlinear optimization we used quasi Newton
method. Our computational environment includes CPU (Intel
Core i7-2600 @ 3.4 GHz) and memory of 4 GB.

The neighborhood of search by simulated annealing in
SPC was obtained by random selection from the following
three operations:

1) choose two circles at random and exchange the position
in Γ−;

2) choose two circles at random and exchange the position
in Γ+;

3) choose two circles at random and exchange the position
both inΓ+ and inΓ−.

As for the linear approximation of trigonometric function
mentioned in 2.1, we tried two types of approximation as we
have done in our former research [8]. Fig.5 and Fig.6 show
these two types of approximation. Note that there results
small overlap among circles by approximation 2, because
sine curve is approximated a little small.

A. Circle packing by nonlinear optimization

In order to evaluate the performance of our algorithm we
tried to pack circles in a rectangle and an equilateral triangle.

1) Circle packing in a rectangle with fixed widthW : Let
us consider circle packing in a rectangle with fixed widthW .
This problem is known as strip packing problem. Constraints
are

ri ≤ xi ≤ W − ri,

ri ≤ yi ≤ H − ri,

for every circle i and the objective function isH to be
minimized. Problem instances were taken from benchmark
CODP: SY2.

Fig. 7(a) shows a location by approximation 1 with pack-
ing density 77.91%, and Fig. 7(b) a location obtained by
nonlinear optimization with packing density 79.81% where
Fig. 7(a) is used as an initial solution. Fig. 8(a) shows a
location by approximation 2 with packing density 84.06%,

(a)

(b)

Fig. 8. Circle packing in a rectangle by approximation 2 and nonlinear
optimization（(a) packing density 84.06%, (b) packing density 79.96%）

(a)

(b)

Fig. 9. Circle packing in an equilateral triangle by approximation 1 and
nonlinear optimization（(a) packing density 77.915%, (b) packing density
79.819%）

and Fig. 8(b) a location obtained by nonlinear optimization
with packing density 79.96% where again Fig. 8(a) is used as
an initial solution. We can observe that in Fig. 7(b) redundant
space resulted by approximation 1 is removed and in Fig.8(b)
overlap of circles resulted by approximation 2 is removed.

2) Circle packing in an equilateral triangle:Let us con-
sider circle packing in an equilateral triangle. Constraints are

ri ≤ yi ≤
√
3xi − 2ri,

ri ≤ yi ≤ −
√
3xi − 2ri + Y, (10)

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



(a)

(b)

Fig. 10. Circle packing in an equilateral triangle by approximation 2 and
nonlinear optimization（(a) packing density 81.78%, (b) packing density
80.51%)

for each circlei, and the objective function isY to be
minimized. Problem instances were taken from benchmark
CODP: SY2.

Fig. 9(a) shows a location by approximation 1 with pack-
ing density 77.96%, and Fig. 9(b) a location obtained by
nonlinear optimization with packing density 79.82% where
Fig. 9(a) is used as an initial solution. Fig. 10(a) shows a
location by approximation 2 with packing density 81.78%,
and Fig.10(b) a location obtained by nonlinear optimization
with packing density 80.51% where again Fig.10(a) is used
as an initial solution. Similar result of the difference of
approximation is observed as in the case of packing in a
rectangle.

B. Evaluation on approximation

The above results of circle packing in a rectangle and an
equilateral triangle suggest that the way of approximation
and the type of constraints yield different packing density.
Therefore we have to investigate the best combination of
approximation and constraint.

For circle packing in a rectangle we tried several search
of simulated annealing with various temperature and time,
where constraints (A), (B) and approximation 1, 2 for initial
solution of SPC code and circle location were used. Problem
instances were taken from benchmark CODP: SY2.

Fig. 11 and Fig. 12 show results of the experiment. There
is no difference on approximation 1 and 2. In the final
location, however, approximation 2 gives the best solution.
Tables. I, II, III and IV show results of the comparison
with constraints (A) and (B). Constraints (A) is better than
constraints (B) in all instances. Also, there are some instances

TABLE I
COMPARISON OF CONSTRAINTS(A) AND CONSTRAINTS (B)
(CIRCLE-PACKING FOR A RECTANGLE, APPROXIMATION 1)

approximation1 constraints(A) constraints(B)

82.77 79.96 79.96
84.02 81.69 81.67
81.61 78.81 cannotsolve
81.48 79.31 cannotsolve
76.81 75.72 75.72

(unit:second)

TABLE II
COMPARISON OF CONSTRAINTS(A) AND CONSTRAINTS (B)
(CIRCLE-PACKING FOR A RECTANGLE, APPROXIMATION 2)

approximation2 constraints(A) constraints(B)

77.92 79.82 cannotsolve
74.39 77.16 77.16
75.56 76.81 cannotsolve
69.04 72.68 cannotsolve
65.47 67.34 cannotsolve

(unit:second)

that failed in obtaining feasible solution by constraints (B).
This comes from the fact that quasi Newton method some-
times fails when the initial solution is not adequate.

V. CONCLUSIONS

In the present paper we proposed a circle packing algo-
rithm using nonlinear optimization in order to avoid overlap
of circles and redundant space which remained pending in
our former research [8].

Computational experiments show that our algorithm gives
dense and feasible packing in a rectangle and an equilat-
eral triangle. We compared several ways of approximation
followed by nonlinear optimization on packing density and
computational efficiency.

Remained problems left for further research are more effi-
cient algorithms, packing various forms of objects including
circles and rectangles, and three dimensional packing.
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TABLE III
COMPARISON OF CONSTRAINTS(A) AND CONSTRAINTS (B)

(CIRCLE-PACKING FOR AN EQUILATERAL TRIANGLE, APPROXIMATION

1)

approximation1 constraints(A) constraints(B)

81.79 80.52 80.52
81.16 79.59 79.59
75.61 74.04 74.04
70.17 69.04 69.04
62.05 61.00 61.00

(unit:second)

TABLE IV
COMPARISON OF CONSTRAINTS(A) AND CONSTRAINTS (B)

(CIRCLE-PACKING FOR AN EQUILATERAL TRIANGLE, APPROXIMATION

2)

approximation2 constraints(A) constraints(B)

74.17 76.64 76.64
74.34 75.47 75.47
73.33 75.40 75.40
66.48 69.05 69.05
67.77 70.91 70.91

(unit:second)

Fig. 11. Relation between the result of circle-packing in a rectangle by
linear optimization and that by nonlinear optimization from SPC codes

Fig. 12. Relation between the result of circle-packing in an equilateral
triangle by linear optimization and that by nonlinear optimization from SPC
codes
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