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Optimal Deceleration of Rotations of an
Asymmetric Body with a Cavity Filled with
Viscous Fluid in a Resistive Medium

Leonid D. Akulenko, Dmytro D. Leshchenko, Alla L. Rachinskaya, and lanina S. Zinkevych

this paper, we investigate the problem of time-optimal
Abstract— A minimum-time problem on deceleration of deceleration of rotations of a dynamically nonsymmetric
rotations of a free rigid body is studied. It is assumed that the body with a spherical cavity filled with highly viscous fluid
body contains a spherical cavity filled with highly viscous fluid. 5 'sma|| Reynolds numbers). In addition, the rigid body is
The body is subjected to a retarding torque of viscous friction. subjected to the action of a small retarding torque of linear
It is assumed that the body is dynamically asymmetric. An i . i
optimal control law for the deceleration of rotations of the body ~esistance of the medium. The rotations are controlled by a
is synthesized, and the corresponding time and phase bounded torque, which can be exerted by vernier jet engines
trajectories are determined. [7]. The model under consideration generalizes the results
obtained earlier in [7-11]. The problem of optimal
Index Terms—optimal deceleration, resistive medium, geceleration of rotations of a dynamically symmetric body
asymmetric rigid body, cavity filled with viscous fluid containing a viscous—elastic element and a cavity filled with
fluid is studied in [8]. The problem of time-optimal
deceleration of rotations of a dynamically symmetric rigid
) ) ] ~body with a spherical cavity filled with highly viscous fluid
ANALY_S_IS of the motion of hybrid systems (i.e., object;ng 3 moving mass attached to the body by an elastic joint
containing elements with distributed and concentrat§gli, quadratic dissipation is considered in [9]. The problem
parameters) is of interest both theoretically and practicallys optimal deceleration of rotations of a dynamically
This analysis can be done within the framework of theymmetric body with a cavity filled with highly viscous fluid
theory of singularly perturbed problems. Important result§ ¢onsidered in [10], where the rigid body is subjected to a
were obtained for systems containing quasi-rigid bodiegm )| torque of viscous friction of the external medium. The
Combined rotational and translational motions of thes&oblem of time-optimal deceleration of rotations of a
systems are close (under certain conditions) to the mOtion(ﬂfnamically asymmetric body in a resistive medium is
absolutely rigid bodies. The influence of non-ideal featuregnsidered in [11]. Approximate solutions of perturbed
are reduced to the effects of the temporal boundary laygfopiems of time-optimal deceleration of rotations of rigid
type and to additional perturbing moments in the Eulgfogies about the center of mass (including objects with
equations of angular motion of a fictitious rigid body afte[nernal degrees of freedom) with applications to the
the completion of transient processes. The analysis Qﬁacecraﬂ and aircraft dynamics were obtained in the
motions of a rigid body with a cavity filled with a Viscousmonograph [7]. There, the deceleration of bodies having a
fluid and in a resistive medium had received much attenti%viw with viscous fluid was studied. The cases of
[1-6]. The control of rotations of quasi-rigid bodies using,isymmetric and asymmetric (in the undisturbed state)
concentrated (applied to the frame) torques received Ig5Syies with a spherical cavity filled with highly viscous fluid
attention. Researchers managed to distinguish a class,\fre considered. The deceleration of perturbed rotations of
systems leading to smooth controls making it possible o igid hody close to a spherically symmetric one under the

apply singular disturbance methods without accumulation gktion of the torque exerted by the linear resistance of the
boundary layer type errors appearing in the case Rfadium was analyzed.

discontinuous (for example, bang-bang) controls [7-9]. In
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Here, o = (p,q,r) is the vector of absolute angularwith respect tow . Below, we suppose that= b(¢t,G) (or

velocity, J= diagA ,4,,4,) is the tensor of body inertia, b = b(f) or b = const).
We pose the problem of time-optimal deceleration of

M" is the vector of control torqueM” is the dissipation )
rotations

torque, andM°* is the torque of viscous fluid in the body
cavity. The kinetic moment of the body is determined in the
standard way as It is required to find an optimal contral = u(t,®) , the

G=Jo,G=(G.G,G,), G =Ap, G, =Aq,

olt) =o', oT)=0, T —min_, [u <1. (5)

corresponding  trajectory (t,t,,0"), the  time
Gy =4, T =T(t,0'), and the Bellman functionV = T(t,®).
where G — |G| — (Glz +G 4G )% is its magnitude. Based on dynamic programming and the Schwarz inequality,

under the simplifying condition on the coefficient

constraints into system (1); in particular, we assume that t‘]lé: b(t,G) =, (t,G), where the zero subscript will be
omitted below) a time-optimal control is constructed in the

feasible values of the control torqiM" belong to a sphere ; .
[7]). This assumption is not inconsistent with the masS'™m" (see [7])

To simplify the problem, we introduce structural

distribution and shape of the rigid body and is often used in ,, _ _bﬂ M = ﬂ M —=—b Ar
attitude control problems. It is also believed that the =~ ” P o '
diagonal tensor of the external resistance torque is b:b(t G). (6)

proportional to the moment of inertia tensor; i.e., the

dissipation torque is proportional to the kinetic moment: With regard to external force factors, the torque of

M = - Nao. @) viscous fluid in the cavityM* is determined as (see [1])
Here, A is a constant coefficient depending on the p m,
medium properties. The resistance acting on the body is M =P m, |, @)
represented by a pair of forces. In this case, the projections Yim
of the moment of this pair on the major axes of body inertia H ’
are AAp, M,q, MA,r and [4, 5]. This assumption is not where ,
contradictory. m, = p|\° +b—2 +2—/\bp +i A +£]><
Next, we assume that the cavity is filed with highly G G4 G

viscous fluid; i.e.,0 >>1 (97" ~ ¢ < 1). The shape of the Gay, ) y
cavity is supposed to be almost spherical; then, following * 3qr(As *Az)+ _ o q(o‘zl +O‘is?)*sz‘z +
[1], for the tensorP of the viscous forces, we have "
p 2
S o 8mpa’ - A4 —4,)(4, -4, + A)+
P = Pdiag1,1,1),P = ——, 3
g1,1,1) ~o50 ®) AAA
where p, ¥ are the fluid density and kinematic viscosity, +r°A (A — A,)(A, — A, + A])}.

respectively; anda is the cavity radius. The tensaP, The expressions fom, andm, are obtained fromn, in

which depends only on the cavity shape, characterizes the ) )
internal dissipative torque in the quasi-static approximatidk{) PY @ cyclic permutation ofl,, 4,, 4, and p, ¢, r.
due to the viscous fluid in the cavity. For simplicity, Egs. (1) 2 b 2D

. . - 2 .
use the so-called scalar tensor defined by a single scaldle coefficients A +E' )\+E and el in

P>0. The components of this tensor have the form

P =P§_, wheres_ are the Kronecker symbols (the tensor (i=1,2,3) remain unchanged, and the terms containing
ij i’ ij

~ . . o . , , al > have a similar form. The direction
P has this form if the cavity is spherical, for example). s @ Y +o

the cavity is significantly nonspherical, there areosinesc, are expressed in terms of the Euler angles
considerable difficulties in determining the

tensory,  and ¢ according to well-known formulas [12].
components.

o Neglecting the influence oM" and M" on M‘, we obtain
The admissible values of the momeMt of the control the torque of viscous fluid in the cavity in the form

forces are assumed to be bounded by the sphere P
M = bu,[u| <1;b=b(te), M =
AAA,

x )

0<b <b<b <oo, 4)

where b is a scalar function bounded in the domain of
variation of its arguments and G according to conditions
(4). This domain is given a priori or can be estimated from

the initial data forG (G(t,) = G’) by integrating Eq. (1)
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, CAA —A)A —A +A4)+ ::e meiiur; drag. Tf?e tint;rnzzl(';())r((]-ue otfhth? vis;:o:bs(ZI)uid in
e cavity has no effect. lf = i.e., the functio
+T2A3(A1 7A3.)(A3 —4, +AL) 4

rPAA —A)A —A +A)+

is independent ofG ), we obtain the solution of boundary
problem (10)

Nap A — A4, -4 —a) || t
) p?,ql(A3 —A)A — A +A)+ Git)=G" exp(—)\(t—to))—fb(T)eXp(—)\(t—T))dT,
g A (4, — A)A — A, — A) a

accurate to a first-order infinitesimal.
We consider this expression only in the first whereG® = exp(-\t,) fb Jexp(Ar)dr .
approximation. The equations of controlled motion (1) f
simplified on the basis of expression (8) in projections on According to (4), Eq. (11) is solvable with respect to the

the major central axes of inertia have the form unknown 7', which leads to the construction of the time-
. Ap optimal solution. Heret is the current time of deceleration
Ap+ (Ax B Az)qr = _b? —AMp+ ) and T is the optimal time. Fob = const and t, =0, the
P , solutions of equation (2.1) and boundary problem (11) are
+A1A?A P[q A A —A)A, —A +A)+ written as
3
_ Lo
: Ayq R S
AquF(Al_A:a)P?”:_bF_/\‘% q+ T_XIH(G ;Jrl). (12)
P , Next, we consider in detail case (12). Let us multiply the
+A1A?A Q[T A (A, —A)A —A +A)+ first equation in (8) byp, the second equation by, the
’ third equation byr, and sum the results. The resulting
+p"A (A, —A)(A - A + Az)], expression for the derivative of the kinetic enefgyis
. Ar H= _2H A P lpzq2 —4) x (13)
A3T+(AZ—A1)pq=—b?—/\A3r+ G’ AAA (Al AZ)
2
A A4 ) (A (4 AF (44 )
3

wrt (4,4 ) (4 -4, -4)).

Consider an undisturbed motioh £ A = ¢ = 0). Recall
that the cavity contains a highly viscous fluid and
9! ~e <1, where ¢ is the kinematic viscosity. In the
absence of perturbations, the rotation of the rigid body is a

. SOLUTION OFTHE OPTIMAL DECELERATIONPROBLEM  Euler—Poinsot motion. The variableéS and H become
constant andp, ¢, and # are functions of timet. The

+g 4,(4, = A,)(4, — 4, + 4))].
The kinematic relations are omitted because Egs. (9) form
a closed system. These equations are further analyzed.

Let us note that the torque exerted by viscous fluid in tHe
cavity is internal, while the torque of the linear drag of th&low variables in the perturbed motion akeand H , and
medium is external. Multiplying the first equation in (1.8) byhe fast variables are the Euler angles, and 6 .

G., the second equation bg,, and the third equation by ~Consider a  motion ~ under  the  condition

) . . .
G, , and summing them (scalar prodi@t G ), we obtain 2HA > G” > 2HA, corresponding to the trajectories of the

kinetic moment vector, which envelope the major torque

scalar equation to be integrated: ) )
axis Oz, . Define

G=-b(tG)- G, G(t,)=G". (10)

Upon solving Cauchy problem (10), we obtain from the , (A2 - Ag)(2HA1 - GZ)
condition of stopping the rotation (5) the required expression (A1 _ AE)(GZ _9HA )
for the time T = T(tO,GO) and the Bellman function ’

<k <1), (14)

which is the module of elliptic functions describing this

W(t, G) - T(t, G). motion and is a function of the kinetic momefit and the
kinetic energyH (in the case of unperturbed motion, it is a

Recall thatG = Jo . constant)

. In the general c.ase,. for an.arbltrary functior: b(, G) ~ To construct the averaged first-approximation system of

in (10), the analytical integration of the Cauchy problem igquations, we substitute the solution of the unperturbed

complicated; however, it can be solved numericallyzuler—Poinsot motion into the right-hand side of Eq. (13)

Equations (10) imply that the evolution of the magnitude afnd average over the variable and then over timet
the kinetic moment: is affected by the control moment and
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taking into account the dependences@fand 6 on ¢. separated. An analysis of Eq. (16) shows that there are no

Here, we retain the notation for the slow variabl@sand stationary values ot except fork =0 andk =1.
H . As a result, we obtain

dH 20H
m = _T —2\H — (15) IV. NUMERICAL CALCULATION
APH? We reduce Eg. (15) and (16) and the differential equation
_ (4, — Aa)(Al —4,)(4, - As) % for b = const the kinetic moment for to a dimensionless
BATAIALS® (k) form. As the characteristic parameters of the problem, we

use the value of the kinetic moment at the initial time

A = A)A + 4, = A)[FVE) - U]+ G, = G(t,) and the timeT (12):

FA (4, = A) (A, + 4, — A)|[(F —2U (k) + K |+ LG ot
FA (A = A)A + A, = A0 - 280w + 8]} G T o o
The value of the dimensionless kinetic energy is defined
whereU(k) = 1—@ , (see [1]) as
K(k) - 2HA
H = o
? B(k)
SPk)y=1A —A +(4 —A K|, V() =1+—+=. 0
®) M 4 (Al Ay) ] ®) K(k) We obtain a dimensionless system in the form
Here, K(k) and E(k) are the complete elliptic integrals ;¢ b ) oae  PTGG (A1 —A3)
) . . L —=—|—+ NG| T, — = ‘ X
of the first and second kind, respectively [13]. Equationg; G, di 3AP A2 A2
1

(2.6) implies that the resistance of the medium and the
torque of the viscous fluid in the body cavity as well thé<[A2 (4, + 4, 7A2)+2A1A3}><

control moment cause the evolution of the kinetic endigy E(k)

of the body. The expression in the braces on the right—ham{(l — A=k -[Q=-x)+ 1+ x)kZ]ﬁ] ,

side of equation (15) is positive (fof, > A, > A,) because (

of the inequalites (1-k*)K <E <K (see [13]). ﬁ =-T % +20\H + (17)
0

Consequently,dH /dt <0 becauseH >0; i.e., H is a
2 172

strictly decreasing variable for ary € [0,1]. Note that Eq. + APG H™ (A4 —A)(A —4)(4, —4) %

(15) has an essential singularity @s— 0 . 3ATAALS? (k’)

Differentiating expression (14) fa¥* with regard to (15), B B V) — Uk
we obtain a the differential equation X{A2 (4 - 4)A4 + 4, AE)[ ik = U( >]+

ae PC(A = A)A (A +4, - 4)+244) a5) FA (4, = A) (A, + 4, — A)|[(F = 2U (k) + |+
- = X
di BAALAT +4,(A, = A)(A + 4, — A)[(1—2K")U(K) + & }}) .
x{(l —)A =) —[1—x)+ 1+ )k ]@} , Here, we performed averaging because expressions (13)
K(k) and (14) imply thatd and k* are slow variables. We make
3A2[(A12 +Af)*142(141 + A)] a numerical integration of system (17) over the interval
where x = (A —A)AA +A —A)+24A] [0,1], which corresponds to complete body deceleration.

Equations (15) and (16) were obtained by the method ®he initial function values for this calculation were
averaging [1, 2, 7]. This corresponds to the fact that tr@(o) =G, =1, ﬁ(o) =1, and £*(0) ~ 1. The moments
kinetic energy of the body rotation is much greater than the
control vector magnitude, the resistance of the medium %

assumed to be weak of the infinitesimal order and the A = 4. The calculations were performed for various values
cavity is filled with highly viscous fluid.

inertia have the values (see [1}} =8, A, =6, and

, ’ _ _ ~of XA, b, and P, which makes it possible to study the
The value k” =1 is associated with the equalityinfiyence of different force factors on the character of the
2HA, = G*, which corresponds to the separatrix of theigid body deceleration. For each case, we first calculated

Euler—Poinsot motion. Equation (16) describes the averaghtg deceleration time and then the characteristics of the body
motion of the endpoint of the kinetic moment vecron a  Motion in the corresponding time interval. _
sphere of radiusG . Notice that the evolution of? is Figures 1 and 2 illustrate the numerical analysis for

affected only by the torque of the viscous fluid in the cavity? =10"", b=10"", and A = 0.5,10"",10* (curvesl, 2,

and, because this equation is integrated independently, i 3, respectively). It is seen that the decrease in the
influence of the torque of the viscous fluid in the cavity, thenoment of medium resistance forces leads to a decreased
control moment, and the resistance moment is partiagfadient of the body deceleration and an almost linearly
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dependence of the kinetic moment (cuBva Fig. 1) of the moment of resistance forces and the control moment.
~ The numerical results show that, for the values oft , and
S . . . . . P indicated above, the module of elliptic functiohs
' : : insignificantly decreases from around 1 to 0.9996.
i

ogl ................... ................... 12 ' ' ' ' '

| osl & S R
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oal O SR ]

% ’ 0.4 08 12 7 ]
Fig. 1. Changing magnitude of the kinetic moment for different
0 : : . : ~
0 0.4 0.8 12 ¢
H Fig. 4. Changing magnitude of the kinetic energy for diffetent
1.2

0 Y ' Y 12 7

Fig. 2. Changing magnitude of the kinetic energy for different

G
12

0 ’ 02 ’ 04 ' 06 8,5y,

Fig. 5. Dependence of the deceleration time on the parametebs,
and A

08 L IERPRPPRRIPR D] V. SOLUTION OF THE OPTIMAL DECELERATION PROBLEM
UNDERTHE ASSUMPTIONb = b, + (3t

: The deceleration time of a rigid body can be determined
0T TN e N SELEEERARRRRRRRRAN from Eq. (10); it depends on the coefficients b, and A
characterizing the control moment and the moment of
resistance forces, respectively. The numerical integration
, i , ! _ illustrates how the deceleration time depends on these
0 04 08 12 7 parameters (see Fig. 5). Curvds 2, 3 illustrate the
Fig. 3. Changing magnitude of the kinetic moment for diffeient dependence of the deceleration time on the paramgters

0

Figures 3 and 4 show the results of calculations fdf , and \, respectively. For each curve, the deceleration

P=10", A=10", andb=107,5-10",5-10"" (curves time was calculated in the range from 0.01 to 0.5 for the
1, 2, and3, respectively). It is seen that the increase in theorresponding parameter (the values of the other parameters
moment of control forces (curvd in Fig. 4) leads to a were taken to be 0.1). It can be seen that the deceleration
speedup of the body deceleration and an almost lineatigne for all the curves is a minimized by the maximum

changing magnitude of the kinetic moment at large values wilues of the parameters in the admissible range. C@rves
b (curve3in Fig. 3). and 3 are close to straight lines, and culvés close to an

The change ofP from 1 to 107 has no effect on the exponential curve. The minimum deceleration time of the
general behavior of the functiors = G(f) and H = H(f) rigid body was obtained for the parametéy, which

because the torque of the viscous fluid in the cavity does refiaracterizes the value of the control moment at the initial
appear in the first equation of system (17) and its effect dime.
the change of the kinetic energy is smaller than the influenceSystem of equations (17) was numerically integrated for
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different values of parameter®, X, 0,

and g with that are close to rotations about the axkls was also

account for the lawb = b, + 3t . Figure 3 (curved and5) ~Studied.

corresponds to the numerical calculation for constant

. ) . . VI
parameters of resistance torque and viscous fluid torque in ) i ) )
the cavity P = 0.1 and \ = 0.1 for different values of the ~ 1he problem of time-optimal deceleration of rotations of a

dynamically nonsymmetric quasirigid body in a resistive
medium was studied analytically and numerically. The
b, = 0.01 and 3 = 0.1 (curveb). Under this law of change asymptotic approach made is possible to determine the
the behavior of the functiorfOntrol, time (Bellman’s function), evolutions of the square
of the magnitude of the elliptic functions modulis, and
dimensionless kinetic energy and kinetic moment. The
gualitative properties of the optimal motion were found.

CONCLUSION
control moment: 5 =0.1 and 3 =0.1 (curve 4), and

in the control moment,
G = G(t) is substantially different from that of the kinetic

moment function ab = const.

it

=
b
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