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Abstract—The purpose of the paper is to present a hybrid
algorithm to solve a transportation optimization model with
random demand parameters and network design variables. At
first, the classical deterministic linear transportation model
with network design 0-1 variables is introduced. Then, ran-
domness is considered for demand parameters and modeled
by here-and-now approach. The obtained scenario-based model
leads to a mixed integer linear program (MILP) that can be
solved by common integer programming techniques, see e.g.
the branch-and-bound algorithm implemented in the CPLEX
solver. Such a program may reach solvability limitations of MIP
algorithms for large scale real world data, so a suitable heuristic
development is welcome. Therefore, the idea of combination
of traditional optimization algorithm and genetic algorithm is
discussed and developed. At the end, the results are illustrated
and also verified for a small test instance by figures.

Index Terms—transportation network-design problem,
stochastic programming, scenarios, genetic algorithm, GAMS.

I. INTRODUCTION

THE paper introduces a hybrid solution technique for the
scenario-based stochastic mixed integer linear program

that models a design of transportation network under uncer-
tain demand. Further useful references to basic concepts of
stochastic programming can be found e.g. in [1] and [2].

We start in Section II by considering a basic transportation
network design problem, where the network connects sup-
pliers and customers, see [3]. The presented transportation
model is referred to as transportation model with adding
edges (AE) throughout the paper.

In real-world problems, the costumer demand information
can be unknown. This situation can be modeled by a stochas-
tic programming here-and-now (HN) approach [1], which is
the approach that we have adopted for the proposed paper.
The stochastic version of the model is introduced in Section
III and is called stochastic transportation model with AE.

Regarding the solution technique, we start off along our
previous modeling ideas, see [4], but are eventually led to
introduce a new hybrid algorithm to achieve the solution.
The new solution techniques are discussed in Sections IV, V
and VI. Selected results are shortly presented by illustrative
figures – Section VII uses an artificial test case while
Section VIII mentions the hybrid algorithm importance for
the application area of waste-management network design.

We have to emphasize that the principal ideas of the
introduced hybrid algorithm can be further applied to en-
gineering optimization of design parameters. See [5], [6],
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and [7] for civil engineering applications and [8], [9], and
[10] for continuous casting, where both integer and continous
variables may appear in the large scale instances of modeled
problems. As we know, the model may involve linear and/or
nonlinear terms, integer variables, and stochastic elements.
Thus, the technique discussed in the paper may lead to
further modifications of algorithms useful for modern en-
gineering applications. In addition, the discussed heuristics
can be modified with other algorithmic subroutines, see, e.g.,
[9], [11], and [12] for various possibilities.

II. TRANSPORTATION MODEL WITH AE

A transportation model, see [3], [13] and [14], is a first
step towards our computations. The objective function is

max
∑
i1

(∑
e

Ai1,exe

)
gi1 −

∑
e

cexe −
∑
en

denδen (1)

and the goal is to maximize the profit. The following notation
is utilized in the paper: Among decision variables, xe ≥ 0
is the amount of given product to be transported on edge e
and δen ∈ {0, 1} is a 0-1 design variable, which is equal
to 1 if a new edge en is built and 0 otherwise. The sets of
indices are: E is a set of edges, so e ∈ E , En is a set of
newly built edges, so en ∈ En, I1 is a set of customers, so
i1 ∈ I1, I2 is a set of plants (production places), so i2 ∈ I2,
I3 is a set of transition nodes (no customer and no plant),
so i3 ∈ I3, and I is a set of all nodes in a logistic network
that is i ∈ I = I1 ∪ I2 ∪ I3. Thus, Ai,e are elements of a
network incidence matrix, where Ai,e = 1 if edge e leads
to a node i. Ai,e = −1 if edge e stems from node i and
Ai,e = 0 otherwise. Additionally, gi1 is a unit selling price
for customer i1, ce is a unit transportation cost on edge e, den
is a cost of building a new edge en, and bi are all demands
∀i ∈ I .

Then, the term
∑

i1
(
∑

eAi1,exe)gi1 defines the income
from all customers. The next terms

∑
e cexe +

∑
en
denδen

define the cost of transportation of produced items and setting
up new edges in the network. The considered model is
balanced i.e. the sum of demands is equal to the sum of
produced and transported units of goods. This is also rep-
resented by transportation balance constraints

∑
eAi,exe =

bi,∀i ∈ I . So, the first model is then specified as follows

max
∑

i1
(
∑

eAi1,exe)gi1 −
∑

e cexe −
∑

en
denδen∑

eAi,exe = bi, ∀i ∈ I,
xen ≤ δen(

∑
i2
−bi2), ∀en ∈ En,

xe ≥ 0, ∀e ∈ E,
δen ∈ {0, 1}, ∀en ∈ En.

(2)

In the following step, we assume uncertain demand pa-
rameters that we denote bi1,s,∀i1 ∈ I1, s ∈ S where
we further assume a discrete probability distribution with
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a finite number of realizations called scenarios denoted by
indices s ∈ S. See also [4] for another model generalization
involving pricing.

III. STOCHASTIC TRANSPORTATION MODEL WITH AE

Firstly, to include uncertainty in model (2), we utilize the
HN approach and modify the objective function by a penalty
term representing the expected penalty for the unsatisfied
demand that is specified by new decision variables y+i1,s ≥ 0

and y−i1,s ≥ 0. So, we subtract formula
∑

s ps(
∑

i1
(q−i1y

−
i1,s

+

q+i1y
+
i1,s

)), which represents an additional cost, from the
objective function in model (2).

We also modify the first constraint from the model (2) as
follows∑

e

Ai1,exe + y+i1,s − y
−
i1,s

= bi1,s, ∀i1 ∈ I1,∀s ∈ S, (3)

where the equation (3) means that the transported units
plus missing units minus surplus units must be equal to the
customer demand. The following equations (4) and (5) are
defined in the same way as in the model (2) but they are
defined separately for plants (4) and for transition nodes (5).∑

eAi2,exe = bi2 , ∀i2 ∈ I2, (4)∑
eAi3,exe = bi3 , ∀i3 ∈ I3. (5)

The new set of indices S is a set of all possible scenarios,
s ∈ S. So, the new decision variables are y+i1,s denoting
a number of undertransported units i.e. y+i1,s = bi1,s − xe
if bi1,s ≥ xe and is equal to 0 otherwise. Then, y−i1,s is a
number of overtransported units i.e. y−i1,s = xe−bi1,s if xe ≥
bi1,s and is equal to 0 otherwise. Then, ps is a probability
of scenario s ∈ S, so 0 ≤ ps ≤ 1,∀s ∈ S,

∑
s∈S ps = 1,

q+i1 is a unit penalty for unsatisfied demand of the customer
i1 ∈ I1, q−i1 is a penalty for transporting of redundant units
to customer i1 ∈ I1. New parameters are bi1,s number of
demand units by customer i1 ∈ I1, s ∈ S, bi2 number of
demand units by plant i2 ∈ I2 i.e. −bi2 is a number of
produced units by plant i2 ∈ I2, bi3 = 0, i3 ∈ I3. In total, bi
describes all demands and productions∀i ∈ I . Altogether we
specify the updated scenario-based stochastic mixed-integer
linear programming model as follows

max
∑

i1
(
∑

eAi1,exe)gi1 −
∑

e cexe −
∑

en
denδen−∑

s ps(
∑

i1
(q−i1y

−
i1,s

+ q+i1y
+
i1,s

))∑
eAi1,exe = bi1,s − y+i1,s + y−i1,s, ∀i1 ∈ I1,

∀s ∈ S,∑
eAi2,exe = bi2 , ∀i2 ∈ I2,∑
eAi3,exe = bi3 , ∀i3 ∈ I3,

xen ≤ δen
∑

i2
(−bi2), ∀en ∈ En,

y+i1,s ≤ bi1,s, ∀i1 ∈ I1,
∀s ∈ S,

xe ≥ 0, ∀e ∈ E,
δen ∈ {0, 1}, ∀en ∈ En,

y+i1,s, y
−
i1,s

≥ 0, ∀i1 ∈ I1,
∀s ∈ S.

(6)

IV. SOLUTION ALGORITHMS

We have implemented the aforementioned models (2) and
(6) in GAMS and we have solved them by the use of CPLEX
solver for small test instances obtaining acceptable results.

The next solution attempts to solve larger test problems in
the same way led to significantly increasing computational
time needs. Thus, we have decided to utilize our previous
experience (see e.g. [15] and [16]) and we have developed
a hybrid computational technique that combines the GAMS
code with a selected genetic algorithm (GA). The flexible
C++ implementation focusing on GAMS-GA interface fea-
tures is set up for the modified GA that was discussed in
[17], however, it is well suited also for other GA that can
be linked and tested in the future, see, e.g. [18] or [19]. The
following scheme is significantly inspired by the paper [16]
that authors published with Jan Holesovsky in 2013.

Hybrid Algorithm

1) Set up the scenario-based GAMS model (read model
and data in *.gms files). Set up control parameters for
the GA. They are partly decided by the user (e.g. the
population size) and partly inferred from the GAMS
model counterpart (e.g. how many arcs in the network
should be considered).

2) Create an initial population for the GA. Initial values
of 0 − 1 variables must be generated and placed into
the so called $INCLUDE files, where they can be read-
in by GAMS. Several runs of random generation are
needed, corresponding to the population size.

3) Repeatedly run (in parallel) tha GAMS model using
tha CPLEX solver. Each run solves the program for the
fixed values of 0−1 variables. Cost function values are
calculated, also for new individuals created by means
of the genetic operators, initially in 2. and then in 7.

4) Store the best results obtained from GAMS in 3. (the
optimal objective function values and optimal values
of all variables) for comparisons.

5) Test the algorithm termination rules and stop in case
of their satisfaction (e.g. after a long period of com-
putations without any significant improvement in the
objective function). Otherwise continue.

6) Generate input values for the GA from GAMS results,
see step 3. Specifically, the cost function values for
each member of population of the GA are obtained
from results of the GAMS runs in 3.

7) Run GA to update the set of 0− 1 variables (popula-
tion), see [17] for details. Return to step 3.

V. GENETIC ALGORITHMS

The section brings principal ideas of the utilized genetic
algorithm (GA) that works as the principal part of the hybrid
algorithm, see Section IV. It follows the previous ideas of
one of the authors from [20] and [17] and brings much more
details then the overview in [16].

Genetic algorithms belong to stochastic heuristic opti-
mization methods, see [21]. GAs are inspired by biological
mechanisms in a simplified way and they are implemented
by computer codes. The main usage of GAs is the solution
of problems of multi-dimensional optimization where no
analytic or convergent numerical solution is known or is not
achievable.

The most simple searching strategy in optimization is to
generate and check all feasible solutions step-by-step i.e. to
calculate the cost function value for each solution and to
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find the best one (full enumeration technique). However, in
theoretical models, the feasible set is usually an infinite set
because of continuous decision variables. Even in practice,
such procedure is not often useful although when we use a
computer, the feasible set can be considered finite because
we cannot store infinite set of numbers in the finite memory.
Yet in real-world problems we cannot explore all possible
values of the objective function in the time that is available.
So, heuristic methods use more advanced strategies.

The feasible set search strategy used by GAs is inspired
by natural evolution, where the best individuals have the best
chance to survive and to become parents of new offspring.
GA has an iterative character. GA works not only with one
solution in time but with the whole population of solutions.
The population contains many (often several hundreds) indi-
viduals i.e. bit strings representing solutions. The mechanism
of GA involves only elementary bit related operations like
strings copying, partially bit swapping or bit value changing.
The GA begins with a population of strings and thereafter
generates successive populations using the following three
basic operations: reproduction, crossover, and mutation.

Reproduction is the process by which individual strings
are selected as the parents of new offspring according to an
objective function value (so called fitness). This means that
strings with a higher fitness value have a higher probability
of contributing one or more offspring to next generation.
This is an artificial version of natural selection. Usually
two parents are selected to create a new bit string - the
new individual (child). The new bit string is created by a
combination of parts of bit strings of its parents (the child
inherits genetic information from its parents). This string
combination is called crossover. These new children are
added into the population. The population has the constant
size, so it is necessary to delete some (almost all) parents (so
called deletion operator). Then the process is repeated (i.e.
next iteration runs) with the new population. If the stopping
rule is satisfied, the process ends.

In addition, the GA utilizes another mechanism existing
in the nature - mutation. Theory says that mutation helps
individuals adapt to changing living conditions easier. It is
modeled as a small random change of genetic information.
Mutation is an occasional (with a small probability) random
alteration of the string position value. Mutation is needed
since, in spite of reproduction and crossover effectively
searching and recombining the existing representations, they
occasionally become overzealous and lose some potentially
useful genetic material. The mutation operator prevents such
an irrecoverable loss. The recombination mechanism allows
mixing of parental information while passing it to their
descendants, and mutation introduces innovation into the
population. Mutation can also prevent degeneration. In opti-
mization the deadlock in a local extreme is interpreted as an
analogy to degeneration.

More details on GAs and its operators and parameters can
be given as follows. There is a population P containing N el-
ements (individuals). Each element of P is a string (or set) of
integers of the fix length of n representing the solution of the
problem. Then, f denotes the cost function (fitness function)
which assigns a real number to each individual in P . There is
a parent selection operator, which selects elements from P .
In general, we consider a set of genetic operators containing:

the crossover operator, the mutation operator, and eventually
other problem dependent or implementation dependent oper-
ators. All these operators generate descendants from parents.
The parent selection operator and the genetic operators
have the probabilistic character and the deletion operator
is usually deterministic. Depending on implementation an
individual contains one or more chromosomes. The genotype
of chromosome is the inner representation of chromosome
in the computer memory. Usually, the inner representation is
treated as a vector of genes. The phenotype of chromosome
is an abstract mathematical object representing the solution
of solved optimization problem. We can treat it as a vector
containing graph structure description, parameter values, etc.

The use of computers is expected, so the chromosome
is stored in the memory in the form of field of bits. This
field must have the finite length. It means that the set of
all possible phenotypes of chromosomes is finite too. The
ambition of evolution is to create a chromosome, which is
very near (or even equal) to the optimal chromosome. As
mentioned above, the mutation and crossover operators have
a probabilistic character, so we can denote the probability
of mutation and probability of crossover. The fitness value
f is a non-negative number bringing a relative measure of
the quality of every individual in the current population. The
run of GA can be described using the following steps:

1) Generation of the initial population (random generation
is often used) composed of individuals.

2) Computation of fitness function values related to 1).
3) Parent selection and generation of offspring.
4) Creation of the new population by using deletion

operator and addition of offspring generated in the
previous step.

5) Mutation.
6) If the stopping rule is not satisfied, go to step 3),

otherwise continue to 7).
7) The result is the best individual in the population.

VI. IMPLEMENTATION DETAILS AND TRICKS

In spite of its simple principles, the design of the GA
to be practically successful can be surprisingly complicated,
see [17] and [20] for further details. The GA has many
parameters that depend on the problem to be solved. In the
first, it is the size of population. There are two opposite
demands.

The diversity (the amount of information in the population)
should be as high as possible. The speed of computations
should be high and it depends on the number of computations
in every iteration. Larger populations usually decrease the
number of iterations needed but dramatically increase the
computing time for each of iteration. The factors increasing
demands on the size of population are the complexity of
the problem being solved and the length of the individuals.
A smaller population brings the problem of degeneration
(premature stop of computations). The optimal size of popu-
lation increases exponentially with the length of genes when
binary coding is used. Practical experiences show that the
population size of 50 – 200 produces usually good results
in many cases, whereas for large problems up to 1000
individuals in population should be used.

Every individual contains one or more chromosomes hold-
ing value of potential solution. Chromosomes consist of
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genes. Genes are the elements of the parameters vector. The
value represented by chromosome has to be decoded. To
eliminate the influence of the Hammings barrier, Grey code
must be usually used, see [21]. We can consider the gene
to be a structure representing one bit of the solution value.
It is usually advantageous to use some redundancy in genes
and then the physical length of the genes can be greater than
one bit. Such a type of redundancy was introduced by Ryan
[22].

The so called shades mean that chromosomes contain
redundant information every value bit is stored in one gene
having length of more than one bit. E.g. for genes of the
length of three bits gene values 0, 1, 2 could represent value
0, gene values 5, 6, 7 could represent value 1, and values 3
and 4 could be an undetermined (shade) area their value is
set randomly (once for the whole lifetime of each gene).

The strategy of generation of the initial population is also
important. Usually it is generated randomly, but we can also
use solutions obtained by another methods (in this case we
talk about hybrid GA). It is useful to reach a high diversity
in the initial population, therefore using identical individuals
in the initial population is not recommended.

There is also a significant problem with infeasible solu-
tions. Usually, initial population should not contain infeasible
solutions. Infeasible solutions can also appear as a product
of the crossover and/or mutation operation. Such population
members could be excluded from the population, but some-
times it is more convenient to penalize them (by assigning a
very poor value of the cost function to these individuals).

One of the most important details is the parent selection
strategy. The diversity is dramatically decreased when only
the best individuals are selected for crossover. Three basic
strategies are used: (1) Proportionate selection – the prob-
ability of selection of each individual is proportionate to
its fitness. (2) Ranking selection – population is sorted by
the fitness, the probability of selection of each individual
is proportionate to its rank in population. (3) Tournament
selection – several individuals are selected randomly, from
them the individual with the best fitness is taken.

New individuals are created by operation called crossover.
In the simplest case, crossover consists in swapping two parts
of two chromosomes split in randomly selected point (the so-
called one point crossover). It is also possible to use multi-
point crossover. Depending on the application, the point of
crossover can be located inside the genes or only on their
borders. Uniform crossover means that every gene (or even
every bit) of the new individual is randomly chosen from
one parent.

The main goal of mutation is to eliminate degeneration and
to allow changes of genotype, which cannot be reached by
crossover. There are different kinds of realization of mutation
operation (to change one bit, a group of bits, to change one
gene, arithmetic operation applied to a chosen element of
vector of solution in chromosome, . . .). The mutation has a
probabilistic character (bits/genes/chromosomes are selected
randomly); the corresponding parameter is the probability of
mutation.

The classical version of GA uses only three genetic oper-
ators – crossover, mutation and reproduction (e.g. the parent
selection and the replacement scheme). One of the biggest
disadvantages is a tendency of GA to reach some local ex-

treme. In this case GA is often not able to abandon this local
extreme in he consequence of the low variability of members
of population. To prevent the degeneration and the deadlock
in local extreme, a limited lifetime of individuals can be
used. The limited lifetime is realized by the death operator
[17], which represents something like a continual restart of
the GA. This operator enables decreasing the population
size as well as increasing the speed of convergence. Each
individual carries an additional information its age. A simple
counter, which is incremented in each iteration of the GA,
represents the ageing. If the age of any member reaches the
preset lifetime limit LT, the member dies and is immediately
replaced by a new randomly generated population member.
The age is neither mutated nor crossed over. The age of new
individuals (incl. individuals created by crossover) is set to
zero. A useful range for the lifetime limit is from 5 to 20, in
dependence on the population size and the typical number of
iterations. It is necessary to store the best obtained solution
separately the corresponding individual might not always be
present in the population because of the limited lifetime.

Many GAs are implemented on a population consisting
of haploid individuals (each individual contains one chromo-
some). However, in nature, many living organisms have more
than one chromosome and there are mechanisms used to
determine dominant genes. Sexual recombination generates
an endless variety of genotype combination that increases the
evolutionary potential of the population. Because it increases
the variation among the offspring produced by an individual,
it improves the change that some of them will be successful
in varying and often-unpredictable environments they will
encounter. The modeling of sexual reproduction is quite
simple. The population is divided into two parts - males and
females. One parent from each part is selected for crossover.
The sex of individual is stored in the special gene; this
gene is not mutated. The sex of descendant is determined by
crossover the sexual genes of parents, descendant is placed
to the corresponding part of population. There are different
selection strategies of parent of different sex (analogies of
biological systems are used).

The replacement scheme brings another problem. The
simplest possibility is the generational replacement where
the whole population is replaced in every iteration. The
behavior of GA will not be monotonous in this case, because
genetic operators do not guarantee the enhancement of the
best individual for each next iteration (the best individual in
the next generation may be even worse then the best indi-
vidual in the previous one). To protect monotonous behavior
the incremental replacement (steady-state replacement) was
introduced. We can use least-fit member replacement where
one (or more) element with the worst fitness is replaced,
or we can replace randomly chosen element (elements).
Therefore, the elitism brings a way to keep monotony
while generational replacement is used. One or several best
individuals represent the elite. The whole elite is directly
taken to the next iteration. In general we may say, that it
is not necessary to replace all members of population by
newly created individuals. The crossover may generate the
number of individuals between the quarter and the half of
the population size. Created individuals should be sorted into
the corresponding places in the population according to their
fitness in such a way that the size of the population remains
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the same. Newly created individuals of low fitness do not
have to be involved in the population.

Genetic algorithms commonly use heuristic and stochastic
approaches. From the theoretical viewpoint, the convergence
of heuristic algorithms is not guaranteed for the most of
application cases. That is why the definition of the stopping
rule of the GA brings a new problem [23]. We must notice
that a typical GA does not produce the solution enhancement
in every iteration. The stagnation can be observed in follow-
ing three situations: (1) Temporary stagnation, GA is able to
continue. (2) Local extreme was reached and population is
degenerated, GA is probably not able to continue. (3) The
optimal solution was found (this solution is unknown, so this
situation cannot be simply identified).

It can be shown that while using a proper version of
GA repeatedly for the given problem, the typical number
of iterations can be determined.

The hybrid algorithm described in the paper uses GA
as the main control loop. The GA is implemented in C+
language in the object form. The computation of the objective
function value is rather complicated in this case, so we de-
cided not to write a C++ program to solve the network design
problem, but use the GAMS with CPLEX solver instead. In
opposite way, we have not fully utilized GAMS and CPLEX
for the whole model to avoid a need to solve a large scale
mixed integer program. The used approach advantageously
splits the solution between GA and LP solver.

The communication between GA and GAMS is based on
data transfer by external interface files. The time consump-
tion for the cost function evaluation in this arrangement is
high. It was necessary to minimize the number of the cost
function evaluation (the number of running GAMS). The
very efficient version of GA capable to find solution in a
small number of iterations and capable to use a small popu-
lation was needed. The GA used in the paper problem related
computations uses ranking selection, haploid chromosomes,
shadows, limited lifetime and elitism described above.

The results for the test example were obtained by the
GA having the population size of 40 individuals that can
be computed in parallel to save a computational time. The
typical number of iteration was about 30, so the GAMS was
called 1200 times in the worst case. The chromosomes have
the length of 119 data bits, so more then 6.6 × 1035 of
combinations describing the feasible set exist (so the use
of the full enumeration strategy is not definitely possible in
this case).

VII. COMPUTATIONS AND RESULTS

The main idea of the hybrid algorithm is based on the
solution of a stochastic program for various sequences of the
fixed 0− 1 variables. So, the the optimal objective function
values are obtained together with these sequences of zeros
and ones. They serve as the input fitness value plus elements
of the population for the GA that utilizes its own steps
described below (selection, crossover, mutation and further
modifications as limited lifetime and sexual recombinations,
see [17]) that are hidden within the GA structure. Updated
sequences of zeroes and ones are generated by the GA and
sent to the GAMS through the updated $INCLUDE file and
the computational loop continues to the moment when the
satisfactory improvement of the network design is obtained.

Because of the comparison purposes, we have utilized the
test examples from [4]. The results obtained by the hybrid
algorithm seem to be equivalent to GAMS computations for
the considered instances, see Figure 1 and 2 for the selected
case.

Fig. 1. Results for the deterministic transportation model with AE.

Fig. 2. Results for the stochastic transportation model with AE.

The figures represent visualization of the example for main
models, see [14] for details. The example shows a distribu-
tion network (green lines are edges where the variables xe are
non-zeros, red lines are edges where xen is a non-zero one
(or δen is equal to 1)). We may also see that the stochastic
demand usually requires new edges to bring the necessary
recourse in the results.

VIII. CONCLUSIONS AND FURTHER RESEARCH

The paper presents principle ideas behind the development
of the original hybrid algorithm involving GA for the solution
of network design problem (6). We have focused on a
specific network design problem with uncertain demands
leading to the large scale specially structured mixed integer
mathematical program. Similar mixed integer programs may
appear in many application areas, including traffic networks
[16], design problems [6], and production problems [10].
Therefore, the suggested hybrid algorithm can be modified
and widely applied. The similar hybrid algorithm technique
has been already utilized for traffic assignment problem in
[16]. The hybrid algorithm description is also accompanied
by details about the implemented GA.

We have also shown that the original stochastic program
reformulation leads to the MILP that can be successfully
solved by integer programming techniques for the small
data instances and by hybrid algorithms for larger cases.
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In addition, the developed hybrid algorithm framework is
general enough that allows to replace its elements, e.g.
GAMS with other modelling language and the chosen GA
with other GAs or heuristics. The approach is also portable
to other problems leading to nonlinear integer programming
formulations.

Fig. 3. Waste management network design - feasible edges.

Fig. 4. Waste management network design - suboptimal solution.

The idea to test these conclusions more carefully for large
test cases and real world applications in waste management
problems (see [24] for recent challenges), especially in
the related transportation network design (see Figure 3 for
visualised network and Figure 4 for achieved results by [25]
with details) represents one of the current challenges for
further research. Another challenge is to apply developed
techniques in collaboration with colleagues specializing in
traffic organization under uncertain or stress circumstances,
see [16], [26], and [27]. In addition, we have to think about
generalization of our hybrid technique to the transportation
problems involving pricing as in [4].
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