



Abstract—We propose a music retrieval method that uses

onomatopoeia query to enable easy and intuitive retrieval of

music even for users without musical knowledge. When we use a

music retrieval system, we usually need some information on

the music, such as artist names or lyrics. However, if we do not

know such information, it is difficult to retrieve the music,

especially instrumental music. In the proposed method, we

create an index of changes in note length and pitch in all of the

music to be retrieved in advance. When searching, the proposed

system extracts the change in note length and pitch from the

user’s query. The extracted information is used to calculate the

similarity of a musical piece and the query by using a dynamic

programming matching algorithm. The proposed system ranks

a musical piece on the basis of similarity. The music format of

the retrieval target is MIDI. In this paper, the result of retrieval

experiments with the proposed method is shown.

Keywords : Music Retrieval, Onomatopoeia, Indexing, MIDI

I. INTRODUCTION

any people use music retrieval systems for various

reasons. Recently, there have been various music

retrieval systems that use a variety of queries. These systems

often require users to input information on music, such as the

metadata of the music, or to hum in order to search. However,

users cannot retrieve music by using a keyword retrieval

system with metadata if they do not have information on the

music. Additionally, the system is not suitable for searching

for music we hear out and about in the city. In addition, we

have difficulty retrieving instrumental music that has no

lyrics, unlike songs. Some voice search systems [1-6] are

available with precise search that uses the pitch of music, but

we some people sometimes hesitate to use the system in

public places. In addition, it is not suitable for tone-deaf

users.

We propose a music retrieval method in which a user

enters the onomatopoeia as a query. Even if the user has a

vague memory of the music, it can be entered instinctively.

Generally, onomatopoeia expresses sound effects and animal

sounds with words, for example, bow-wow, bong, and so on.

However, we define onomatopoeia as if humming

represented by character strings. It is common for a user to

express a melody by using characters such as “la” and

“daaaa”, on bulletin board systems (BBSs) or in conversation

in Japan, English-speaking countries, and so on. Hyphens are

Kenji Ishihara is with the Graduate School of Information Science and

Engineering, Ritsumeikan University, Shiga, Japan (corresponding author to
provide e-mail: is003085@ed.ritsumei.ac.jp).

Fuminori Kimura is with the Kinugasa Research Organization,

Ritsumeikan University, Kyoto, Japan (e-mail: fkimura@is.ritsumei.ac.jp).
Akira Maeda is with the College of Information Science and Engineering,

Ritsumeikan University, Shiga, Japan (e-mail:

amaeda@media.ritsumei.ac.jp).

used to represent the length of the note in Japanese

onomatopoeia, and users represent the difference in length by

the number of consecutive hyphens. However,

English-speakers represent the difference in the length by

repeating the same characters such as "woh" or "daaaa"

(Figure 1).

 Figure 2 shows an example of representing music with

onomatopoeia. More than several hundred questions asking

for the name of a musical piece by using onomatopoeia have

been posted on a Q&A site in Japan. This fact lead us to

propose a method for retrieving music by using

onomatopoeia.

A. Related Work

Many kinds of systems have been proposed by many

researchers in the field of music information retrieval. For

example, systems that operate on “query by humming”

enable intuitive search. The humming retrieval system

compares a query made by humming and the features of

music obtained from real audio or MIDI [1-3]. Humming

retrieval systems often utilize the main melody or main vocal

track from music. In other systems, there are studies to

retrieve the rhythm part rather than melody [4,5]. MUSART

[6] enables various kinds of retrieval with multiple features

such as melody, voice, lyrics, and so on. In addition, the

system creates a theme with a repeating structure of music.

Music Retrieval Using Onomatopoeic Query

Kenji Ishihara, Fuminori Kimura and Akira Maeda

M

・・・・・

Japanese: ラーラーラーーーララララララララー

Latin alphabet: LaaLaaLaaaaLaLaLaLaLaLaLaLaa

・・・・・・

Fig. 2. Representing music with onomatopoeia.

Fig. 1. Example of onomatopoeia in a Q&A site

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

There is also a system for entering the features of music, not

humming. The sound retrieval system of Wake et al.[7]

retrieves sound by onomatopoeia, sources (instrument) and

adjective(sensitivity words). They determine those queries

from experiments to ascertain the way people represent

sound. Masui [8] introduces a music notation system based

on onomatopoeia. The system converts melodies determined

by the number of hyphens and the type of characters into

MIDI. The usage of onomatopoeia in this study is very

similar to our approach.

Various studies use the features of music in order to narrow

down the target and to extract feature parts in music. Takeda

et al.[9] proposed a method for recognizing the rhythm and

tempo of a music performance on the basis of a probabilistic

approach. Our retrieval system enables retrieval that targets

the entire melody without requiring the user to input accurate

information.

II. OUTLINE OF THE PROPOSED METHOD

In this section, we explain the outline and flow of our

method. Our method consists of two parts. The first part is

indexing of music data. The data is the target of the search,

and we target only MIDI data. We collected MIDI data from

the Web. We convert MIDI data into an index with a focus on

the change in note length and pitch. The next part is the

retrieval process for the user’s query. We perform matching

with features extracted from a query and a musical piece.

Figure 3 shows the flow of our system. First, a user enters a

character string of onomatopoeia as a query. Second, the user

adds the relative pitch changes of adjacent notes to the query.

Third, the system calculates the similarity of each musical

piece and the user’s query. Last, the system presents the

results ranked by the similarities to the user.

III. INDEXING PROCESS

In this section, we explain the process of extracting

information from MIDI data. We use mainly time series

information and the pitch of the notes from a track with the

main melody in the MIDI format [10]. However, it is difficult

to use time series information of notes that is simply

extracted from MIDI. There may be a slight difference

between the sound perceived by people and the notes in the

melody. For example, consider a case in which a quarter note

is begun in the middle of a quarter note that is sounding.

People feel that the quarter note is sounded after the eighth

note in spite of the quarter note still sounding. Therefore, it is

important to convert the original melody to a melody that is

understood by people. In this paper, we do not consider

non-melodic tracks. For instance, a drum track is not required,

because most users would, in this case, enter changes in the

melody characteristic rather than a regular rhythm such as a

drum track.

A. Creating Index

The purpose of this study is to create a music retrieval

system that enables searches to be performed instinctively

even for users without sufficient musical knowledge. We

convert music information to a simple representation in order

to achieve this purpose. We create an index by focusing only

on changes in the pitch and length of notes instead of the

specific pitch and length of notes because we cannot obtain

the pitch and length of an exact note from a string of

onomatopoeia. To begin with, a person who can exactly

recognize the pitch and length of the note is rare. Also,

people’s perception of the length of notes varies with the

tempo. Our method provides flexible retrieval that reduces

the effect of user mistakes.

Index of Note Length

 Our method classifies the changes in length of adjacent

notes into three patterns. The patterns are based on the

comparison of two notes, i.e., the first note is short and the

second note is long, the first note is long and the second note

is short, and the two notes are the same. We denote them as

“INC,” “DEC,” and “SAME,” respectively. We create an

index for these patterns. The pattern “SAME” frequently

appears continuous in music. We summarize such patterns as

“SAME10” if “SAME” appears continuously 10 times, for

example. In addition, we register in the index only the

appearance position of the beginning of “SAME10.” This

approach treats constant note length as a feature. Figure 4 is

an example of the indexing process. These patterns have

created an index on the basis of the position of the notes from

the beginning of the music.

Pitch

(high)

(low)

(beginning) (end)

Pattern Position from the beginning

INC 2, 10, 18, …..

DEC 3, 11, 16, …..

SAME 1, 4, 12, 17, 19, …..

SAME4

DEC

INC

Fig. 3. Flow of our music retrieval system.

Fig. 4 Indexing of note length

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Index of Note Pitch

 Our method classifies the change in pitch of adjacent notes

into four patterns. The patterns are based on a comparison of

two notes, i.e., the first note is low and the second note is high,

the first note is high and the second note is low, the two notes

are the same, and difficult to distinguish. We denote them as

“UP,” “DOWN,” “EQUAL,” and “UNKNOWN,”

respectively. Distinguishing the change in pitch is difficult if

the notes used for comparison contain chords, for example, a

chord comprises notes with a pitch higher and lower than the

comparison note. We register the notes in the index as

“UNKNOWN” in such a case. “UNKNOWN” has the

potential to be one of the patterns in the other three.

IV. RETRIEVAL PROCESS

The retrieval process contains all of these processes after a

user enters a query. We explain each process in the order of

processing.

A. Query Analysis

Questionnaire Survey

We conducted a questionnaire with ten Japanese people.

The purpose of this questionnaire was to learn how people

represent melody by using onomatopoeia. We collected a

hundred queries in total from users. Investigating of the

queries revealed that the representation of note length varies

by person, and typing errors occur in the middle of the

melody and positions where notes of the same length appear

continuously.

Entering Query

It is necessary to go through two steps in order to create a

query. The first step is to create a character string of

onomatopoeia. The second is to enter the pitch information of

the notes. Figure 5 shows the interface of our system. The left

side is the form of text input. The second step beings once

text has been submitted. The right side of Figure 5 represents

a sequence of notes that was extracted by using the melody

information from the query string. One object represents one

note. The user enters the pitch by dragging text squares up

and down.

Converting a Query

The query entered by a user needs to be converted from the

input character string into melody information. However, it is

not possible to extract the exact pitch and note length from

the query. Therefore our method extracts only the changes in

pitch and length from the query. This process is similar to the

process that we use to make the MIDI data in Section 3. The

reason for focusing only on the changes is to represent that

the note length varied by person in the preliminary

questionnaire survey.

B. Matching Process

The purpose of our method in this process is to match

information that has been converted from music pieces and

the query. Figure 6 shows an example of how to properly

search for target music pieces for the query

(La---La-LaLa---La-). The complexity of the matching

process becomes huge if all positions are target candidates for

matching. Therefore, we conducted the following processes

in order to reduce the number of time targets are compared.

The position used for matching is determined by the first

pattern in note length. Our system performs matching only

with positions that correspond to the pattern of “DEC” in the

index of all music when the first pattern of the query is “DEC.”

This approach was determined from the result of

questionnaire survey that showed that nine out of ten people

correctly input the first pattern. In addition, we exclude a

phrase from being a target for matching if a melody is

interrupted or if the number of symbols is not the same. The

number of patterns in the example query is four. The phrase

of number 3 in Figure 6 is excluded from being a target for

matching because the number of patterns is three.

Our method uses dynamic programming (DP) matching as

a method of matching. We add our own rules to DP matching.

In the next section, we describe the rules.

Next, we narrow targets by focusing on pitch. We calculate

a “pitch score” in order to revise the “DP matching score.”

Pitch information is calculated independently of the DP

matching score. We compare the pitch information of a query

and patterns cut out from a musical piece. The pitch score is

the number of matched pitch patterns except for

“UNKNOWN.”

Dynamic Programming Matching

DP matching is a method for measuring the similarity of

patterns [11]. This method is often used for pattern matching

in the field of voice analysis. Our method uses this method in
Fig. 5. Query input interface.

1

2
3

4

Fig. 6. Determining matching places.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

order to measure the similarity of strings. The feature of this

method is that it considers partial expansion and contraction,

and it calculates similarity by specifying the cost to

completely match characters.

The patterns that are used in DP matching are strings of

symbols that represent the patterns (“INC,” “DEC,”

“SAME”). We adjusted the cost of DP matching by using

these symbols. It is common to set the cost so that a mismatch

of characters increases the number of costs by three and

inserting a character increases this number by one. We add

some rules that increase cost. One of the rules is to change the

cost when comparing “INC” and “SAME” and “INC” and

“DEC.” We consider the probability that a user mistakes

“INC” for “SAME” or “DEC.” We have to increase the cost

of comparison between “INC” and “DEC” because the

position of “INC” is likely to be mistaken for “SAME” than

for “DEC.” A different rule is used to change the cost in the

case of “SAME.” Our method abbreviates “SAME” if it

appears consecutively. For example, comparing “SAME2”

and “SAME5” increases the cost by three in accordance with

the difference between the number of “SAME”, which is

three.

 Figure 7 shows an example of the processing flow of the

DP matching. We explain the process of matching two strings

(“S1, I, I, S6, I” and “S1, I, D, S6, I”). The first step calculates

the increasing costs due to mismatching of characters. The

second step determines the shortest path to consider the

lowest cost for completing characters. The cost for

completion increases when moving to an adjacent cell on the

right and bottom. Therefore, the score in Figure 7 is five

when the cost of mismatch is set to three and the cost of

completion is set to one.

C. Ranking Process

We consider that the musical piece that has the smallest

value for total cost as the correct answer. The reason is that

the pattern with the lowest cost in a musical piece may have a

pattern that is used by the user query. In addition, we adjust

the score by using the pitch of the pattern. If a musical piece

with the lowest cost has cost equal to that of another piece of

music, we determine the rankings by checking next of lowest

cost. This approach is applied for musical pieces in which the

same phrase appears many times. Figure 8 is an example of a

ranking result that our system presents to the user.

V. EVALUATION

We conducted experiments to evaluate the retrieval

effectiveness of our music retrieval system. Nine subjects

participated in these experiments. The number of queries

used in these experiments was 90 in total. We measured the

average accuracy of retrieval in our method on the basis of

the ranked results for 90 queries. The search target was 200

pieces of classical music.

A. Evaluation Criteria

We evaluated our method by scoring the rankings of the

retrieval results for each query. The score of the method is

calculated by using the mean reciprocal rank (MRR) (1).

MRR＝ 



Ν

ι

ir/N)
1

11((1)

, where N is the number of queries, i is the i-th query, and r is

the rank of the correct answer.

In addition, we calculate the top ten score, such that the

score is 1.0 if the correct piece of music is ranked at the top,

the score is 0.9 if it is at the second, and the score is 0.1 if it is

in 10
th

 place. The final score of the method is the average

value of all the queries.

B. Experimental Results

Table 1 shows the experimental results. The experiments

were conducted for two cases, one was only using the note

length, and the other was using both note length and pitch.

“Length only” denotes the method of entering only the string

of onomatopoeia (only the first step detailed in section 4.1.2).

“Length & Pitch” denotes the method that we proposed in

this paper. As shown in Table 1, using pitch information

along with note length resulted in only slightly better results.

Also, the number of queries put into the top 10 was 39

amongst all the queries.

S1 I D S6 I

S1 0 3 3 1.5 3

I 3 0 6 3 0

I 3 0 6 3 0

S6 1.5 3 3 0 3

I 3 0 6 3 0

S1 I D S6 I

S1 0 4 8 10.5 14.5

I 4 0 7 11 10.5

I 8 1 6 10 11

S6 10.5 5 4 5 9

I 14.5 6 11 7 5

Second Step

Score

First Step

Fig. 7. Flow of DP matching

Fig. 8. Example ranking result

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Table 1. Experimental Results.

 Length

Only

Length &

Pitch

MRR 0.220 0.252

Top10 score 0.294 0.334

Number of top 1 12 15

Number of Top 10 35 39

C. Discussion

The score of our method, which was an MRR of 0.252 and

top 10 score of 0.334, was not sufficient.

For comparing the evaluation, we compared our method

with research on humming search that is similar in purpose.

The method submitted by Ryynänen and Klapuri [3]

produced an MRR of 0.885 by using Roger Jang’s corpus

consisting of N = 2797 eight-second queries and 48

ground-truth MIDI files. It is not possible to simply compare

the result because of the difference between the query, the

number of songs, and the type of music. We describe factors

that cause the accuracy of our method to be low.

 The first cause is errors made by users when entering an

onomatopoeic string. There are different types of user

mistakes. Some users did not enter a sufficient number of

hyphens so that we can consider that as the change of note

length. According to users, there were several opinions; e.g.

judging the correspondence of notes and hyphens is difficult,

and entering queries is difficult. There are some difficulties in

distinguishing different note lengths by using onomatopoeia.

Figure 9 shows an example of such an error. If a user

interprets a quarter note as “La-,” the eighth note in the

example is most likely described as “La.” In that case, the

16th note cannot be described because there is no character

that represents a note length shorter than “La.”

 The second cause is the reduction in the number of features.

Narrowing down the number of candidates for a correct

musical piece is not enough when supporting vague user

input. This problem often appears when the user’s query is

short. Half of our queries are shorter than five seconds,

whereas most of the queries that Ryynänen et al. [4] used in

their experiment were about eight seconds. The length of the

query is different subjects by subjects. The score of MRR for

the three subjects was lower than 0.1. The number of short

queries of these subjects was more than seven in each subject.

In such cases, the difference of scores by DP matching is very

small. There are two approaches to solving this problem. The

first is to increase the number of features, using features other

than the change in note length and pitch. The second is to

recommend the user to enter a long query.

 However, the experiments of these two cases do not show

a big difference in scores. This difference in score is not a

problem because the case for “Length & Pitch” in Table 1 is

based on the case of “Length Only.” The change in these

cases is that they rank musical pieces by the pitch score in

addition to ranking by “Length Only” if there are musical

pieces with the same score. However, the results of the

experiments look different when comparing queries one by

one. The ranking of each query is up or down when

comparing the experiments in the two cases. There were

users going to enter a query even when the change in pitch

was ambiguous. We think that this problem can be solved by

implementing an interface that can check the change of the

sound on input. Also, we should recommend the user to enter

only positions that the user is sure about the correct answer.

In other cases, entering “UNKNOWN” is not used for score

calculation.

VI. CONCLUSION

In this paper we proposed a music retrieval system that uses

onomatopoeia query, enabling easy and intuitive retrieval of

music even for users without musical knowledge. This

system enables music to be searched for even if the user does

not have information on the music and had just heard it. The

advantage of our method is that it retrieves music in

consideration of mistakes made by the user by ambiguous

input. However, the retrieval accuracy of our method is not

enough because it focuses only on changes of pitch and

length, and it reduces the number of features needed to

narrow down the music. It is necessary to conduct

experiments by using large music databases such as [12].

 As future work, we plan to use the feature that is included

in the character of onomatopoeias in the retrieval process. We

think that people use different characters for onomatopoeias

for different sounds. The feature is not useful for accurately

judging a melody. However, it is possible to grasp the

tendency of the melody. For example, we think it is possible

to determine the difference in pitch or instruments.

There is room for improvement also on how to narrow

down the melody of the correct answer. Our approach is to

narrow down only the features of the rhythm. Therefore, it is

necessary to narrow down the candidates by incorporating

the pitch information into the matching process.

 In addition, we are planning to improve the interface for

entering queries. We obtained opinions that entering

onomatopoeias by typing characters is difficult and

cumbersome. Also, entering a query by typing is the

primary factor that generates errors. It is desirable to

implement an interface in which a user can enter a query

more easily and intuitively.

REFERENCES

[1] C. Bandera, A. M. Barbancho, L. J. Tard´on, S. Sammartino and I.

Barbancho: “Humming Method for Content-Based Music Information

Retrieval,” 12th International Society for Music Information Retrieval

Conference (ISMIR 2011), pp. 49-54, 2011.

La ? La-

Fig. 9. Errors in entering onomatopoeia.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

[2] N. Kosugi, Y. Nishihara, T. Sakata, M. Yamamoto and K. Kushima: “A

Practical Query-By-Humming System for a Large Music Database,”

Proceedings of the eighth ACM international conference on

Multimedia Pages 333-342, 2000.

[3] M. Ryynänen and A. Klapuri: “Query by humming of midi and audio

using locality sensitive hashing,” In Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), 2008, pp.2249-2252.

[4] G. Tzanetakis, A. Kapur, and M. Benning: “Query-by-Beat-Boxing:

Music Retrieval For The DJ,” In Proceedings of the 5th International

Conference on Music Information Retrieval, 2004.

[5] T. Nakano, J. Ogata, M. Goto, Y. Hiragi: “A Drum Pattern Retrieval

Method by Voice Percussion,” In Proceedings of the 5th International

Conference on Music Information Retrieval, 2004.

[6] W. P. Birmingham, R. B. Dannenberg, G. H. Wakefield, M. Bartsch,D.

Bykowski, D. Mazzoni, C. Meek, M. Mellody and W. Rand:

“MUSART: Music Retrieval Via Aural Queries,” 3rd International
Conference on Music Information Retrieval(2001).

[7] S. Wake and T. Asahi: “Sound Retrieval with Intuitive Verbal

Expressions,” ICAD'98 Proceedings of the 1998 international

conference on Auditory Display, pages30-30, 1998

[8] T. Masui: “Music composition by onomatopoeia,” In proceeding of:
Entertainment Computing: Technologies and Applications, IFIP First

International Workshop on Entertainment Computing (IWEC 2002),

2002.
[9] H. Takeda, T. Nishimoto and S. Sagayama: “Rhythm and Tempo

Recognition of Music Performance from a Probabilistic Approach,”

In Proceedings of the 5th International Conference on Music
Information Retrieval, 2004.

[10] C. McKay: “Automatic genre classification of MIDI recordings,”

Master’s thesis. McGill University, Canada, 2004.
[11] H. Sakoe and S. Chiba: “Dynamic Programming Algorithm

Optimization for Spoken Word Recognition,” IEEE TRANSACTIONS

ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL.
ASSP-26, NO. 1, FEBRUARY 1978.

[12] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka: “RWC Music

Database: Popular, Classical, and Jazz Music Databases,”

In Proceedings of the 5th International Conference on Music

Information Retrieval, pp.287-288, 2002.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

