
Implementation of Orienteering Methods for
Advanced Autonomous Robot

Jaromir Konecny, and Michal Prauzek

Abstract—The autonomous robots are very popular research
field. The scientist make effort to do autonomous robot, which
will able to translate from start position to goal and there carry
out mission. The missions are diverse. It can be simple mission
such make a beep, or more complicated mission such detect
toxic gas or bomb disposal. This article proposes robot proto-
type, which is intended for roboorienteering competition, where
enthusiasts try to reach several goals in as short time as possible.
This article presents robot control system, implementation and
hardware resources of robot prototype. The navigation strategy
is also mentioned.

Index Terms—Autonomous robot, navigation, map design,
AutoCAD extension, object oriented programing.

I. INTRODUCTION

THIS research is follow-up to previous research in the
roboorienteering field. Autonomous robot for indoor use

shows the publication [1]. Another research [2] deals with
exploratory vehicle for outdoor use. This research deals with
outdoor autonomous device such it was published e.g. in
[10] [11]. This article proposes the concept of autonomous
robot, which is navigated by maps. The robot primary uses
GPS localization system to establish the position in the map.
It uses the maps, which are drawn in AutoCAD software.
The map includes roads, walls, forests and another useful
informations. The navigation counts with complex terrain,
where it is much complicated recognize all obstacles and
find the optimal way to reach goal. The route planning uses
Dijkstra algorithm, which was published in [8] and [9]. The
navigation concept especially proposes solution for orienta-
tion in areas, where direct azimuth does not lead for the goal.
The complex control application is written in C# language
and it runs Windows XP Embedded operating system and it
takes advantages of object orienting programing.

II. ROBOT HARDWARE RESOURCES

This section describes hardware construction of the robot.
Robot chassis is constructed from aluminum profiles. These
profiles are fitted with wheels, motors and electronic sub-
systems. Robot chassis is designed as a six-wheeled con-
struction. The left front wheel is complementarily cross
associated with the left rear wheel and the front right wheel is
complementary cross connected to the right rear. Left center
wheel and the right center wheel are controlled separately.
The change of the robot direction is possible by different
speeds or direction of left and right wheels rotation. Each

Manuscript received July 2nd, 2013; revised August 1st, 2013. This
work was supported by project SP2013/168, Methods of Acquisition and
Transmission of Data in Distributed Systems of Student Grant System, VSB-
TU Ostrava.

All authors are with the Department of Cybernetics and Biomedical
Engineering, VSB-Technical University of Ostrava, 17. listopadu 2172/15,
70833 Ostrava, Czech Republic, Europe, e-mail: jaromir.konecny@vsb.cz.

driven wheel has one engine Pololu1106 [4] (in czech).
The motors are controlled by the driver Sabertooth 2X5.
The heart of the control subsystem is Kontron pITX-SP 1.6
GHz [5]. It is computer that runs Windows XP Embedded
operating system. This device is connected to any of sensor
subsystems. These include ultrasonic sensor SRF08, optical
rangefinders GP2Y0A02. In addition, the robot has a 2D
laser sensor HOKYUO URG04-LX [6]. The robot direction
can be detected by the electronic compass CMPS10. Robot
also includes front video camera Logitech. Absolute position
is determined by GPS module. Manual control is enabled
by connecting a wireless gamepad. Two powerful Li-pol
batteries are used for power supply. Both batteries used
voltage 14.4 V and capacity 4 Ah and 5 Ah.

III. MAP DESIGN FOR THE ROBOT

This chapter describes the procedure for drawing maps
for robot. Robot is able to work with maps, which must
be provided by operator. Map data are in XML format and
they contains information about the environment in which
the robot will move. The maps are also recorded information
about possible trajectories which the robot can safely move.
The vector graphics application is used to create map surface,
which allows the conversion of the drawing to XML file is
suitable for the robot. As software for the maps preparation
is used AutoCAD 2012. AutoCAD 2012 is able to cooperate
with specialized GIS Software to professional maps creating.
AutoCAD 2012 is also essentially an opened platform that
allows custom extensions that extend the functionality of
AutoCAD 2012. These extensions can be created either in the
Visual LISP programming language, use the .NET libraries,
which are then loaded by command netload. Connection
with .NET provides full program control. The extension was
written for making maps, which is capable directly generate
map background from the drawing opened in AutoCAD
2012. Drawing must meet several conditions: Entity placed
in the drawing must be in UTM coordinates. This is only a
partial coordinates x and y. Zone and hemisphere are entered
in the Settings dialog.

Drawing is subdivided into different layers. The suitable
map for the robot has several layers. The most important
are the layers which constitute the safety trajectory lines
network. Safety trajectory segment provides the way the
robot can move from the start point to the end point. The
effort corresponds to the length of the line multiplied by a
weight factor of the layer.

Trajectories are formed to three layers. The road, sidewalk,
footpath. Obviously, the effort of movement along the road
is less than the effort of movement along the footpath. The
weight coefficients were selected: Road k = 1, sidewalk
k = 2, footpath k = 3. Map data does not reflect a priori

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



terrain bumps, and therefore it is necessary to enter this
manually during the map creation. Unsurprisingly, the road
down the hill for the robot will be less demanding than the
way up the hill on the same segment. In order to take into
account the ascent and descent, it is possible to add a special
dimensions to the map. This dimensions modifies the effort
form start point to end point.

Other layers in the map symbolize walls, forest, concrete
pillars, metal structures, etc. It is important to distinguish
from other metal structures, because of the proximity of
metal structures can affect the accuracy of the electronic
compass. The layer content is set in a special dialog that
is part of the extension of AutoCAD 2012. The data from
those dialog are stored into the dictionary, which is part
of the drawing. There is no need to carry another drawing
file containing those information. In addition, dictionary is
hidden to a normal user and it can not be accidentally damage
by the user. After setting those additional information it is
possible to process the map generation.

IV. CONTROL APPLICATION

This chapter describes an application that allows complex
robot control and full control over the hardware components
of the robot. The application is written in C# language under
.NET framework 2.0. Older version framework .NET 2.0 was
chosen for compatibility with Windows Embedded operating
system. Advantage of this solution is that the development
of application, including debugging and stepping can be
performed on a standard PC running Windows and then no
changes are required for the Windows Embedded operating
system device. The only problem may be the speed of the
program. When deploying the application, it is necessary to
think about the fact that the target device does not have so
much hardware resources as a regular personal computer or
notebook.

A. Application structure

The application itself is divided into several parts. Fur-
thermore, the application functionality is divided into several
threads, which are mutually synchronized. The main thread
is a application thread and graphical user environment. The
application starts only in system icons area, in order to
the final deployment forms and graphic components do not
consume unnecessary hardware resources. If it is desired,
control the application forms can be shown any time by
clicking onto mentioned icon.

The second thread is the guardian. It is the thread that
handles the connection of all critical hardware components.
If the guardian determines that e.g. laser sensor does not
communicate, it tries to reboot it and reconnect it. Class
guardian also allows you to get comprehensive information
about the state of hardware.

Other threads are carrying for the individual hardware.
Each complex sensor has own thread serving function. In
particular, I2C, laser sensor, GPS, camera, gamepad, motor
unit are controlled by separate threads. There a chance
of some sensor failure during the movement of the robot.
In this case failures only one appropriate thread. Another
functionality of the robot is not compromised. In addition

guardian thread restart it and the sensor will likely run
properly again.

Executive thread is navigation control thread. See fig. 1.
This thread takes care of collecting data from other treads,
and navigation. This thread cyclically performs the specified
action. At first the robot state is checked. The state of
the sensors and main hardware components necessary for
independent movement are also checked. Furthermore, it is
verified whether the robot is in the manual control mode.
Note that in the absence of main hardware components, it
is also not possible to control the robot manually. This is
determined for safety reasons. The control system controls
obstacles and it not permits a collision with an obstacle dur-
ing the manual mode control. Block navigation, which is
a powerful navigation block, will be described in more detail
below. The following block is obstacle detection, which may
reduce the speed of the robot, so the final value of speed are
written to the output as the last step.

Fig. 1. Robot control flowchart

B. User interface

An important and indispensable feature during developing
time is the user interface. C# allows to create a very com-
fortable user interface which is one of its advantage. User
interface of control application implements full visualization
and robot control. The application clearly shows the status
of connected sensors, current sensor values. Furthermore
it shows the robot surroundings measured by laser sensor
and also shows current camera frame. The application also
includes a powerful component that is able to represent and
display the map background. See fig. 2. In this picture you
can see the map of the VSB - Technical University area.

The maps user control can show the map, furthermore it
allows basic map operations. Certainly there is a shift, zoom
using the mouse and display and hide individual map layers.
Map can get GPS or UTM coordinates at a certain position,
it is able to perform basic measurements and it can find a

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



Fig. 2. Map representation in control application

suitable route from point A to point B. At the same time the
robot is able to enter the target position. The user interface
is shown fig. 3. The figure shows one of the application tab.
On the top is the status panel with status icons. This panel
is visible all the time. When any icon appears, it means the
appropriate system does not work properly. On the rest of
the screen is tab area. There are situated any other required
controls. The first tab is the basic parameter tab which
includes basic sensor information. The graphic representation
of URG sensor, optical and ultrasonic sensors are shown
on SRF and URG sensor area. The connection status area
shows detailed information about connected subsystems.
The engine status area shows load of the each motor. The
control application includes several another tabs. Camera tabs
provides full camera control, process values shows the values
of the sensors, map tab provides map control. The next tab is
features tab. It allows action stack and action queue control,
goals control and manual action settings. The tab parameters
allows set any constant and finally the log tab shows log
messages.

Fig. 3. Control application user interface

C. Object oriented approach to implementing navigation

To navigate the robot the navigation block is used, which
has been already mentioned above. This block cyclically
performs actions, that are used to control the robot move-
ment. Object-oriented approach is used for implementation.
The action is generally implemented as an interface. This
interface contains generally defined methods and properties
that must implement each action. The most important of them
are the method DoAction() and Terminated property.
Method DoAction() is called cyclically, and it controls
the robot. If the action is done Terminated property is set
to True, and the navigation algorithm knows which action
has to be performed. The advantage of this approach is a
generalization of the action and to implement new action is
not necessary to modify any executive navigation function.

V. ROBOT NAVIGATION

Now the navigation block will be described and strategy
robot navigation will be mentioned. The goal navigation is
similar to car navigation. It is calculated list of points to be
achieved to reach the goal. The following paragraphs will
describe the algorithm scheduling checkpoints and perform
a sequence of actions that will lead to the goal.

A. Route planing

The route planning will be briefly discussed. The robot
moves in the known environment, so it has a map. There are
recorded information about possible trajectories of movement
in this map. The aim is to design a trajectory from point
A to point B. For finding the optimal trajectory Dijkstra
algorithm algorithm is used. This algorithm finds the best
route according to the criteria. In this case, the criterion
of segment weight. Weight is the product of the length of
the segment and its coefficient of performance. See equation
(1). In a sense, we can say that it is the shortest route. The
Dijkstra algorithm is presented in a well arranged way in
reference [9].

w = k ·
√

(x1 − x2)2 + (y1 − y2)2 (1)

The base unit of the map is the vertex. Vertex is general
object, which should be comparable. In this case the vertex is
Cartesian point. The another base object is connecting rod.
This object involves start point, end point, weight start to
end and end to start respectively. See equation (2). s is start
point, e is end point, w1 is start to end weight and w2 is
end to start weight. The input parameters for the Dijkstra
algorithm are start point, end point, and list of connecting
rods. The list of connecting rods is extracted from the map.
The output of Dijkstra algorithm is list of vertexes, which
heads to goal.

r = {[sx, sy], [ex, ey], w1, w2} (2)

Obtained list of vertexes corresponds with actions. Each
vertex from list is one partial goal, which should be reached.
Thats is path-planning strategy.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



B. Actions execution

The preceding paragraph described the principle of ob-
taining the actions sequence that need to be done. Now,
the principles will described how actions are performed.
Scheduled actions are stored in the queue. See fig. 4. There
are now stored actions A4 - A7 in the queue. Most recent
actions will therefore perform last. If new action A8 is
inserted, it is put in a queue behind action A7. The queue is
large enough and it does not overflow. A8 action will thus be
added at the end of the queue. On the other side of the queue
are actions fetched and executed. Assume that the stack of
events is now empty and there is no need for replace. In this
case, the actions are sequentially fetched from the queue and
executed.

Suppose that there is a requirement that is necessary to
execute the action A9, which was not planned and should be
performed first. Actions A3 in this case is stored to the stack
and action A9 replaces the current event. Once complete,
A9, the algorithm first looks into the stack. If not empty,
instead of the queue it pick up the action from the stack.
Thus it is possible to heap unplanned actions to the stack.
Example of this is wrong robot direction. Suppose the queue
planned route. In the simplest case, the scheduled actions are
a sequence of checkpoints that must be achieved. Achieving
one point will be done so that the robot will move along
the azimuth direction of the checkpoint. However if desired
azimuth significantly different, it is necessary rotate robot
first. This rotation is different action so it is necessary to
replace the operation and current action push into stack. The
new action must be execute immediately, therefore it can not
be push at the end of the queue.

Fig. 4. Executing action scheme

C. Avoiding obstacles

This section will briefly explain the principle by which the
robot avoid obstacles. See fig. 5. The figure shows the known
and unknown obstacle. The planned route (dashed line)
heads towards goal in an expected ground without obstacles.
However, the sensory subsystem detects an obstacle that
should be avoided. Sensory subsystem evaluate whether it is
better to avoid an obstacle on the left or right and suggests
an alternative route via intermediate point C. The same way

as described in previous chapter, the overcoming obstacles
action is inserted instead of current action. So first robot
reaches point C, and then point B. When it reaches the point
C or detection of another obstacles can be re-generate the
optimal route to reach the destination. This ensures that the
robot is not trying to reach points that are irrelevant. This
approach addresses the situation where the obstacle is located
directly on navigating point. The obstacle avoidance takes
several steps. First step is obstacle detection. The obstacle
detection checks the region, which define the controlled area
in immediate proximity of robot. See equation (3).

R = {[r1x, r1y], [r2x, r2y], ..., [r6x, r6y]} (3)

The laser scan region is defined in Cartesian coordinates
by equation (4) and in polar coordinates (5).

U = {[u1x, u1y], [u2x, u2y], ..., [unx, uny]} (4)

U = {[u1α, u1ABS ], [u2α, u2ABS ], ..., [unα, unABS ]]} (5)

Obstacle detection step checks if one or more points from
region U is inside polygon R. If it is true, then the obstacle
is detected and escape point is calculated. The demanded
angle for obstacle avoidance shows equation (6). W is robot
width and l is obstacle distance. Now the escape angle is
calculated. The laser scan region (5) is checked, whether
demanded angle (6) in certain direction is obstacle free and
that angle is escape angle. The navigation azimuth is adjusted
and the robot runs new azimuth during certain time and likely
avoid obstacle.

α = arccos

(
1− W 2

2l2

)
(6)

Fig. 5. Avoiding obstacles

VI. RESULTS AND TESTING

The robot prototype was built to demonstrate navigation
functionality. See fig. 6. The GPS antenna and electronic
compass is situated on the top. On the front are fitted front
optical and ultrasonic sensors and also laser sensor URG.
Camera is also situated on the front, between the front
SRF08 sensors. Robot was tested on the university area.
Fig. 7 shows robot testing. It was inserted on the random
start position and the goal was also set. The green point is
start position, the red point is the goal. The red arrow is the
robot position on the map during the movement. The robot
automatically calculated the trajectory and started navigate to

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



goal immediately. Figure shows, that the robot is navigated
to each segment on the road towards goal. The violet curve
represents calculated trajectory.

Fig. 6. Robot Aegis

During the tests several issues appears. The robot was built
for roboorienteering competition primary [3]. The area of
the university has several differences instead of competition
area. One of the issue is parked cars. Parked cars are higher
than robot sensor subsystem and therefore robot does not
detect it. Second issue are bollards. Bollard is instead of
car to low to detect. When the robot meet low bollard, it
tries to climb it. Not every time it is possible. In future
work we are expecting sensor subsystem modification. Likely
we adjust the ultrasonic and optic sensors to trace cars and
bollards. Despite obstacle issues the robot is able to move
automatically. When GPS position is available with sufficient
precision, the robot goes on the roads by the map and reach
the goals. When the robot has position with deviation, it still
expect that it is on the road. In actual fact robot is next
to road and likely there are mentioned issues like parked
cars, bollard, trees or high amount of another obstacles. The
situation is better when the bollard is higher or further it is a
wall. In this case the robot detect it and it adjust the azimuth
and follows the wall.

Fig. 7. Testing in university area

One of the advantage of map concept is complex route
planning. See fig. 8. The start point and the destination point
is relatively close. There is no suitable way to reach the goal
direct. There is forbidden area. It is not important way is
the area forbidden, there might be ravine, or hard terrain or
something else. The basic impact is the robot choose another
way to reach the goal, which is likely safer.

Fig. 8. Route calculation

VII. CONCLUSION

We were making the robot prototype with GPS navigation
on the map and it was tested on the university area. For
next year we will the research goes on and we will take
part the roboorienteering competition. The main advantage
of map concept is the ability of calculate complex trajectory.
As it is shown in fig. 8, the route to goal is much different
than straight direction. Another advantage is knowledge of
obstacles, especially steel construction. Steel construction
may affect the compass and GPS precision. In case the safety
roads in the map are created with respect to steel construc-
tion, the robot do not move close. The main disadvantage is
mentioned dependency on GPS signal. For the future work
is expected, that we solve the issues with GPS signal. For
the future work we will implement one of the known method
such as fuzzy logic [7].

REFERENCES

[1] J. Kotzian, J. Konecny, H. Prokop, T. Lippa, M. Kuruc, “Autonomous
explorative mobile robot navigation and construction,” in Roedunet
International Conference (RoEduNet), 2010 9th , vol., no., pp.49,54,
24-26 June 2010

[2] J. Konecny, M. Kelnar and M. Prauzek, “Advanced Waste Rock Explor-
ing by Mobile Robot.” Applied Mechanics and Materials. 2013, 313-
314, s. 913-917. DOI: 10.4028/www.scientific.net/AMM.313-314.913.

[3] Roboorienteering. Roboorienteering, 2013 URL:
http://www.vosrk.cz/roboorienteering/

[4] Snail Instruments, 2013 [cit. 2013-07-02]. URL:
http://www.snailshop.cz/

[5] News from Kontron.com. Kontron, 2013 [cit. 2013-07-02]. URL:
http://emea.kontron.com/products/boards+and+mezzanines/embedded
+sbc/pitx+25+sbc/pitxsp.html

[6] HOKUYO AUTOMATIC CO.,LTD.: Photoelectric switch, FA sensor,
Parallel I/O, HMD/CMD, Laser distance sensor and for Robots, 2013
[cit. 2013-07-02]. URL: http://www.hokuyo-aut.jp/

[7] Seraji, H.; Howard, A., ”Behavior-based robot navigation on chal-
lenging terrain: A fuzzy logic approach,” Robotics and Automation,
IEEE Transactions on , vol.18, no.3, pp.308,321, Jun 2002 doi:
10.1109/TRA.2002.1019461

[8] Lixiao Guo; Qiang Yang; Wenjun Yan, ”Intelligent path planning for
automated guided vehicles system based on topological map,” Control,
Systems & Industrial Informatics (ICCSII), 2012 IEEE Conference on ,
vol., no., pp.69,74, 23-26 Sept. 2012 doi: 10.1109/CCSII.2012.6470476

[9] Huijuan Wang; Yuan Yu; Yuan, Q., ”Application of Dijkstra algorithm
in robot path-planning,” Mechanic Automation and Control Engineer-
ing (MACE), 2011 Second International Conference on , vol., no.,
pp.1067,1069, 15-17 July 2011 doi: 10.1109/MACE.2011.5987118

[10] Kuhnert, K., ”Software architecture of the Autonomous Mobile Out-
door Robot AMOR,” Intelligent Vehicles Symposium, 2008 IEEE , vol.,
no., pp.889,894, 4-6 June 2008 doi: 10.1109/IVS.2008.4621234

[11] Ohno, K.; Tsubouchi, T.; Shigematsu, B.; Maeyama, S.; Yuta,
S., ”Outdoor navigation of a mobile robot between buildings
based on DGPS and odometry data fusion,” Robotics and Au-
tomation, 2003. Proceedings. ICRA ’03. IEEE International Con-
ference on , vol.2, no., pp.1978,1984 vol.2, 14-19 Sept. 2003 doi:
10.1109/ROBOT.2003.1241884

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013




