
 

 
Abstract—Empirical Mode Decomposition (EMD) is recently 

used in a broad range of applications for extracting signals from 
data generated in noisy nonlinear and nonstationary processes. 
However, it has a major drawback, mode mixing, which is 
defined as a single Intrinsic Mode Function (IMF) consisting of 
signals of widely disparate scales. This often makes the physical 
meaning of individual IMF unclear. To solve this problem, a 
novel algorithm to select significant IMFs is applied to fault 
signal of the induction motor and musical sound of the 
percussion instrument. 
 

Index Terms—empirical mode decomposition, fault diagnosis, 
musical signal analysis, significant intrinsic mode function 
 

I. INTRODUCTION 

OST popular signal processing techniques include time 
domain analysis, frequency domain techniques like a 

spectral analysis and time-frequency domain methods such as 
short-time Fourier transform (STFT) or wavelet analysis. The 
main purpose of signal processing step in a fault diagnosis 
system, for example, is to reveal fault signatures from the 
measured quantities obtained from a motor in operation. For 
this purpose, time–frequency analysis tools are popular as 
they can provide both time and frequency resolution 
simultaneously. Most existing time–frequency analysis 
methods decompose the signal based on a priori bases with 
stationary assumption of the signal. But both of these 
techniques are not suitable enough for the analysis of fault 
signals as they can be non-linear and non-stationary at the 
same time. In contrast, Empirical Mode Decomposition 
(EMD) is a signal decomposition method which decomposes 
the signal into some intrinsic mode functions (IMFs) based 
on the local characteristic time scale of the data [1]. These 
IMFs represent natural oscillatory modes embedded in the 
signal and works as the basis functions, which are derived 
from the signal itself, rather than any pre-determined kernel. 
Therefore, EMD is a data adaptive decomposition technique 
which overcomes limitations of other similar tool such as 
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STFT or wavelet. The essence of the EMD method is that, it 
empirically determines the intrinsic oscillatory modes by the 
characteristic time scales within a signal and decomposes the 
signal accordingly. This excellent mode separation capability 
of EMD makes it an optimum choice for the analysis of 
natural phenomenon like vibration signal analysis. Every 
rotating part of a mechanical system contributes to the 
generation of vibration signal which is acquired through 
accelerometer. As a result any defect or abnormality in 
rotating behavior of a rotating part will cause to change 
contribution of that specific part, which ultimately modifies 
the normal vibration pattern and indicate the inception of 
fault of a rotating part. As EMD extract the intrinsic 
oscillatory modes from a signal, abnormal rotating behavior 
of a mechanical part can easily be identified by inspecting 
statistical property of these oscillatory modes. Therefore, 
EMD is a suitable signal analysis tool and can be exploited 
for the development of a fault detection and diagnosis system.  
Y. Yu, Y. Dejie, C. Junsheng proposed the concept of EMD 
energy entropy and showed that its value for vibration signals 
differs in case for different bearing fault types [2]. In the 
proposed fault diagnosis method IMFs with dominant fault 
information were identified and their energy values 
constituted feature vector which was later utilized by back 
propagation artificial neural network to recognize fault 
pattern. C. Junsheng, Y. Dejie, T. Jiashi, Y. Yu proposed a 
fault diagnosis method for gear and bearing signals which 
utilized singular values of the matrices constituted by the 
IMFs as feature vectors for the support vector machine 
classifier [3]. Z. K. Peng, P. W. Tse, F. L. Chu proposed an 
improved Hilbert-Huang transform combining the wavelet 
packet transform, EMD and IMF selection technique to 
detect rubbing between stator and rotor of an induction motor 
[4]. In this case vibration signal is first decomposed into a set 
of narrowband signals which are further decomposed into 
IMFs by EMD and useful IMFs are selected by thresholding 
correlation coefficient between the IMFs and the original 
signal. Finally, rubbing symptoms are detected through the 
analysis of Hilbert spectrum of the selected IMFs.  

This EMD can be also applied to the musical instrument 
research because it is important to analyze natural mode of 
vibration in the musical acoustics; it is utilized for the 
extraction of the resonance or vibrational mode of the 
percussion instruments. S. Cho  applied EMD and Ensemble 
EMD (EEMD) to the extraction of the vibrational mode of 
the percussion instrument. In [5], the Jing, which is kind of  
gong, was target instrument and an algorithm was proposed 
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to solve endpoint problem of the EMD. In [6], EEMD was 
used to extract features of non-harmonic characteristics of the 
Korean percussion instrument called Kkwaenggwari.  

II. PROPOSED IMF SELECTION ALGORITHM 

A. Empirical Mode Decomposition 

EMD algorithm employed here incorporates the 
modifications proposed in [7] to overcome limitations. A 
summary of the implementation process of this improved 
EMD process is given below. 
1) For any given data, x(t), data validity is checked. 
2) Expected number of IMF components are determined as 

log2N, where N = total number of data points. Also, 
number of iteration for each sifting process is set at 10. 

3) Now, for data x(t) all the local extrema are identified. 
4) All the maxima and minima are separately connect with 

natural cubic spline lines to form the upper, u(t), and 
lower, l(t), envelopes. 

5) The mean of the envelopes are determined as m(t) = [u(t) 
+ l(t)]/2. 

6) The difference between the data and the mean is taken as 
the proto-IMF, h(t) = x(t) − m(t). 

7) Check number of iteration in the sifting process and 
repeat the operation step 3 to 6 until its value reaches 10. 

8) When the iteration number reaches 10, assign the 
proto-IMF as an IMF component, c(t). 

9) Repeat the operation step 1 to 8 on the residue, r(t) = 
x(t)−c(t), as the data. 

10) The operation ends until (log2N)-1 number of IMFs are 
obtained and the latest r(t) is taken as the final residue. 

B. IMF Selection Method 

The significant IMFs usually hold unique characteristics. 
These characteristics worked as the basis of the proposed 
IMF selection process. The first characteristic is that, they are 
usually of higher power which is also supported by the 
objective of the EMD process. The EMD efficiently extract 
the natural oscillatory modes from a given signal. For 
instance, oscillations which occur due to the fault of an 
induction motor should have higher power in comparison to 
other oscillations which do not represent a fault situation. 
This phenomenon is observed in an excited body of the 
instrument. The body amplifies oscillations when the 
excitation oscillation matches the resonant mode of the body. 
As a consequence, these oscillatory modes are characterized 
by higher power. The second characteristic is about harmonic 
contents of the IMFs. Usually, most of the fault signatures 
appear themselves as peak amplitude at several harmonics of 
some fundamental frequency. Due to the dyadic filter bank 
nature of EMD process, few of these harmonic peaks will be 
observed in the Fourier spectrum of lower index IMFs; 
whereas, fundamental fault frequency peak can be found in 
the higher index IMFs. Considering above two facts, an index 
named as Power-Harmonic Ratio (PHR) is calculated for 
each IMF. This higher value of PHR helps us to identify the 
IMFs with higher average power containing fault related 
frequency peaks. A low value of PHR indicates that the IMF 
may be of low power or contain many low amplitude 
harmonics. A summary of this IMF selection algorithm is as 

follows 
1) For each of the IMFs cj, where IMF index j = 1,2,...,n, 

power Pj  is calculated. 
2) To select candidate IMFs, threshold power Pth =  

mean{ Pk } is calculated; here k = 1,2,...,m<n. 
3)  Identify IMFs cj for which Pj > Pth. 
4) Evaluate Fourier spectrum of IMFs Cj = FT{cj} and 

given data X = FT{x(t)}. 
5) Determine frequency peaks fl, l = 1,2,...,p in the spectrum 

X which has amplitude higher than average peak 
frequency amplitude above the mean of spectrum.  

6) Calculate power contained in the determined peak 
frequencies and their harmonics in case of both IMFs 
and given data which are represented by Ej and EX, 
respectively. 

7) After calculating PHRj = Ej/EX, IMFs are rearranged 
according to descending values of PHRj and first M  
IMFs are chosen. M  is the number of desired IMFs. 

III. SIMULATION AND RESULTS 

For the purpose of evaluating performance of the proposed 
IMF selection algorithm, a fault signal of the induction motor 
and a sound signal of the Jing, traditional Korean percussion 
instrument, are utilized. 

A. Signature Analysis of Broken Rotor Bar Fault 

In the experiment, 0.5 kW, 60 Hz, 2-pole induction motor 
is used to produce the fault data under full load conditions 
and three accelerometers are used to measure vibrations in 
horizontal, vertical and axial directions. The sampling 
frequency of the data acquisition unit was 7.68 kHz. The 
maximum frequency of interest of the measured signals was 3 
kHz. 

Eleven different IMFs are obtained by the EMD of 
horizontal vibration signal in case of broken rotor bar fault. 
In Table I, PHR values of different IMFs, calculated from 
associated parameters, according to the proposed IMF 
selection technique are shown. According to Table I, IMF 5 
has the highest PHR value, meaning that it is one of the most 
significant IMFs. Physical significance of IMF 5 can be 
realized from the corresponding power spectrum (Fig. 1(a)) 
where the rotating frequency (56 Hz) peak is clearly evident 
with sidebands of one time pole passing frequency (fP), i.e., 
peaks at about 64 Hz and 48 Hz are evident. IMF 4 power 
spectrum (Fig. 1(b)) contains side bands peaks at two, four 
and sixth times of pole passing frequency around three times 

TABLE I.  
PHR VALUE CALCULATION FOR IMFS OF FAULT SIGNAL 

IMF index
Pj 

(×10-5) 

Pth 

(×10-5) 

Ej 

(×10-9) 

PHRj 

(×10-2) 

1 91.59 

46.13 

18.80 1.56 
2 58.64 14.50 1.21 
3 431.51 195.00 16.17 
4 465.25 204.00 16.95 
5 495.66 282.00 23.38 
6 80.65 7.71 0.64 
7 20.13 - - 
8 19.46 - - 
9 11.10 - - 
10 3.14 - - 
11 84.35 - - 
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rotating frequency shown by the downward arrows. Besides 
in case of IMF 3 which is another significant IMF, contains 
peaks at 3X+4fP and 3X+6fP frequencies in the power 
spectrum (Fig. 1(c)). Therefore, PHR value enables us to 
perform the reasonable selection of significant IMFs 
according to the fault symptoms. 

B. Signature Analysis of Jing Sound 

The sound used in this analysis is performed by the 
professional player and is recorded by digital recorder in the 
anechoic room. The recorder was set for 48kHz sampling 
frequency and 16 bits quantization. 

As shown in Table II, five IMFs are automatically selected 
by proposed algorithm, whereas, in [6], six IMFs are selected 
empirically by the author. According to Fig. 2, IMF 3, 4, and 
5 contain high peak respectively and they show harmonicity 
as described in Table III. This characteristic is identical to 

that of [8]. In other words, selected IMFs are physically 
meaningful.  

IV. CONCLUSION 

An automatic significant IMFs selection algorithm was 
described and its applications to fault signal and musical 
signal was shown. The algorithm based on the signal power 
and harmonicity was reasonable and efficient to extract 
features from those signals. Extracted IMFs contained 
physical significance such as rotating frequency, passing 
frequency and partial of the musical instrumental sound. 
However, we assumed the specific signal containing 
significant feature had high power and harmonicity. In other 
words, we may not assure the effectiveness and validity of 
the propose algorithm when it is applied to the noise-like 
signal in which harmonicity does not exist. We need to 
provide additional analysis about non-harmonic signal and 
future work in making the algorithm more stable is required. 
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Fig. 1.  Spectra of (a) IMF 5, (b) IMF 4, and (c) IMF 3. 

 

TABLE II. 
PHR VALUE CALCULATION FOR IMFS OF JING SOUND 

IMF index 
Pj 

(×10-2) 
Pth 

Ej 

(×10-2) 

PHRj 

(×10-2) 

1 1466.71 

1.63 

13.25 0.82 
2 4615.38 29.12 5.70 
3 19510.98 51.45 42.57 
4 3017.17 24.08 3.08 
5 599.47 26.58 0.68 
6 78.50 - - 
7 40.32 - - 
8 34.57 - - 
9 22.09 - - 
10 22.04 - - 

TABLE III.  
COMPARISON OF EIGEN FREQUENCY AND PARTIAL TONE'S FREQUENCY 

RATIO OF THE JING 
Eigen frequency (Hz) 118 234 351 468 
Partial tone's frequency ratio 1 1.98 2.97 3.97 
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