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Abstract—This paper proposes a management strategy for
a diesel generating set (GS) covering the mechanical part of
the system which includes speed and active power control,
the electrical part of the system which includes voltage
and reactive power control, and the synchronism with the
grid. The management is based on a fuzzy PD+I controller
structure which uses a fixed controller surface for all fuzzy
controllers (FCs). Simulations results for both stand-alone and
grid-connected operations using fuzzy controllers were superior
when compared to commercial methods (CM).

Index Terms—Coordinated fuzzy control, Distributed gener-
ation, Gen-set, GS synchronism.

I. I NTRODUCTION

T HE use of alternative energy sources in distributed gen-
eration (DG) systems improves voltage levels, reduces

power losses in co-generation projects [1], and cuts power
transmission costs as the DGs are installed close to the local
consumption [2], [3], [4], [5]. Diesel-driven generators are
commonly used due to their simplicity, wide range of power
generation and low cost when compared to other alternative
sources [2], [6], [7], [8].

One of the major problems caused by connecting a DG
system to the grid is an alteration of the system-short-circuit
parameters, which can lead to uncoordinated operation of the
system protection and consequent damage to the electrical
equipment connected to the DG terminals [9]. Unwanted
oscillations in the power bus may also occur, as well as
increasedRI2 andXI2 losses in the impedance lines, caused
by the reactive flow current [10]. One way to maintain the
quality of the bus voltage within the established standards
is to control the flow of active and reactive power of the
connected DG.

Active power of the diesel GS can be controlled by
regulating the torque provided by the diesel engine. On the
other hand, reactive power of the GS is controlled by an
automatic voltage regulator (AVR) which regulate the local
bus voltage level and allows reactive power flow control [11].

The diesel GS is nonlinear [6], [12], due primarily to
the torque-rotation ratio, actuators and motor valves. Fuzzy
controllers have a good responses when used with nonlinear
systems [13], [14], [15], [16], [17], [18], and have been used
to regulate the grid-connected and stand-alone GS operation
modes [3], [19], [20], [21], [22], [23], [24].
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A fuzzy control approach for both stand-alone and grid-
connected operations of the entire GS is proposed. The
GS fuzzy controller designed for stand-alone operation is
presented first, followed by the fuzzy approach for grid-
connected operation in which the terminal voltage and reac-
tive power controllers are coordinated to reduce the reactive
power exchange with the IEEE Standard 1547 model grid.

II. SYSTEM DESCRIPTION

The plant used in this study was built with PSCADr

software and comprises an IEEE-1547 standard grid, a DG
system, control loops, transformers and local loads.

The DG used is a diesel GS which consists of a diesel
engine (see block diagram in Fig. 1) and a synchronous
generator. The motor inputGate is the output of the speed
controller or the active power controller. The motor output
is the torque which transfers the mechanical power from the
diesel engine to the synchronous generator.

Fig. 1. Block diagram of the diesel engine model.

The synchronous generator used is represented by a
standard synchronous machine model obtained from the
PSCADr software library configured with 1112 kVA and the
parameters set according to 3512 model Caterpillar engine.
This model is described in detail in [10].

The grid consists of a 100 MVA feeder built according to
IEEE Std 1547.2 [25] operating at 69 kV.

The characteristics of dynamic loads have a substantial
influence on the behavior of the GS. To analyze the transient
behavior, the loads were dimensioned for an absorbed power
around 20%of the nominal power of the GS. To represent
some typical loads found in distribution networks, three loads
having different dynamic responses were selected as follows:

1) a 215HP induction machine set as 480V and 140A;
2) an RLC load whose power and passive elements are:

R=1.536Ω; L=3.950mH; C=5.424mF ; P=154kW
andQ=149 kV Ar; and

3) an uncontrolled rectifier feeding a resistance of 2.5Ω
– which consumes 250 kW.
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Fig. 2. GS block diagram showing the variables used by the controllers.

III. C ONTROL STRATEGY

A FC approach was used for each DG’s control loop. The
block diagram of the diesel GS with terminal voltage, speed,
synchronism and power control loops is shown in Fig. 2, with
the signal acquisition points used in the control loops and the
block diagram of the FC in Fig. 3 withR the reference,y
the variable measured,U the output,Ki the integrating gain
of the error,Kp andKd the normalizing gains for the inputs
eP andeD, respectively.

Fig. 3. Fuzzy PD+I controller.

Also, a low pass first order filter was used to eliminate
the noise from the derivative termeD. The FC output gains
Kui andKu were adjusted such that the controller outputU

belongs to the universe of discourse of the control variable,
i.e., if the controller is for the motor speed theKui andKu

gains should be adjusted such thatU corresponds to a torque
belonging to the interval 0 to 1.1 pu.

The process of fuzzy inference follows a set of rules
determined from expert knowledge and is typically based
on the system’s heuristic [19]. The fuzzy controller was
derived from a control surface which represents the required
nonlinearities such that fast actions on disturbances, but
maintaining the damping required to stabilize the system,
are taken.

The surface was defined by the membership functions

shown in Fig. 4(a), as well as fuzzy rules and output
functions formed by singletons as presented in Fig. 4(b).

(a)

(b)

Fig. 4. Membership functions of inputs and output. In (a), the functions “P”
and “N” have bell distributions and “Z” is triangular; in (b), the functions
“DM”, “DP”, “NFN”, “AP” and “AM” are singletons.

The use of singletons as output membership functions
makes simpler the computations and allows the control
output to be driven to its extreme values, whereas the use
of triangular and bell distributions as input membership
functions introduces nonlinearities in the control output such
that fast and efficient responses are obtained [26]. The bell
membership functions give fast responses to correct transi-
tory disturbances while the triangular membership functions
limitate the controller action on steady-state error.

The rules of inference comprise linguistic expressions such
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as “If eP is P and eD is Z then u is AP ” and combine
all inputs to provide a particular output. Table 1 shows the
combinations of the two inputs and one output of the fuzzy
system.

TABLE I
FUZZY SYSTEM INFERENCE RULES

eP
N Z P

N DM DP NFN
eD Z DP NFN AP

P NFN AP AM

To implement the controller, the crisp output is obtained by
the center of area defuzzification method [13], which yields

u =

∑N

k=1
µ(Vk)Vk∑N

k=1
µ(Vk)

(1)

where N is the number of discretization points of the
universe of discourse for the output,µ is the degree of truth
andVk is the crisp value which the fuzzy system returns for
each input set.

The control surface obtained from the fuzzy rules and
membership functions presented in this paper is shown in
Fig. 5. The surface shows abrupt variations at the border
between positive and negative values such that fuzzy outputs
with the same feature are provided, i.e., the fuzzy controller
output changes faster when the inputs cross zero. The lateral
plateaus show that when the inputs have opposite signs, the
fuzzy controller output should be zero. In this case, the
system tends to reach the equilibrium point then no action is
needed. On the other hand, for situations in which both inputs
are positive or negative, the fuzzy controller tends to saturate
at its maximum or minimum points, and consequently the
fuzzy controller should take more drastic actions for the
system to return to its equilibrium point.

Fig. 5. Fuzzy control surface.

A. Speed and Active Power Control

The command switchS1 shown in Fig. 2 selects the GS
operation mode. When the GS is under stand-alone operation
mode, the switchS1 sets the speed control loop as active.
Otherwise, the active power control is set as active. Fig. 6
shows the speed and active control loops along with the
synchronism loop.

Fig. 6. Control scheme for active power, speed and synchronism.

The fuel valve apertureGate is used to regulate the diesel
motor speed when the DG operates disconnected from the
grid. The signal frequency generated at the synchronous
machine terminals is a function of the motor speed due to the
coupling between the shaft of the generator and the diesel
engine [27]. However, when the DG is connected to the grid,
the coupling produces the active power delivered to the grid,
since in this case the frequency is determined by the grid.

The input of the speed fuzzy controller is the error signal
given by:

eω = ωref − ω (2)

whereω is the speed measured from the GS shaft andωref

is the speed reference that is constantly adjusted while the
GS is disconnected according to

ωref = ω0 +∆ωsync (3)

whereω0 is the rated synchronous speed and∆ωsync is the
output of the synchronism controller.

The diesel engine accelerates or decelerates to synchronize
and connect the GS to the grid. The synchronism controller
uses the difference betweenθgrid andθgen and produces the
deviation∆ωsync.

The generator voltageVtgen must be synchronized with the
reference obtained from the grid to enable the GS connection
to grid.

The synchronism CM is performed by tracking the phases
of the grid and DG voltages to connect the DG system at
the time that the difference between the phases is within a
preset tolerance.

However, there are active and reactive power disturbances
during the DG connection before the synchronism is es-
tablished. To reduce these disturbances, a fuzzy controller
phase-locked loop (FC-PLL) shown in Fig. 6 is used. Using
a phase detector, the argumentθ is extracted from the DG
and grid voltagesθgen andθgrid, respectively. The input of
the FC-PLL is the erroreθ between the phase signals from
GS and the grid.

In the proposed FC-PLL, the GS connection occurs not
only when the proportional error termePθ is within a given
tolerance, which means0 ≤ ePθ ≤ tol, but also when the
derivative error termeDθ is within the given tolerance. At
the momentePθ andeDθ are within the given tolerance, the
switch S1 is triggered to change the GS operation mode to
grid-connected and then the active power control is set as
active. The FC-PLL useseDθ to modify theθgen speed to
match with theθgrid speed. Therefore, the FC-PLL reduces
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the differences in phases and frequencies between the GS and
grid voltages and allows the error to reach the established
tolerance which minimizes the transient disturbances at the
connection time.

The output of the FC-PLL yields the signal∆ωsync which
feeds the speed control loop of the GS and is responsible
to change the speed referenceωref (Fig. 6). The reference
speed is thus dependent on the∆ωsync and consequently
accelerates or decelerates the generated voltage until it is in
synchronism with the grid voltage.

The instant that the DG is connected to the grid the
speed control loop is switched off byS1. The active power
controller is then activated and takes over the operation of
the diesel engine to follow the active power referencePref .
The active power used to control the power supplied to the
grid is given by power average calculated by:

Pgen =
1

T

T∫

0

p dt. (4)

B. Coordinated Control of the Terminal Voltage and Reactive
Power

The approach presented for voltage and reactive power
regulation differs from the AVRs available on the market, as
it uses two fuzzy loops in parallel to control the voltage and
reactive power supplied by the generator.

Reactive power and voltage amplitude are regulated by the
synchronous generator field voltage (Ef ). Unlike existing
commercial systems loops where the voltage and reactive
power control operate independently in the synchronous gen-
erator, the proposed approach uses two interconnected fuzzy
control loops whose responses work together to regulate the
generator exciter, as illustrated in Fig. 7. In Fig. 7, the upper
loop regulates the terminal voltage to followVtref set to
1 p.u. The lower loop regulates the reactive power according
to the set pointQload, the reactive power average measured
from the local load. Therefore, the set point was adjusted
to supply the local load and the reference value changes
accordingly to the reactive power demanded by the load, i.e.,
if there is no reactive power load,Qload is set to 0 kVAr.

Fig. 7. Configuration of the coordinated fuzzy PD+I controller for terminal
voltage and reactive power.

Therefore, the GS supplies only the reactive power needed
for these loads, and cancels the reactive power exchange
between the DG and the grid, which favors the maintenance

of the unity power factor at the point of the DG connection.
The average reactive power can be calculated by:

Qgen =
1

T

T∫

0

q dt (5)

with q the instantaneous reactive power.
The excitation voltage fieldEf is obtained by adding the

three terms:

Ef = Ef0 +∆EfVt
+∆EfQ (6)

with Ef0 the initial condition of the field,∆EfVt
the term

given by the voltage controller and∆EfQ the term given by
the reactive power controller. The term∆EfQ is given by:

∆EfQ = α ∆EQ (7)

whereα is a weighting factor given by:

α = 1− |eVt
| (8)

which has maximum value wheneVt
is zero. This strategy

thus ensures effective reactive power control as the error
voltage decreases by prioritizing the terminal voltage control,
and it also avoids large oscillations in the voltage level
supplied to the load, which improves the GS power quality.

IV. SIMULATION RESULTS

The stand-alone operation mode test was performed with
connection and disconnection of loads. The simulation of
the grid-connected operation mode was performed after
the connection of the GS to the grid using the FC-PLL.
Moreover, the simulation considered active power injection
into the grid by the DG system. Results using existing CM
and controllers are presented for comparison purposes.

Fig. 8(a) demonstrates that when the synchronism CM is
used with a phase error tolerance of0.5◦, large variations in
P andQ, of 250 kW and 90 kVAr, respectively, are observed,
what represent22.5% and 8.1% of the GS nominal power.
However, with the FC-PLL there is a small variation inP .
It is also noticed a 8 kVAr peak variation inQ, i.e., 0.7%,
of the GS nominal power whereas with the CM the variation
in Q is about8.1% as shown in Fig. 8(b).

The loads connection were conducted similarly for each
GS operation mode. First, att = 10 s, a 215 HP three-
phase induction motor (IM) was connected (driven by an
increased torque ramp until the torque reached 1 p.u.) and
remained connected for 10 s until it was disconnected. An
RLC load was then connected att = 25 s up to 35 s. Finally,
a three-phase uncontrolled rectifier was connected to the grid
at t = 40 s up tot = 50 s.

The results presented in Fig. 9 show the action of the speed
and terminal voltage controllers for the stand-alone operation
mode. One simulation used the FC for the speed and voltage
terminal, whereas another used a commercial controller for
speed (CCω) from the PSCADr library with the parameters
given in Table II and a Proportional-Integral controller (PI)
set according to [28] to regulate the terminal voltage.

Compared with the proposed FC, the PI associated with
the CCω (CCω+PI) allowed speed variations 2.5 times greater
when connecting or disconnecting loads which exceeded the
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(a)

(b)

Fig. 8. Transients inP andQ caused by the effect of the grid connection.
Where (a) is for CM and (b) is for FC-PLL.

limit recommended by IEEE Std 1547.2 [25] as shown in
Fig. 9 by UsL limit, and also presented responses which were
twice slower. Results for the terminal voltage were similar
for both controllers.
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Fig. 9. GS terminal voltage and speed obtained with the FC and CCω+PI
controllers with the recommended UsL for the stand-alone operation mode.

The load tests for grid-connected operation mode followed
the same steps previously described for evaluating the con-
trollers with the GS disconnected. Figs. 10 and 11 compare,
respectively, the results obtained for theP andQ powers by
the FC developed with those from the GS controlled by a
PI for the exciter set according to IEEE Std 421 [29], and a
commercial controller for active power control (CCP ) with
parameters given in Table II. Results are obtained for power
transference and load connections using the association of
the CCP and PI (CCP + PI) and the proposed FC.

TABLE II
COMMERCIAL CONTROLLERS

SpeedCCω(s) Active powerCCP (s)
0.0625s+0.25

0.0002s2+0.001s+1
0.00125s+0.005

0.0002s2+0.001s+1
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Fig. 10. Active power generated and absorbed by the elements that
comprise the system.

0 5 10 15 20 25 30 35 40 45 50 55

−200

0

200

Q
C

C
P
+

P
I (

kV
A

r)

IM RLC Load Rectifier

 

 

DG Grid Load

0 5 10 15 20 25 30 35 40 45 50 55

−200

0

200

Q
F

C
 (

kV
A

r)
IM RLC Load Rectifier

Time (s)

Fig. 11. Reactive power generated and absorbed by the elementsthat
comprise the system.

TheP andQ power responses are positive when the source
provides energy, otherwise it consumes energy. Variations in
Q were ten times smaller at the connection time of the GS
to the grid and responses twice faster to stabilizeQ at the
connection of loads using the proposed FC when compared
to the commercial controllers.

The terminal voltage response was also faster with the FC
than with the PI as shown in Fig. 12.
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Fig. 12. Comparison of the terminal voltage and power factor forthe
CCP + PI and FC.

The root mean square errors of the power factor deviation
from the unity were 1.695% for the association CCP +PI and
1.228% for the proposed FC, demonstrating that the FC was
faster in correcting the terminal voltage.

V. CONCLUSION

The management proposed was efficient to control the
diesel engine and the synchronous machine and also the
synchronism with the grid. The proposed controllers also
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allowed fast and accurate actions, leading to smaller oscilla-
tions of the controlled variables in relation to a commercial
controller.

The FC coordinated structure developed was able to reg-
ulate the reactive power generated to increase the power
factor at the point of connection to the distribution grid,
while maintaining the level of the terminal voltage within
the limits recommended by IEEE Std 1547.2 [25]. Thus, the
coordinated FC with reactive power control showed to be
efficient to supply the local loads with the reactive power
coming from the GS and avoiding reactive power exchanges
with the grid.

The FC-PLL reduced the transient caused by the con-
nection to the grid as recommended by IEEE Std 1547.2
[25], which avoided the propagation of the active power
transfer disturbance to the grid. With the synchronism CM
the disturbance was significant, extending over the entire
period of power transfer increasing.

Although the synchronism CM provides a faster connec-
tion between the sources, it allows large disturbances in
P and Q since there is only phase control. However, the
FC-PLL was able to reduce the phase difference and also
adjusted the speed which the phase difference was reduced.

The grid-connected FC enabled a power factor closer to
unity for the different simulation scenarios, whereas the
commercial controllers showed a similar PF andVt responses
only for the IM connection which absorbs power slowly.
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