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Abstract—In real optimization, we always meet the criteria of
useful outcomes increasing or expenses decreasing and demands
of lower uncertainty. Therefore, we usually formulate an opti-
mization problem under conditions of uncertainty.

In this paper, a new method for solving linear programming
problems with fuzzy parameters in the objective function and
the constraints based on preference relations between intervals
is investigated. To illustrate the efficiency of the proposed method,
a numerical example is presented.

I. INTRODUCTION

IN many real-life situations we come across problems with
imprecise input values. Imprecisions are dealt with by

various ways. One of them is interval based approach in
which we model imprecise quantities by intervals, and suppose
that the quantities may vary independently and simultaneously
within their intervals. In most optimization problems, they are
formulated using imprecise parameters. Such parameters can
be considered as fuzzy intervals, and the optimization tasks
with interval cost function are obtained [13], [14].

When realistic problems are formulated, a set of intervals
may appear as coefficients in the objective function or the
constraints of a linear programming problem. Theoretically,
intervals can not be ordered, they can only be partially ordered
and as a consequences, can not be compared. Therefore,
we build a criterion for quantitative assessment of degree in
which one interval is greater than another one. This criterion
must be applicable for all cases of intervals. The problem of
intervals ordering is an important problem because of its direct
relevance to real world optimization problems. Therefore, the
comparison of intervals is necessary when we have to make a
a choice in practical applications. Numerous definitions of the
comparison relation on intervals exist [2], [3], [7], [15], [18],
[21], [22], [27], [28].

In this field, we find the foremost work in [17], [18] where
two transitive relations were defined on intervals; the first one
is the extension of ‘<’ on the real numbers, and the second
is the extension of set inclusion ‘⊆’. These order relations
can not compare between overlapping intervals. Ishibuchi and
Tanaka [11] suggested two order relations ‘≤LR’ where the
endpoints of the intervals are used and ‘≤mw’ where the
midpoint and width are used. Nevertheless, there exist a set
of pair of intervals can not be compared using these order
relations. Moreover, these order relations do not discuss ‘how
much greater’ when one interval is known to be greater than
another. From this point of view, there exists a number of
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papers discussing this topic [2], [3], [5], [7], [8], [27]. The
authors use some quantitative indices to present the degree to
which one interval is greater than another interval. In some
cases, even several indices are used simultaneously. In this
paper, we will use the method that was introduced in [2] -
where the author introduced the so called µ−ordering - to
solve interval linear programming problems.

This paper considers linear programming problems with
interval coefficients. For these problems, we can not apply
the technique of the classical linear programming directly.
Therefore, many researchers investigated interval linear pro-
gramming problems on the basis of order relations between
two intervals [5], [11], [12], [25]. Interval linear programming
problems have been studied by several authors, such as Bitran
[4], Steuer [26], Ishibuchi and Tanaka [10], [11], Nakahara
et al. [19], Chanas and Kuchta [5], and Gen and Cheng
[9]. For example, Ishibuchi and Tanaka [10], [11] studied
linear programming problems where the objective function
has interval coefficients and they transformed this problem
into a standard biobjective optimization problem. In this paper,
we study the linear programming problems that has interval
coefficients in the objective function and in the constraints.

In fuzzy programming problems [6], [15] the constraints
and objective function are viewed as fuzzy sets. In stochastic
programming problems [15] the coefficients are viewed as
random variables. However, the method presented in this paper
has the advantage that the solution is more intelligible to the
decision maker.

In this paper, we focus on a satisfactory solution approach
based on the inequality relations that was introduced by
[2] and to solve the interval linear programming problem.
This paper is organized as follows: In Section 2, we state
the interval linear programming problem. In Section 3, we
introduce some basic properties and arithmetics of intervals,
and give an elaborate study on inequality relation with interval
coefficients in search of realizing the relation as a constraint
of an optimization problem defined in an inexact environment.
Finally, in Section 4, we describe the solution principle of
interval linear programming problems.

II. PROBLEM STATEMENT AND NOTATION

L INEAR programming is a mathematical tool that handles
the optimization of a linear objective function subject to

linear constraints. Linear programming is an important area in
applied mathematics which has a large number of applications
in many industries. A linear programming problem (LP) can
be formulated as follows:
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max z = ctx

s.t. Ax ≤ b
x ≥ 0

where c and x are n dimensional vectors, b is an m dimen-
sional vector, and A is m× n matrix.

Since we are living in and uncertain environment, the
coefficients of objective function c, the technical coefficients of
matrix A, and the resource variable b are intervals. Therefore,
the problem can be solved by interval linear programming
approach.

The interval linear programming problem is formulated as:

max z = ct x (1)
s.t. Ax � b

x ≥ 0

where x is the vector of decision variables, A is in interval
matrix where all of its entries are intervals, b and c are interval
vectors, the inequality � is given by interval comparison
relation, and the objective function z is to be maximized in
the sense of a given interval linear programming criteria.

Since the calculation of the solution is very expensive and
difficult to find as to real world problems and the practical
problem is not solved yet even though the feasible region is
known, in optimization problems with several objectives, one
mostly waives the determination of the set of efficient solutions
and searches a so-called compromise solution straightfor-
wardly.

Definition II.1. If F : Ω → R is a function of problem (1),
where

Ω = {x : Ax � b, x ≥ 0},

then a feasible solution x̃ ∈ Ω is called a compromise solution
if

F (x) ≤ F (x̃) ∀x ∈ Ω.

It is clear that the midpoint of an interval is the expected
value of that special fuzzy variable. While an interval denotes
the uncertain return, and uncertain cost, the pessimistic return
is denoted by the intervals left and right limits respectively.
The previous interval programming model can be viewed as
a combination of the fuzzy expected value model and the
pessimistic decision model.

III. ORDER RELATIONS BETWEEN INTERVALS

IN this section, we review some properties of interval
analysis [1], [17], [18]. Throughout this paper, real numbers

will be denoted by lower case letters and the upper case letters
denote closed intervals. We begin by defining interval arith-
metic and then give a brief discussion of some implementation
consideration. Finally, we discuss the order relations between
intervals. Let

A = [a, ā] = {x ∈ R : a ≤ x ≤ ā}

denote a closed interval on the real line defined by finite points
a, and ā with a ≤ ā.

Denote the radius of A by rA = (ā− a)/2, and denote the
midpoint of A by mA = (a+ ā)/2. Interval A is alternatively
represented as A = 〈mA, rA〉. Let • denote one of the
arithmetic operations +,−,× or ÷, and let A = [a, ā] and
B = [b, b̄], then the generalization of ordinary arithmetic to
closed intervals is known as interval arithmetic, and is defined
by:

A •B = {a • b : a ∈ A, b ∈ B},

where we assume 0 /∈ B in case of division.
We can see that

A+B = [a+ b, ā+ b̄],

A−B = [a− b̄, ā− b],

kA = k[a, ā] =

{
[ka, kā] k ≥ 0
dkā, ka] k < 0

A ·B = [min{ab, ab̄, āb, āb̄},max{ab, ab̄, āb, āb̄}],
A÷B = [a, ā][1/b̄, 1/b], 0 /∈ B.

In order to solve interval linear programming problems, we
must build a criterion for quantitative assessment of degree in
which one interval is ”greater” than another one. Theoretically,
intervals cannot be compared, they can only be partially
ordered. However, when intervals are used in practical applica-
tions or when a choice has to be made among alternatives, the
comparison of intervals becomes necessary. In the literature,
there are numbers of definitions of the comparing two real
intervals [1], [2], [3], [5], [7], [16], [18], [24].

One of the order relations is defined as an extension of ‘<’
on the real line as A ≤ B if and only if ā ≤ b, and another
one as an extension of the concept of set inclusion; A ≤ B
if and only if a ≥ b and ā ≤ b̄. These order relations cannot
compare between overlapping intervals.

Another approach of the problem of ranking two intervals
was defined in [11] as follows A ≤LR B if and only if a ≤ b
and ā ≤ b̄. The authors suggested another order relation ≤mr
if ≤LR can not be applied as follows: A ≤mr B if and only
if mA ≤ mB and rA ≤ rB .

The order relations ≤LR and ≤mr are antisymmetric, reflex-
ive and transitive and hence, define partial ordering between
intervals. But they did not compare the pairs of intervals for
which both ≤LR and ≤mr fail.

Other definitions of order relations are stated in the follow-
ing definition.

Definition III.1. 1) A ≤ B if and only if ā ≤
b̄ and mA ≤ mB .

2) A ≤ B if and only if a− ε ≤ b̄.
3) A ≤ B if and only if ā− ε ≤ b.
4) A ≤ B if and only if a+ ā ≤ b+ b̄.

A new useful method for ordering fuzzy numbers, has been
proposed in [2]. If we let I be the set of all closed and
bounded intervals on the real line R, then the method is based
on a measure function (µ−function), that is defined from
I ×I to R, and is defined as follows:

Definition III.2. If A,B ∈ I , and µ : I ×I −→ R is
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defined by:

µ(A,B) =



mB −mA + 2 sgn(mB −mA),

if rB + rA = 0
mB−mA

rB+rA
+ sgn(mB −mA),

if mA 6= mB and rB + rA 6= 0
rB−rA

max{rB ,rA} ,

if mA = mB and rB + rA 6= 0

then the order relation ≤µ over intervals is defined by:

A≤µB if and only if µ(A,B) ≥ 0.

This definition leads to the following theorem that has been
proved in [2].

Proposition III.1. 1) If A and B are real numbers, then
≤µ is the ordinary inequality relation “≤” on the set of
real numbers.

2) µ(A,B) = 0 iff A = B.
3) If 0 < µ(A,B) ≤ 1 then A ⊂ B, (proper subset).
4) If 1 < µ(A,B) ≤ 2 then A

⋂
B 6= φ;

Moreover, if 1 < µ(A,B) ≤ 2− 2min{rA,rB}
rB+rA

, then .{
A ⊂ B if rB ≥ rA
B ⊂ A, if rB < rA

5) µ(A,B) > 2 iff A
⋂
B = φ.

Remark III.1. If we have a maximization problem and
µ(A,B) > 0, then interval B is preferred to A and for a
minimization problem A is preferred to B, in terms of value.

IV. DETERMINATION OF A COMPROMISE SOLUTION OF
INTERVAL LINEAR PROGRAMMING PROBLEM

IN order to determine a compromise solution of the linear
optimization problem (1), in literature preference function-

als are proposed which transfer the infinitely many objective
functions into a single objective function. The obvious way of
doing this is to choose a single representative ĉ of the interval
interval [c, c̄].

Now we rewrite the interval LP problem (1) as follows

max z =
n∑
j=1

[cj , c̄j ]xj

s.t.
n∑
j=1

[aij , āij ]xj � [bi, b̄i] (2)

∀i = 1, 2, . . . ,m

xj ≥ 0 ∀j = 1, . . . , n

each inequality constraint is first transformed into 2n+1 crisp
inequalities and we get Ωi = {Ωki , k = 1, 2, . . . , 2n+1}, which
are the solutions to the ith set of 2n+1 inequalities.

Now we define the maximum value range inequality by

Ω̄i =
2n+1⋃
k=1

Ωki ,

and the minimum value range inequality by

Ωi =
2n+1⋂
k=1

Ωki .

The following example illustrates how to find the maximum
and minimum value range inequality.

Example IV.1. Consider the inequality relation [2, 8]x ≤
[4, 12]. Then we have

Ω1 = {x : 2x ≤ 4} = {x : x ≤ 2}

Ω2 = {x : 2x ≤ 12} = {x : x ≤ 6}

Ω3 = {x : 8x ≤ 4} = {x : x ≤ 0.5}

Ω4 = {x : 8x ≤ 12} = {x : x ≤ 1.5}

and we have the maximum value range inequality is

Ω̄i =

22⋃
k=1

Ωk = {x : x ≤ 6},

and the minimum value range inequality is

Ωi =

22⋂
k=1

Ωk = {x : x ≤ 0.5}.

Now we use the µ−ordering to define Ax ≤ B, where
A,B ∈ I and x is a singleton variable. We say that Ax ≤ B
if and only if Ax ≤µ B, i.e., µ(Ax,B) ≥ 0. However, in some
cases we may look for an optimal constraint condition and to
get higher satisfaction; therefore, we may like to increase the
value of x to such an extent that µ(B,Ax) ≥ σ for σ ∈ [0, 1],
where σ may be interpreted as an assumed and fixed optimistic
threshold. On the other hand, the right limit of Ax must not
exceed the right limit of B, i.e., āx ≤ b̄.

Now we propose a satisfactory crisp equivalent form of
interval inequality relation as follows:

Ax ≤ B ⇒
{
āx ≤ b̄
µ(B,Ax) ≤ σ, σ ∈ [0, 1]

Now we consider the following problem:

max z =
n∑
j=1

[cj , c̄j ]xj

s.t.
n∑
j=1

[aij , āij ]xj � [bi, b̄i]

∀i = 1, 2, . . . ,m

xj ≥ 0, ∀j = 1, . . . , n

In this problem, the satisfactory crisp equivalent system of
constraints of the ith interval constraint can be generated as
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follows:
n∑
j=1

āijxj ≤ b̄i ∀i

n∑
j=1

(aij + āij)xj + σ
n∑
j=1

(āij − aij)xj

≥ (b̄i + bi)− σ(b̄i − bi).

In order to solve the problem of interval linear programming
(1), we noticed that the interval coefficient of the objective
function, the constraints and the right hand of the constraints
the uncertain return, the uncertain cost and the uncertain total
resource respectively. Thus the interval linear programming
problem is a problem where the objective function is to max-
imize the uncertain return under some uncertain constraints,
where the uncertainty is described by intervals. The constraints
, denote that the feasible solution to the problem is a solution
such that the average costs and the costs in the worst case
scenario are less than or equal to the average value and the
maximal possible value of the uncertain resources. It is clear
that the midpoint of an interval is the expected value of that
special fuzzy variable. The interval programming problem
can be viewed as a combination of the fuzzy expected value
model and the pessimistic decision model. Therefore, for each
interval in the objective function ci, a single representative ĉi
will be consider, and the best choice will be the midpoint of the
interval, thus ĉi = mci

, then the interval linear programming
problem will be reduced into a linear programming problem
as follows:

max z =
n∑
j=1

(
cj + c̄j

2
)xj

s.t.
n∑
j=1

āijxj ≤ b̄i ∀i

n∑
j=1

(aij + āij)xj + σ
n∑
j=1

(āij − aij)xj

≥ (b̄i + bi)− σ(b̄i − bi).
xj ≥ 0 ∀j

To estimate the efficiency of the proposed numerical
method, we consider the following example.

Example IV.2. Consider the following interval linear pro-
gramming problem:

max z = [1, 1.5]x1 + [2.7, 3]x2

s.t. [2, 2.1]x1 + [1.3, 1.5]x2 ≤ [6, 7]

[3.2, 3.3]x1 + [4.1, 4.2]x2 ≤ [8, 11]

x1, x2 ≥ 0.

In order to solve the problem, we find the solution to the

satisfactory crisp equivalent problem and chose σ = 0.5,

max z = 1.25x1 + 2.85x2

s.t. 2.1x1 + 1.5x2 ≤ 7

3.3x1 + 4.2x2 ≤ 11

4.15x1 + 2.9x2 ≥ 12.5

6.55x1 + 8.35x2 ≥ 20.5

x1, x2 ≥ 0.

The solution to the original problem is x∗1 ' 2.62, x∗2 ' 0.56
and z∗ ' [4.132, 5.61].

V. CONCLUSION

IN this paper, we discuss a the solution of an interval linear
programming problems. The solutions are based on order

relation between intervals, and the solutions can be generated
by solving a corresponding parametric linear programming
problem. The new method introduced in this paper can find the
solution of interval linear programming problems by choosing
a good representative for each interval.
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