

Abstract—So far, various web elements and web

environments have contributed to Web GIS as alternative
technologies of existing GIS technologies. Map and web
services such as Google Maps and Google Earth appeared as
main components of web GIS and they still used as favorite
services by general people who don’t even know about GIS
well. However, there is limit on visualizing raster data on web
browser because of limit of raster data as image. Most geo-
browsers like Google Earth still handle raster data as image
and this causes limitation of expressiveness because delicate
expression of raster on Google Earth is impossible. So WebGL
which supports 3d graphic library is suggested as an
alternative technology and diverse studies suggest WebGL
application as result of them. But if we use WebGL as client,
huge size of raster data causes overload during execution
procedure. To secure operational efficiency on web
environments, concurrent process is needed to use each core
effectively. In this paper, to develop the method for visualizing
raster by WebGL, we designed the processing which displays
raster data on a Web browser as it preprocesses them by
building shaders and dividing data. And to check efficiency of
concurrent environment, we applied single and concurrent
thread to the visualizing process and performed
benchmarking between single and concurrent environments
by comparing the visualizing processes in different
environment variables.

Index Terms— Concurrent Programming, 3D Visualization,
WebGL, Web Worker, Web GIS, Benchmarking

I. INTRODUCTION

ince the release of new web standards or before, several
web technologies related with visualization and supply

of web data have contributed to notable developments of
Web GIS. In respect of data dissemination, web services
which had been originally suggested for cooperation among
business venders caught developers’ attention as a data
provider thanks to their openness. And in case of
visualization, mashup in which GIS data can be visualized
by combining with web map services is regarded as a major
element of web GIS visualizing system. To apply these
technologies effectively, diverse research were reported so
far [1][2].

As a major supplier of GIS data, web services guarantee
easier accessibility by providing several methods which
enables users to access data stored in remote place. Open
Geospatial Consortium (OGC) that was established for

Manuscript received July 23, 2013; revised August 20, 2013. This
research was a part of the project titled 'Gyeonggi Sea Grant Program',
funded by the Ministry of Oceans and Fisheries, Korean.

Hyung Woo Kim is with Pukyong National University, Daeyon3Dong
599-1, Namgu, Busan, South Korea (e-mail: kalituma@gmail.com).

Yang Won Lee is with Pukyong National University, Daeyon3Dong
599-1, Namgu, Busan, South Korea (corresponding author to provide
phone:+82-51-629-6660;fax:+82-51-629-6653;e-mail:modconfi@pknu.ac.kr).

standards of general GIS services has legislated standards
for diverse GIS web services such as Web Map
Service(WMS), Web Feature Service(WFS), Web
Coverage Service(WCS) and thus far, a lot of vendors have
complied with them. Especially, as WMS can compose
mashup by combining with other web services, it has been
utilized as a method for visualizing geographic data on
Web. Since Google known as pioneer of public map service
model unveiled their 2D and 3D Map Services, mashup has
been a sort of industry norm to implement Web GIS. These
map services basically offer deployable functions through
specific Application Programming Interfaces (API). As a
typical example of this, Google map services provide
objects such as ‘Map’, ‘Marker’, ‘Polygon’ as interaction
methods between users and map contents [3].

In spite of these methodological advancements to
implement web GIS, in respect that several types of
geographical data such as raster cannot be freely utilized on
web yet, there is a point that improvement is needed.

Geographic data which can be classified into vector and
raster are used in the form of objects such as polygon,
polyline and others or image according to whether it
reflects discrete or sequential features. While vector can be
compatible to current web GIS environment sufficiently,
raster that is used in the form of image is inappropriate to
web GIS environment in respect of its availability. That is,
it is hard to visualize raster data on web browsers in that
raster can’t be easily modified on web browsers due to the
difficulty of handling the bits streams of image data.
Accordingly, several studies have thus far tried to search
the appropriate technology which can cover this flaws and
WebGL have been suggested as a tool for realizing a geo-
browser [9].

Single and Multiple Thread Programming for
Geo-visualization by Using WebGL with Web Workers

Hyung Woo Kim, Yang-Won Lee

S

Fig. 1. 3D Map services using plug-in or WebGL

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

WebGL is a 3D graphic library which is bound in
browsers and it allows GPU acceleration on web browsers.
And also, it is a low-level language based on Open GL ES
2.0 suggested for mobile environment [4]. The most
representative feature that makes WebGL to be welcomed
as foundation technology of 3D visualization system is that
it can realize cross-browsing and render 3D object
specifically. A typical instance of existing 3D visualizer,
Google Earth needs additional plug-in installation to be
used on Web browser and this disadvantage is inadequate
for current Web environment in which various devices and
browsers coexist. And when raster data are overlaid on
globe of Google Earth, there is a limit to visualizing the
sequential feature of raster values unless raster is
preprocessed outside browser. On the contrary, as most
recent web browsers are supporting WebGL and each of
pixel data of raster can be drawn manually by WebGL, it
can be a best solution for geo-visualizing. For this reason,
its availability is tested in several papers [5][6].

At this point in time, however, this diversification of
methods for visualizing raster can toss a one question about
handling data on Web browser. How can mass data such as
raster be handled on browser effectively? When we handle
the data for WebGL, most data should be processed in form
of Javascript array and raster which contain plenty of
numerical values can cause a problem about overloading in
this situation. Generally, browsers are composed of browser
engine, rendering engine and etc., and especially, the
rendering engine which renders web contents on the
browser is single threaded [7]. This can intensify the
problem suggested above, so multi-thread environment is
needed to handle raster which contain as much values as
browsers can’t handle in one time. As a solution of this
problem, HTML5 recently released Web Worker Object
which can realize multi-thread environment on browser and
we suggest it as a proper solution of the problem.

In this study, to develop proper methods for visualizing
raster by WebGL in the web environment in which data
easily overflow and to test suitability and efficiency of
them, methods for preprocessing raster data through single
and concurrent threads were devised and benchmarking
between both methods was operated through processes of
WebGL visualizing. To confirm effectiveness of multi-
threading environment by web workers on various kinds of
devices, we measured CPU usage of mobile and desktop
separately and compared.

This paper consists of 5 chapters which depict processes
of 3D visualization for raster and benchmarking between
single and multi-thread processes. In chapter 2, detailed
account of components and processes for visualizing raster
data by WebGL are represented and a description about
multi-threaded methodology of the processes introduced in
chapter 2 is explained in chapter 3. Methods and
environment variables of benchmarking are delineated in
chapter 4 and conclusion about the results and the future
works are in chapter 5 lastly.

II. Procedure of 3D Raster Visualization

To visualize raster data by 3D rendering, there are some
essential rendering procedures as depicted in Figure 2. The
elements of the processes are composed of shaders, divider,
producer and renderer and each of components is involved
in each process of 3D visualization. These processes are
totally performed in web environment and, from now, let us

call a terminology of components which implement the
visualizing processes as 3D Web App.

Initially, there are two kinds of shader, vertex shader
which manipulates vertex data of buffers and fragment
shader which manipulates fragment data in the form of
buffers [8]. The rough rendering process in shaders is that
vertex shader first receives data from the specific variable
of Javascript via uniform and attribute variables and both of
shaders process the received data to be displayed along
with the pipeline of vertex and fragment shaders. Each of
the shaders is written by Graphic Library Shading
Language (GLSL) and is built by Web browser. After
building the shaders, to receive raster data from remote
location, 3D Web App connects to a specific Web service
which provides raster data as a JSON format. We adopted
the RESTful Web service suggested from [9] which is
linked with spatial DBMS. Transmitted data from the Web
service is made up by spatial attributes which represent
features of raster such as pixel values, width, height,
resolution and so on. Pixel values compose a 2-dimensional

Building Vertex and Fragment Shaders
for Rendering

Connecting to Web Service to
get Raster Data

Dividing data and producing
list of proper spatial Objects

Spatial Object

Producing Vertices, Indices,
etc., Arrays

Spatial Objects

Making buffers

Rendering

Arrays

Buffers

Fig. 2. Procedure of Raster Rendering

 ② Loop

② Loop

① Dividing
③ Making
Vertex and Index
A

Pixel

Fig. 3. Procedure of Data Preprocessing

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

array that indicates sequential features of raster data and
other attributes are used to produce index buffer afterwards.
After transmission of raster data, 3D Web App executes
preprocessing tasks such as checking data length, dividing
raster data, transforming data to array. The reason of
preprocessing is related with limitation of WebGL. When
we use raster as a source of 3D rendering, in accordance
with the size of raster data, the length of the data can be
stretched from tens of thousands to hundreds of thousands.
However, WebGL buffers, especially the index buffer for
coordinates of polygon has length limit (16bits, 65535) [4]
and if it is exceeded its own limit, rendering error could be
occurred. Thus to prevent this, we need a dividing
procedure of the array before transforming. In this research,
‘100’ is adapted as a boundary number for division and
hereby the index buffer length can’t be over 30000. When
the dividing procedure is completed, the received data
sliced completely as several pieces of raster are saved as
the list of raster tiles and are converted into one
dimensional array such as vertex, index, normal and color
arrays. The vertex array produced from pixel values is the
array which saves raster pixels in order of 3D coordinates,
X, Y, Z. As values of the vertex arrays are saved like the
direction of double loop ② in Figure 3, left to right, top to
bottom and the values of index arrays represents the
rendering order of ③. Color and normal arrays produced
with vertex and index arrays save the values for rendering
color and light. In this procedure, according to intention of
a WebGL user, the information which should be visualized
can be drawn in the specific aspect like color, Z-coordinates.
After producing these essential array, 3D Web App
produces buffers for WebGL rendering and each shader
performs 3D rendering.

III. Concurrent Method for Raster Rendering

To maximize effectiveness of data processing, concurrent
process is essential in the era of multi-core CPU and as of
now, we can conveniently adopt multi-thread environment
through Web Worker of HTML5 as denoted in introduction.
Web Worker is the standard for implementing multi-thread
environment which was impossible until the past. It is a
background thread object which is executed on Javascript
environment and is separated from main function when it
utilized [10].

In this research, to apply concurrent environment to the
rendering process suggested in previous chapter, we
distributed the loop statements such as dividing raster tile,
producing index buffers in several Web Worker objects and
balanced data load of raster tiles. The number of Web
Worker followed the number of cores of each devices used
in this study. Hereby, although operational flow of web
application is still managed in main function but efficiency
of rendering process which can be collapsed by single
thread is secured by Web Worker.

IV. Benchmark on a Desktop and a Smart Device

Single and multithreaded processes for rendering
suggested from previous chapters, was compared with each
other. We analyzed them from aspects of CPU performance
to aspects of data size in this chapter. Total 5 types of data
which are split in different size are utilized in
benchmarking for checking availability of each method and
mobile and desktop devices were used for evaluating

suitability in diverse operational environments. All of other
variables are fixed except the type of devices and data size
for fair comparison and the environment of benchmarking
in detail is same as below.

 Type of Device : Intel i5 3550 Quad-core(Ivy
bridge), nVidia Quad-Core Tegra 3(Nexus 7)

 Raster Size : 100x100, 500x500, 1000x1000,
2000x2000, 3000x3000

Spatial data used in benchmarking are USGS DEM data
which has 1 kilometers resolution and size is same with
Figure 4. Types of web browsers used in benchmarking are,
in case of desktop, Chrome 28 built for windows and in
case of Android, same one built for Android. The methods
of visualization are the way described in chapter 2 and
chapter 3 and spatial DBMS for raster web service is
Postgresql with PostGIS which has raster data type.

As a result of benchmarking, use time of each devices
and methods is indicated in Figure 5. In case of 100x100,
as boundary value of spit was selected 100 in chapter 3,
division is not applied. So, the data are processed by just
one Web Worker and this causes same result with Single
processing method. Considering this fact, Figure 5 shows
exact results of operation between single and concurrent
methods. From the case of 500x500, single and concurrent
methods start to show trivial gap between each use time
and as data size increases, the gap between devices and
methods are clear and certain. Each result of benchmarking
is depicted in Figure 6 and Figure 7 except the case of
100x100.

Fig. 5. Use Time of Each Process

(%) (ms)

Fig. 4. Spatial Data

①100x100

②500x500

⑤3000x3000

③1000x1000

④2000x2000

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

A. Desktop

(a) 500x500 (Single)

(%) (ms)

(b) 500x500 (Concurrent)

(%) (ms)

(c) 1000x1000 (Single)

(%) (ms)

(d) 1000x1000 (Concurrent)

(%) (ms)

(f) 2000x2000 (Concurrent)

(%) (ms)

(e) 2000x2000 (Single)

(%) (ms)

(g) 3000x3000 (Single)

(%) (ms)

(h) 3000x3000 (Concurrent)

(%) (ms)

Fig. 6. Benchmarking of Desktop

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

B. Smart Device

Fig. 7. Benchmarking of Mobile

(a) 500x500 (Single) (b) 500x500 (Concurrent)

(c) 1000x1000 (Single) (d) 1000x1000 (Concurrent)

(e) 2000x2000 (Single) (f) 2000x2000 (Concurrent)

(g) 3000x3000 (Single) (h) 3000x3000 (Concurrent)

(%) (ms) (%) (ms)

(%) (ms)

(%) (ms)

(%) (ms)

(%) (ms)

(%) (ms)

(%) (ms)

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

In the results of desktop benchmark, as desktop CPU
originally show outstanding performances than tablet CPU,
use time average(9s, 7.25s) in desktop is quite shorter than
those(43s, 28.2s) in tablet. In the case of 500x500, there is
no distinct difference between single thread rendering and
concurrent thread rendering, but from the case of
1000x1000, subtle difference is appeared. Complete time
still has no difference but cooperation of CPU cores is
appeared in (c) and (d) charts of Figure 6. Particularly, in
data processing of 2000x2000 and 3000x3000, we can
check start point of visualizing process at the middle of the
charts (5s in 2000x2000, 8~9s in 3000x3000) as process
graphs skyrocket at that time. The former time range of
start point is estimated as the step of data transmission and
as size of data increase, we can check that the time range of
transmission and visualizing process are extended
proportionally. During visualizing process, while
concurrent-thread process regularly keeps CPU usage of
each core to be balanced, single-thread process releases the
CPU usage.

In case of tablet, unlike the case of desktop, CPU use
time of rendering process is more spent than the time of
desktop. And usage of each CPU is more variable because
of frequent calls of other mobile applications. Change
pattern of graphs shows that it uses about a half of time to
receive raster data which is similar with desktop results.
Use time of each core in single and concurrent processes
also shows similar trends with the cases of desktop during

rendering process as CPU use time of each core in single-
threaded process is unbalanced but the time in multi-
threaded process shows opposite results. As a result of
rendering, DEM is printed as Figure 8.

V. Conclusion and Future Works

Thus far, to use raster data effectively and delicately in
web environments in which various web browsers and
devices is used together, we suggested the methods of raster
visualization by using WebGL of HTML5. In this rendering
process, whole raster data from Web services was split into
several raster tiles and essential arrays for rendering on
browsers were produced on Web browsers. However, this
preprocessing of the suggested method can cause excessive
data load on Web browsers, as a solution of this problem,
concurrent environment by Web Worker is adopted in this
study and benchmarking between both single and
concurrent rendering environments considering raster size
and type of devices was operated. Benchmarking was
implemented by distributing loop statements which could
cause data overloading in each Web Workers and
visualizing raster data. As a result, concurrent task by Web
Worker is more efficient and less spent time than single
threaded task.

In the future work, to expand the usage range of
concurrent process by Web Worker used for preprocess of
WebGL data in this research, we will try to develop other
usage examples by using other map services. And for
efficient cooperation of each CPU core, we also have a plan
to try to design the task scheduling which focus on web
GIS system and User Interface.

REFERENCES
[1] D. Butler, “Virtual globes: The web-wide world,” Nature 439, 2006,

pp. 776-778
[2] T. C. Patterson, “Google Earth as a (Not Just) Geography Education

Tool” in Journal of Geography, 2007, pp. 145-152
[3] Google, Google Maps JavaScript API v3,

https://developers.google.com, 2013
[4] Khronos Group, WebGL Specification, https://www.khronos.org,

2013
[5] P. Sloup, 2011, “WebGL Earth,” Baschelor Thesis, Faculty of

Infromatics, Masaryk University
[6] M. MILIVOJEVIĆ, I. ANTOLOVIĆ, D. RANČIĆ, “Evaluation and

visualization of 3D models using COLLADA parser and WebGL
technology”, in Proceedings of the 2011 international conference on
Computers and computing(ICCC), 2011, pp. 153-158

[7] T. Garsiel, “How browsers work,” on http://taligarsiel.com
[8] A. Munshi, D. Ginsburg, D. Shreiner, OpenGL ES 2.0 Programming

Guide, 2008
[9] H. W. Kim , J. S. Ahn, Y. W. Lee, “Implementation of an Open API

for Raster Database,” in Journal of the Korean Cartographic
Association, Vol. 12, No. 3, 2012, pp. 45-53

[10] W3C, Web Workers, http://www.w3.org, 2012

Fig. 8. Results of Rendering

(a) Rendering result of desktop

(b) Rendering result of mobile

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

