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Abstract—The object of this paper is to introduce a new
and fascinating method of solving large linear systems, based
on Cramer’s rule but employing Dodgson’s condensation in its
computations. This new method is very brief, straightforward,
simple to understand, and unknown to teachers and students of
mathematics, science, and engineering.
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I. INTRODUCTION

IN the year 1866, Rev. Charles Lutwidge Dodgson (1832–
1898), a British mathematician, most famous as Lewis

Carroll for writing his nursery tale, Alice’s Adventures in
Wonderland (1865), and its sequel, Through the Looking–
glass (1872) [3], [13], sent, after discovering a beautiful tech-
nique of evaluating large determinants by repeatedly reduc-
ing them to lower orders, a paper intriguingly entitled On the
Condensation of Determinants, being a new and brief Method
for computing their arithmetical values to the Royal Society
of London, and the paper was published in the Proceedings of
that erudite body [6], [1]. The condensation method is there
employed to evaluate 4th and 5th order determinants, and in
concluding his paper, Dodgson demonstrated how the method
can be employed in finding the solutions of large linear sys-
tems of equations by giving examples for linear systems of 3
and 5 equations [6], for before his time evaluating large de-
terminants and solving large linear systems were riddles to
mathematicians.

The main aim of this paper is to introduce an alternative
method, new and fascinating, to Dodgson’s approach to solv-
ing large linear systems using his condensation method.

The remainder of this paper is in two sections. Section II
gives, for the reader’s convenience, a brief review of Dodg-
son’s condensation. Section III deals with the alternative form
of Dodgson’s approach to solving linear systems of equations
with large number of unknowns, based on Cramer’s rule but
employing Dodgson’s condensation.

II. A BRIEF REVIEW OF DODGSON’S
CONDENSATION

C.L. Dodgson deserves to be highly esteemed in the world
of linear algebra for introducing the condensation method, an
ingenious and remarkable method which at present many are

Manuscript received July 09, 2013; revised July 31, 2013. Okoh
Ufuoma is with the Department of Mathematics, Sonnicity Universal
Schools, Ughelli, Delta State, Nigeria (tel: 08134813234; e-mail: okohu-
fuoma@yahoo.com)

revisiting. Dodgson’s condensation of determinants consists
of the following steps or rules [6], [13]:

1. Employ the elementary row and column operations to
rearrange, if necessary, the given nth order determinant
such that there are no zeros in its interior. The interior of
a determinant is the minor formed after the first and last
rows and columns of the determinant have been deleted.

2. Evaluate every 2nd order determinant formed by four ad-
jacent elements. The values of the determinants form the
(n− 1)st order determinant.

3. Condense the (n − 1)st order determinant in the same
manner, dividing each entry by the corresponding ele-
ment in the interior of the nth order determinant.

4. Repeat the condensation process until a single number
is obtained. This number is the value of the nth order
determinant.

To make the method clear, we consider an example. We
want to condense the 4th order determinant∣∣∣∣∣∣∣∣

2 1 3 5
4 −2 7 6
−8 3 1 0
5 7 2 −6

∣∣∣∣∣∣∣∣
to a single number using Dodgson’s condensation technique.
We begin with ∣∣∣∣∣∣∣∣

2 1 3 5
4 −2 7 6
−8 3 1 0
5 7 2 −6

∣∣∣∣∣∣∣∣ .
By rule 2 this is condensed into∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣2 1
4 −2

∣∣∣∣ ∣∣∣∣ 1 3
−2 7

∣∣∣∣ ∣∣∣∣3 5
7 6

∣∣∣∣∣∣∣∣ 4 −2
−8 3

∣∣∣∣ ∣∣∣∣−2 7
3 1

∣∣∣∣ ∣∣∣∣7 6
1 0

∣∣∣∣∣∣∣∣−8 3
5 7

∣∣∣∣ ∣∣∣∣3 1
7 2

∣∣∣∣ ∣∣∣∣1 0
2 −6

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
which, when evaluated, gives∣∣∣∣∣∣

−8 13 −17
−4 −23 −6
−71 −1 −6

∣∣∣∣∣∣ .
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This in turn, by rule 3, is condensed into∣∣∣∣∣∣∣∣
∣∣∣∣−8 13
−4 −23

∣∣∣∣ ∣∣∣∣ 13 −17
−23 −6

∣∣∣∣∣∣∣∣ −4 −23
−71 −1

∣∣∣∣ ∣∣∣∣−23 −6
−1 −6

∣∣∣∣
∣∣∣∣∣∣∣∣

which, being evaluated, furnishes∣∣∣∣ 236 −469
−1629 132

∣∣∣∣ .
We divide each element of the above 2 × 2 determinant by
the corresponding element of the interior of the 4th order
determinant, [

−2 7
3 1

]
,

and have ∣∣∣∣∣∣∣∣
236

−2
−469
7

−1629
3

132

1

∣∣∣∣∣∣∣∣
which gives ∣∣∣∣−118 −67

−543 132

∣∣∣∣ .
This, by rule 4, gives the value of −51957. Dividing this
value by the interior [−23] of the 3rd order determinant, we
get 2259 which is the value of our original 4th order determi-
nant.

Though Dodgson’s condensation method is interesting and
excellently suited to hand-computations [5] since it involves
the evaluation of only 2nd order determinants, it has a great
obstacle: the process cannot be continued when zeros (which
Dodgson called ciphers in his paper [6] ) occur in the interior
of any one of the derived determinants, “since infinite values
would be introduced by employing them as divisors”[6]. A
solution to this problem, as Dodgson suggests, is to rearrange
the original determinant and recommence the operation [6],
[13].

Suppose now we want to find the value of the determinant∣∣∣∣∣∣∣∣
2 1 3 5
4 6 2 6
−8 3 1 0
5 7 2 −6

∣∣∣∣∣∣∣∣ .
We compute as follows:∣∣∣∣∣∣∣∣

2 1 3 5
4 6 2 6
−8 3 1 0
5 7 2 −6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣2 1
4 6

∣∣∣∣ ∣∣∣∣1 3
6 2

∣∣∣∣ ∣∣∣∣3 5
2 6

∣∣∣∣∣∣∣∣ 4 6
−8 3

∣∣∣∣ ∣∣∣∣6 2
3 1

∣∣∣∣ ∣∣∣∣2 6
1 0

∣∣∣∣∣∣∣∣−8 3
5 7

∣∣∣∣ ∣∣∣∣3 1
7 2

∣∣∣∣ ∣∣∣∣1 0
2 −6

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
8 −16 8
60 0 −6
−71 −1 −6

∣∣∣∣∣∣ .
We cannot continue the operation because of the zero which
occurs in the interior of the derived 3th order determinant.
Division by the zero will result in an infinite value. So we
rearrange the original 4th order determinant by moving the
top row to the bottom and moving all the other rows up once.
Thus we have ∣∣∣∣∣∣∣∣

4 6 2 6
−8 3 1 0
5 7 2 −6
2 1 3 5

∣∣∣∣∣∣∣∣ .
We recommence the operation:∣∣∣∣∣∣∣∣

4 6 2 6
−8 3 1 0
5 7 2 −6
2 1 3 5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
60 0 −6
−71 −1 −6
−9 19 28

∣∣∣∣∣∣∣∣∣∣ −60 −6
−1358 86

∣∣∣∣ .
We divide each element of the above 2 × 2 determinant by
the corresponding element of the interior of the 4th order
determinant, [

3 1
7 2

]
,

and have ∣∣∣∣∣∣∣∣
−60
3

−6
1

−1358
7

86

2

∣∣∣∣∣∣∣∣∣∣∣∣ −20 −6
−194 43

∣∣∣∣
which, when evaluated, gives the value of −2024. Dividing
this value by the interior [−1] of the 3rd order determinant,
we get 2024 which is the value of the original 4th order deter-
minant.

Dodgson, commenting on the problem of ciphers and com-
paring his method, despite the problem, with the famous
Laplace method, writes [6]:

The fact that, whenever ciphers occur in the interior
of a derived block (matrix), it is necessary to recom-
mence the operation, may be thought a great obsta-
cle to the use of this method; but I believe it will be
found in practice that, even though this should oc-
cur several times in the course of one operation, the
whole amount of labour will still be much less than
that involved in the old process of computation .
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The process of recommencing the operation might be a reason
why Dodgson’s condensation has not obtained great popular-
ity since it was invented.

In order to popularize Dodgson’s condensation method
some mathematicians recently revisited it in their papers, no-
tably Adrian Rice and Eve Torrence [13], David Bressoud [5],
and Francine Abeles [1]. David Bressoud says that conden-
sation is “useful and deserves to be better known, especially
since it is so well suited to parallel computation ”[5]. Rice and
Torrence, teachers of linear algebra, find Dodgson’s method
to be the most popular method among their students for eval-
uating large determinants. In [13] they write:

But there is another method (Dodgson’s condensa-
tion), first introduced in 1866 and widely ignored
since, which can simplify the work involved in cal-
culating determinants of large matrices consider-
ably, and which, we believe, can still be of interest
to today’s students.

III. A NEW APPROACH TO SOLVING LINEAR
SYSTEMS

The curiosity about Dodgson’s condensation is not for
nothing. In his paper of 1866, C.L. Dodgson showed how his
condensation can be used to hand-solve large linear systems
of equations and gave two examples to clarify his approach
which, though effective and gives accurate solution set, is a
little bit lengthy and not so easy to employ. (The reader who
is interested in Dodgson’s approach should see [6].) Because
Dodgson’s approach to solving linear systems may be quite
lengthy, in this section we will introduce an alternative form
of his approach which is based on Cramer’s rule but employs
Dodgson’s condensation in its computations.

We begin with the general system of n simultaneous linear
equations with n unknowns:

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn

(1)

where x1, x2, x3,. . . , xn are the unknowns, aij are the coef-
ficients of the system, and b1, b2, b3, . . . , bn are the constant
terms. A solution of the system is a set of values of the un-
knowns that satisfies every equation of the system simultane-
ously.

A compact way of solving a linear system is by expressing
it as a matrix, a rectangular array of numbers arranged in
rows and columns and enclosed in brackets [4], [8]. The
system (1) of linear equations can be written compactly in
matrix form as Dx = b where

D =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
. . .

...
an1 an2 an3 . . . ann

 (2)

is an n× n coefficient matrix of the coefficients aij , and

x =


x1

x2

...
xn

 and b =


b1
b2
...
bn

 (3)

are n × 1 column matrices of the unknowns xi and the con-
stants bi respectively. Thus the system (1) can be expressed as

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
. . .

...
an1 an2 an3 . . . ann




x1

x2

...
xn

 =


b1
b2
...
bn

 .

(4)

The equation (4) is known as the nth order matrix equation.
A term closely related to matrix is determinant. The

determinant of the n × n matrix D (2), called an nth order
determinant, is denoted as

∣∣D∣∣ and written as

∣∣D∣∣ =
∣∣∣∣∣∣∣∣∣
a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
. . .

...
an1 an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣ (5)

where aij is any given number in row i and column j.
If we expand the determinant (5) by Laplace method, we

obtain a single number which determines whether or not the
matrix D has an inverse or the system (1) is solvable. If∣∣D∣∣ = 0, there is linear dependence among the equations of
the system and no unique solution is possible. If

∣∣D∣∣ 6= 0,
there is no linear dependence among the equations of the sys-
tem and a unique solution can be found or the system is solv-
able [7], [11], [13].

A classical solution formula which efficiently gives
solutions of linear systems and is in common use, particularly
among authors and students of science and engineering, is
the famous Cramer’s rule, named after its inventor, Gabriel
Cramer (1704–1752), a Swiss mathematician, born in
Geneva. Cramer described his rule for an arbitrary number
of unknowns in an appendix in his very influential book
Introduction to the analysis of algebraic curves, published in
1750 [2]. Cramer’s rule states that the solution of the linear
system (1) is

xk =
|Dk|
|D|

where xk is the kth unknown, and |Dk| is the determinant of
a matrix formed from the coefficient matrix by replacing the
column of coefficients of xk, i.e. the kth column of D, with
the column matrix b of constants b1, b2, b3, . . . , bn. Thus, for
the system (1), the solutions are

x1 =
|D1|
|D|

, x2 =
|D2|
|D|

, x3 =
|D3|
|D|

, , . . . , xn =
|Dn|
|D|

.

Suppose we want to solve, by Cramer’s rule, the following
linear system of equations:
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x1 − 4x2 − x3 = 11

2x1 − 5x2 − 2x3 = 39

−3x1 − 2x2 + x3 = 1.

We begin with the coefficient matrix

D =

 1 −4 −1
2 −5 −2
−3 −2 1


whose determinant is

|D| =

∣∣∣∣∣∣
1 −4 −1
2 −5 2
−3 2 1

∣∣∣∣∣∣ = 34.

We obtain |D1|, |D2|, and |D3| by replacing respectively the
first, second and third columns of |D| by the constant terms.
So we get

|D1| =

∣∣∣∣∣∣
11 −4 −1
39 −5 2
1 2 1

∣∣∣∣∣∣ = −34,
|D2| =

∣∣∣∣∣∣
1 11 −1
2 39 2
−3 1 1

∣∣∣∣∣∣ = −170,
|D3| =

∣∣∣∣∣∣
1 −4 11
2 −5 39
−3 2 1

∣∣∣∣∣∣ = 272.

Thus the solutions are

x1 =
|D1|
|D|

=
−34
34

= −1,

x2 =
|D2|
|D|

=
−170
34

= −5,

x3 =
|D3|
|D|

=
272

34
= 8.

It is often stated that Cramer’s rule which gives solutions
of linear systems as quotients of determinants is generally
impractical [9], [11], quickly getting long and tedious as the
number of the unknowns of the system increases. This is so
because as the number of the unknowns increases, the num-
ber of determinants involved and their orders increase in equal
proportion, causing one to give up hope of ever solving such a
system. One way of curtailing the amount of labour, time and
computation to a reasonable level when using Cramer’s rule
is to adopt a brief method of computing large determinants
[9] such as Dodgson’s condensation which we have already
discussed in Section II. Here we shall never refer to this ap-
proach, but we shall discuss a new, simpler and better one
which is derived from Cramer’s rule but employs Dodgson’s
condensation in its calculations.

Now this new approach is exhibited in the following steps:

1. Form the n× 2n matrix:

S1 =
[
D b D

′ ]

where D
′

is the array of numbers left when the
last column of D is deleted.

2. Use Dodgson’s condensation to condense S1 to S2,
S2 to S3, and so on until the following row matrix is
obtained:

Sn =
[
D D1 D2 D3 . . . Dn

]
.

The values D, D1, D2, D3, . . . , Dn are the elements of
Sn.

If n is even, the values of the unknowns or the solutions are

x1 = −D1

D
, x2 = −D2

D
, . . . , xn = −Dn

D
.

If n is odd, the values of the unknowns or the solutions are

x1 =
D1

D
, x2 = −D2

D
, . . . , xn =

Dn

D
.

To understand this new method it is wise to begin with
the simplest case, the system of two equations:

3x1 − 4x2 = 2

2x1 − 5x2 = −1.

We begin with

S1 =

[
3 −4 2 3
2 −5 −1 2

]
.

We apply rule 2 of Dodgson’s condensation and get the
following:

S2 =
[
−7 14 7

]
.

The values of the unknowns are thus

x1 = − 14

−7
= 2,

x2 = − 7

−7
= 1.

We now solve by the new approach the system of three
equations which we gave as an instance of Cramer’s rule :

x1 − 4x2 − x3 = 11

2x1 − 5x2 + 2x3 = 39

−3x1 + 2x2 + 2x3 = 1.

We start with

S1 =

 1 −4 −1 11 1 −4
2 −5 2 39 2 −5
−3 2 1 1 −3 2

 ,

apply rule 2 of Dodgson’s condensation and get

S2 =

[
3 −13 −61 −17 3
−11 −9 −37 −119 −11

]
.
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Next, we condense S2 in a similar fashion, but this
time, we famously divide each element (number) of the
resulting matrix by the corresponding element of the interior
matrix of S1 to get S3 . Thus we have

S3 =

[
−170
−5

−68
2

6630

39

544

2

]
=
[
34 −34 170 272

]
.

The values of the unknowns are thus

x1 =
−34
34

= −1,

x2 = −170

34
= −5,

x3 =
272

34
= 8.

In the above two instances of the new approach, we see
that, among the popular methods of solving linear systems
of 2 and 3 equations, such as Cramer’s rule and Gaussian
elimination, none is simpler or more fascinating than the al-
ternative form of Dodgson’s condensation. For this reason,
this new and superior approach deserves serious considera-
tion and merits the special attention of a wider audience as
linear systems of 2 and 3 equations are the most commonly
discussed in texts and encountered by teachers and students of
mathematics, science, and engineering; for the reader of this
paper will need little convincing that linear systems of 2 and
3 equations appear with great frequency in these disciplines
and their applications.

As another instance of the approach, let us solve the
system of four linear equations:

2x1 + x2 + 2x3 + x4 = 6,

x1 − x2 + x3 + 2x4 = 6,

4x1 + 3x2 + 3x3 − 3x4 = −1,
2x1 + 2x2 − x3 + x4 = 10.

We begin with

S1 =


2 1 2 1 6 2 1 2
1 −1 1 2 6 1 −1 1
4 3 3 −3 −1 4 3 3
2 2 −1 1 10 2 2 −1

 ,

apply rule 2 of Dodgson’s condensation and get

S2 =

 −3 3 3 −6 −6 −3 3
7 −6 −9 16 25 7 −6
2 −9 0 −29 −42 2 −9

 .

Again we condense S2 and divide each element (number)
of the resulting matrix by the corresponding element of the
interior matrix of S1 to obtain S3:

S3 =


−3
−1

−9
1

−6
2

−54
6

33

1

−3
−1

−5
3

−81
3

261

−3
53

−1
344

4

−51
3



=

[
3 −9 −3 −9 33 3
−17 −27 −87 −53 86 −17

]
.

Finally, we condense S3 and divide each element (number)
of the resulting matrix by the corresponding element of the
interior matrix of S2 to obtain S4:

S4 =

[
−234
−6

702

−9
−624
16

975

25

−819
7

]
=
[
39 −78 −39 39 −117

]
.

Thus the values of the unknowns are

x1 = −−78
39

= 2,

x2 = −−39
39

= 1,

x3 = −39

39
= −1,

x4 = −−117
39

= 3.

I now proceed to give a proof of the validity of this new
approach. We begin with the n× 2n matrix:

S1 =
[
D b D

′ ]
=

 a11 . . . a1n b1 a11 . . . a1(n−1)

...
. . .

...
...

...
. . .

...
an1 . . . ann bn an1 . . . an(n−1)


where D

′
is the matrix formed by deleting the last column of

the coefficient matrix D of system (1) and b is the column
matrix containing the constants of the system. We employ
Dodgson’s condensation to condense S1 until we finally
arrive at a row matrix Sn consisting of n + 1 elements. Let
us denote these elements by D, D1, D2, D3, . . . , Dn, so that

D =

∣∣∣∣∣∣∣
a11 . . . a1n

...
...

an1 . . . ann

∣∣∣∣∣∣∣
= |D|

D1 =

∣∣∣∣∣∣∣
a12 . . . a1n b1

...
...

...
an2 . . . ann bn

∣∣∣∣∣∣∣
= (−1)n−1

∣∣∣∣∣∣∣
b1 a12 . . . a1n
...

...
...

bn an2 . . . ann

∣∣∣∣∣∣∣
= (−1)n−1 |D1|

D2 =

∣∣∣∣∣∣∣
a13 . . . a1n b1 a11

...
...

...
...

an3 . . . ann bn an1

∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣
a11 b1 a13 . . . a1n

...
...

...
...

an1 bn an3 . . . ann

∣∣∣∣∣∣∣
= − |D2|

(6)
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D3 =

∣∣∣∣∣∣∣
a14 . . . a1n b1 a11 a12

...
...

...
...

...
an4 . . . ann bn an1 an2

∣∣∣∣∣∣∣
= (−1)n−1

∣∣∣∣∣∣∣
a11 a12 b1 a14 . . . a1n

...
...

...
...

...
an1 an2 bn an4 . . . ann

∣∣∣∣∣∣∣
= (−1)n−1 |D3|

...

Dn =

∣∣∣∣∣∣∣
b1 a11 . . . a1(n−1)

...
...

...
bn an1 . . . an(n−1)

∣∣∣∣∣∣∣
= (−1)n−1

∣∣∣∣∣∣∣
a11 . . . a1(n−1) b1

...
...

...
an1 . . . an(n−1) bn

∣∣∣∣∣∣∣
= (−1)n−1 |Dn| .

From Cramer’s rule, it is known that |D| is the determinant
of the coefficient matrix D and |Dk| is the determinant
of the matrix formed from the original coefficient matrix
by replacing the kth column of D by the column with the
elements b1,. . . ,bn [10],[11], [12], [14]. Thus, the solution of
the system (1) is given by the formulas

x1 =
|D1|
|D|

, x2 =
|D2|
|D|

, x3 =
|D3|
|D|

, , . . . , xn =
|Dn|
|D|

.

(7)

But, from (6) we have the following:

D = |D|
D1 = (−1)n−1 |D1|
D2 = − |D2|
D3 = (−1)n−1 |D3|

...

Dn = (−1)n−1 |Dn| .

(8)

Hence, the solution (7) of the system (1) becomes, after a
stylish manipulation by equating (7) and (8), the noteworthy
formulas:

x1 = (−1)n−1D1

D

x2 = −D2

D

x3 = (−1)n−1D3

D
...

xn = (−1)n−1Dn

D
.
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