
 

  
Abstract—This paper presents a safe path estimation 

method for visual-impaired people in an outdoor sidewalk 
environment. Unlike many existing methods that rely on 
stereo-vision, the proposed method aims to detect generic 
obstacles in a cluttered road environment by using just single 
camera mounted at user’s belly. One of the main difficulties of 
using single camera in outdoor navigation task is the 
discrimination of obstacles with cluttered background. To solve 
this problem, this paper makes use of the inhomogeneous 
re-sampling property of top-view transform. By mapping the 
original image to a top-view virtual plane using top-view 
transform, background edges in the near-field are sub-sampled 
while obstacle edges in the far-field are oversampled. 
Morphology filters with connected component analysis are 
used to enhance obstacle edges as edge-blobs with larger size, 
whereas sparse edges from background are filtered out. Based 
on the identified obstacles, safe path is estimated by tracking a 
polar edge-blob histogram on the top-view domain. The 
algorithm is tested in different sidewalk scenes with complex 
pavements, and its efficiency has been confirmed. 
 

Index Terms — obstacle detection, monocular vision, 
top-view transform, polar edge-blob histogram 
 

I. INTRODUCTION 
Authoritative statistics have shown that about 1% of the 

world population is visually impaired, and among them 
about 10% is fully blind. One of the consequences of being 
visually impaired is the limitations in mobility. Therefore, 
many electronic travel-aid systems have been developed to 
provide assistance to blind people in a certain local 
environment. Electronic travel-aid systems can be 
categorized depending on how to sense the environment and 
how to inform the blind user [1]. In general, environment can 
be sensed through ultrasonic sensor, laser sensor, or camera, 
and users can be informed via auditory or tactile sense. In 
recent years, camera based travel-aid systems have won 
much attentions due to its advantages like large sensing area, 
rich sensing data as well as low cost.  

Most existing vision-based travel-aids systems are 
developed using stereo vision methods. In these systems, 
stereo cameras are used to create a depth map of the 
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surrounding environment. The distance information 
contained in this depth map is then quantized into certain 
kind of grid representation, which are converted into tactile 
or auditory sensing modalities so as to be perceived by the 
visual-impaired user. For Instance, TVS[2] and Tyflos 
navigator system[3][4] quantize depth map into a regular 
grid representation, which is converted into vibration 
sensing on a 2-D vibration array attached on the user's 
abdomen. ENVS system [5] quantize depth map to a 
rectangular block representation, which maps to electrical 
pulses that stimulate user's fingers. In[6], depth map is 
quantized to a polar grid representation, which is 
transformed into an acoustic sound space.  

Although  many  stereo-vision  based  travel-aids systems 
have been proved to be effective under certain environment, 
some problems still exist. First of all, due to the high 
computation cost of getting a dense depth map, most of these 
systems tend to directly convey the quantized depth 
information to the user without doing any safe path 
estimation process. As a result, users  have  to  estimate a safe 
path themselves by sensing and judging the transformed 
auditory or tactile pattern from the depth map. This makes 
the system less easy to use  and  requires  much  user  training. 
In addition, the accuracy of depth map is largely dependent 
on stereo matching, which is a challenging task in cluttered 
outdoor scenes.  

Despite stereo-vision based system, systems using only 
single camera were proposed as well. Compared with stereo 
cameras, single camera is more compact and easier to 
maintain. Some of these mono-vision based systems focused 
on identification of object pixels among background pixels. 
For example, in [7], region growing segmentation is used to 
discriminate obstacle pixels with the background. in NAVI 
system proposed by Sainarayanan et al.[8], a fuzzy learning 
vector quantization (LVQ) neural network is trained for the 
classification of object pixels and background pixels. 
Although the obstacle detection performances for these 
systems in simple indoor environment is encouraging, their 
performances may get deteriorate in outdoor environment 
with various illumination changes and complex background. 

In this paper, we present a monocular vision approach to 
do obstacle detection and safe path estimation for assisting 
visual-impaired users to pass through a pedestrian path. In 
the proposed method, a camera is attached at blind user’s 
belly and looking downward to the road in front. The basic 
idea for obstacle detection is to discriminate obstacle pixels 
with background pixels. In contrast to Sainarayanan’s 
method that made use of pixel-wise features, edge-based 
features are explored to discriminate obstacles with road 
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pavement background. By re-sampling the original image 
pixels and mapping to a top-view virtual plane, clutter edges 
from background in the near field are suppressed, while 
obstacle edges in the far field are enhanced. Morphology 
filters are then used to enhance this inhomogeneous 
re-sampling effect on connectivity and scale of edges, so that 
obstacle edge-blobs can be identified easily by connected 
component analysis. To find a safe path, a polar distortion 
model of obstacles are built on top-view domain, based on 
which a polar edge-blob histogram is calculated by scanning 
all the polar directions to check edge-pixel accumulations 
that lie on each polar direction. The part of histogram where 
the biggest valley appears is detected and tracked to find the 
largest area where no obstacle edge-blob exists. 

II. OBJECT DETECTION ON TOP-VIEW DOMAIN 

A. Top-view Re-sampling and Mapping 
   Top-view transform is in nature an inhomogeneous 
re-sampling and mapping process. In this section, the 
re-sampling and mapping process is re-formulated in 
horizontal and vertical directions, and the re-sampling effect 
on the scale and connectivity of edges is discussed.  
 

 
(a) Vertical direction re-sampling and mapping. 

 
 

 
(b) Horizontal direction re-sampling and mapping. 

 
Fig. 1. Top-view re-sampling and mapping model. 

 
The model of vertical direction re-sampling is illustrated in 
Fig.1 (a). In Fig.1 (a), Cr is the real camera center with Sr as 
its image plane, while Cv is the virtual top-view camera center 
with Sv as the virtual top-view plane. To figure out the 
re-sampling relationship between Sr and Sv  plane, the only 
parameters that require are φ and θ. By the geometrical 
description in Fig.1 (a), for each point Pv on the virtual 
top-view plane Sv, its corresponding sampling point Pr on the 
real image plane Sr can be calculated based on their common 
projection point Pg on the ground plane. As in (1) shows, for 
each point i on top-view plane, its corresponding sampling 
point h on the real image plane can be obtained. The model of 
horizontal re-sampling is illustrated in Fig. 2 (b), for each 
row Wk in Cr’s field of view on the ground plane, its length 

can be calculated according to the triangular similarity, and 
by comparing Wk with Cv’s field of view on the ground plane, 
the sampling ratio can be computed. As in (2) shows, the 
sampling ratio Ws for each row on the top-view plane can be 
finally calculated. 
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             (a) Original image                           (b) Top-view image 

 

  
           (c) Original edge map                      (d) Top-view edge map 
 

Fig. 2. Effect of top-view re-sampling and mapping. 
 

Fig.2 shows the effect of top-view mapping by comparing 
original edge map with top-view edge map. On original edge 
map in (c), obstacle edges are mixed with clutter edges from 
the background, which makes it difficult to discriminate 
obstacle’s edges with those pavement edges around. However, 
on top-view edge map in (d), the top-view re-sampling 
process enhances the scale and connectivity of obstacle edges 
in the far field while suppresses clutter edges in the 
background. Compared with the edge map of original image 
in (c), it is obviously much easier to discriminate obstacle 
edges on top-view domain in terms of their scale and 
connectivity. 

B. Obstacle Edge-blob Extraction 
After top-view re-sampling and mapping, the obstacle 

edges are enhanced in terms of scale and connectivity. To 
further emphasize this effect, a combination of morphology 
operations and connected component analysis is used to 
extract edge-blobs with large size. These edge-blobs are 
regarded as candidate obstacle representations. 

Here a 3×3 rectangular structure element is used to remove 
pavement edge segments with an opening operation, 
followed by a closing operation to fill the gaps inside 
remaining foreground pixels. A connected component 
labeling operation is then applied to group the connected 
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foreground pixels into blobs. Blobs with size smaller than a 
pre-defined threshold are discarded. As shown in Fig.3(c), 
many small edge-blobs from pavement are eliminated by 
opening operation, and closing operation fixes the shape of 
foreground blobs. Finally, as shown in Fig.3(d), only two 
major edge-blobs are selected, which correspond to possible 
obstacle regions on the top-view. 

   
             (a) Top-view image                            (b) Top-view edge map 
 

   
           (c) Morphology filtering                       (d) Major edge-blobs 

 
Fig. 3. Edge-blob extraction 

III. SAFE PATH ESTIMATION 

A. Obstacle Projection Model on Top-view 
Due to the top-view re-sampling effect, the shape of a 

generic obstacle with quasi-vertical boundaries will be 
distorted on the top-view domain. Here an interesting 
property of this distortion is that, an obstacle which rises up 
from the ground surface would be elongated in the direction 
of an imaginary connection line joining the camera’s 
perpendicular projection on the ground and the base point of 
the obstacle in top-view images, as is shown in Fig.4.  

 

 
Fig. 4. Obstacle projection model on top-view domain. 

 
    This geometric property means that, obstacle edges should 
also lie along this connection line on top-view image. 
Therefore, vertical obstacle’s edges should lie on series of 
radial orientations with respect to the camera’s projection 
point on the top-view plane. This vertical line distortion can 
be partly explained by the inhomogeneous re-sampling 
process, while it can also be derived from formula on Inverse 
perspective mapping[9]. As is shown in (3), the point on the 

real image plane Sr is represented in (u, v), and point on the 
ground plane SG is represented by (x, y, 0). Vertical lines on 
the image plane Sr can be represented by v = k, while k is a 
constant value, substituting this into (3), we can get (4), 
where c1 and c2 are constant terms. Finally, we can obtain (5), 
where (l. d) represents camera center’s projection point Pr on 
the ground plane. 
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B. Polar Edge-blob Histogram 
Based on the obstacle projection model on top-view 

domain, here a polar edge histogram is constructed on the 
top-view plane for the estimation of safe path. As is shown in 
Fig.5(c), on the edge map, from the right boundary to the left 
boundary, polar directions (marked in red dash line) are 
sampled with respect to the convergence point C, which 
corresponds to camera’s perpendicular projection point on 
the ground plane. For each sampled polar direction, the 
number of edge-blob pixels that lie along this direction is 
counted. By accumulating all the sampled polar directions, a 
polar edge-blob histogram can be constructed as shown in 
Fig.5(d).  

 

   
             (a) Original image                                 (b) Top-view image 
 

   
           (c) Safe-area estimation                      (d) Polar edge histogram 

 
Fig. 5.  Safe path estimation through polar edge-blob histogram. 

  
In polar edge histogram, the horizontal axis represents 

sampled polar directions in angles, and the vertical axis is the 
number of edge-blob pixels that lie along each sampled 
direction angle. The bins with high values indicate the 
directions where obstacles appear, while bins with zero 
values correspond to the directions where no obstacles exist. 
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Therefore, safe-area should be estimated by the bins with zero 
values.  

Since the camera is mounted on user’s body, the camera 
will show some swing motions due to the movement of 
human body. These swing motions will bring additional 
noise to the safe path estimation. To estimate the safe path 
more steadily, the largest valley bin group on polar edge-blob 
histogram is tracked. For tracking initialization, consecutive 
zero-value bins in frame t are grouped and sorted according 
to their group size. Then the largest bin group is selected as 
the tracking group in frame t. In the following frame, the zero 
bin group that is closest to the tracking group in frame t-1 is 
selected as the tracking group in frame t. If the size of 
tracking group is smaller than a threshold, then tracking will 
be stopped and re-initialized from the beginning.  

IV. EXPERIMENTAL RESULTS 
   To test the performance of the algorithm, we attached a 
camera on a belt and fix it at user’s waist, pointing a little bit 
downward to the road ahead of user, as is shown in Fig. 6. 
The camera is simply a Logitech webcam, which captures 
color image at 320 ×240 resolution in 30 fps. The safe path 
algorithm is implemented using Visual C++ under MS 
Windows platform, which runs on a laptop computer with 
1.8GHZ CPU and 2GB DDR memory. The webcam captures 
images of the road environment, and then processed by the 
path finding software which runs at the laptop computer 
carrying in user’s backpack.  
   To make a top-view mapping, camera's downward viewing 
angle and its angular aperture should be measured. By using 
these two parameters and applying formula (1) and (2), a 
mapping table is made to store the mapping relationship 
from one point on the top-view domain to its corresponding 
location on the original-view domain. With this mapping 
table, top-view re-sampling and mapping can be done very 
efficiently. 
 

  
 

Fig. 6 . Experimental set up.  
 

   The algorithm is tested on several outdoor pedestrian path 
scenes, with various roadside structures and cluttered road 
surface. A test scene sample is shown in Fig.7, where 
processing results on original view and top-view are 
compared. In Fig.7(a), edge map on original image is 
examined by a vertical projection histogram. Due to the 
influence of clutter edges from the pavement, it is very 
difficult to discriminate a person located in the upper-right 
corner with background clutters in the image. In contrast, 
clutter edges are suppressed while obstacle edges are 
enhanced on the top-view edge map shown in Fig.7(b), and 
the location of the person can be clearly identified on the 
polar edge-blob histogram.  

 
        (a) Original view processing                    (b) Top-view processing 

 
Fig. 7. Original-view and top-view processing comparison 

 
    To evaluate obstacle detection performance, the test scenes 
are divided into three sets, including pedestrian paths in open 
space scene, park scene and urban scene, some sample 
images from these three different test sets are shown in Fig.8. 
 

 
(a) Open space test set 

 

 
(b) Park test set 

 

 
(c) Urban test set 

 
Fig. 8. Sample images from test sets. 

 
   All the critical obstacle positions are manually labeled on 
the top-view images of these test sets. A true positive (TP) 
detection is defined to be such that the detection corresponds 
with an actual obstacle, and the deviation should not exceed 
20% of the obstacle’s size, otherwise it is considered as a 
false positive (FP), obstacles that have not been detected is 
false negative (FN). Table 1 shows the detection results on 
three test sets. For safe path estimation, it is very critical to 
control the false negative rate for sake of safe navigation. 
Therefore, during testing, the algorithm parameters are 
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tuned in such a way to achieve an acceptable true positive rate 
while keeping false negative rates as small as possible. 
 

TABLE I 
OBSTACLE DETECTION RESULTS  

Test sets Obstacle TP FP FN 

Urban 365 314 32 12 

Open 278 263 11 5 

Park 212 193 13 8 

 
   Since the proposed algorithm relies on radial distribution 
of edges on top-view domain, when strong background edges 
appear in similar radial patterns with that of obstacles on 
top-view, they may give rise to FP cases. Moreover, small 
planar obstacles in the near field may be sub-sampled heavily 
on top-view, which makes it difficult to discriminate with 
ground clutters. Therefore, small holes or stones on cluttered 
road surface may not be properly detected, which give rise to 
FN cases.  In the test, open space set achieves a high TP rate 
of 94.6%, as this set involves mainly vertical obstacles like 
pedestrians, and less cluttered road surface. While in urban 
set, only 86% TP rate is achieved, due to highly cluttered 
road surface as well as many planar obstacles in small size.  
   To show the effectiveness of the proposed algorithm on 
top-view domain, an obstacle detection method [10] using 
edge-blobs on original view is implemented and tested on the 
urban test set. The quantitative comparison between the two 
algorithms is shown in Fig. 9. The ROC curves are generated 
by varying the obstacle edge-blob extraction threshold in 
both algorithms. It can be observed that the proposed method 
on top-view has shown much better performance under 
complex background.  
 

  

 
Fig. 9. ROC curve of top-view and original-view methods. 

 
To evaluate the safe path estimation performance, 

simulated user walking trajectory is generated by using the 
estimated safe walking direction and user’s walking speed. 
User's walking speed is recorded by using an inertial sensor 
attached on user's body. This simulated walking trajectory is 
then mapped to a top-view occupancy map generated from 
obstacle detection module. A segment of this synthesized 
map is shown in Fig. 10, which is generated by walking on a 
pedestrian path around our campus. Based on the simulation 
results, it is found that simulated walking trajectory is able to 

avoid salient obstacles with vertical edges However, as small 
planar obstacles in the near distance may be removed 
together with the clutter patterns from the pavement. It may 
cause problems for safe path estimation in this case. Under 
the experiment platform condition, the path finding 
algorithm can run at an average of 16.4 fps, which is fast 
enough to satisfy the real-time requirement of human 
navigation task. 
 

 
 

Fig. 10. Simulated walking trajectory on occupancy map. 

V. CONCLUSION 
In this paper, a safe path estimation method for guiding 

the  visual-impaired people in outdoor sidewalk environment 
is proposed. Rather than using stereo cameras, the proposed 
system handles this problem with just single camera. 
Compared with other single camera solutions, the proposed 
method takes advantage of a top-view re-sampling process to 
suppress and eliminate background edges. And by modelling 
obstacle projections on top-view domain, safe path can be 
estimated steadily by means of a polar edge histogram. The 
proposed algorithm can work efficiently in an outdoor 
sidewalk environment, and provide valuable information to 
the visual-impaired user.  
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