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Abstract—In this paper, we propose the artificial
bee colony algorithm for solving large-scale and hard
constraint satisfaction problems (CSPs). Our algo-
rithm is based on the DisABC algorithm which is
proposed to solve binary optimization. In our al-
gorithm, two main improvements are adopted: (1)
to supplement low local search ability of the ABC, a
hybrid algorithm with greedy local search technique,
called GSAT is combined and (2) in the scout bee
phase, greedy scout bees are introduced, where bees
construct new candidate solutions by using a partial
assignment of the best solution probabilistically. We
demonstrate that our algorithm can be effective for
the hard instance which are concentrated in the phase
transition and we also discuss that the search per-
formance is varied by difference of the proportion of
using partial assignments of the best solution.

Keywords: constraint satisfaction, search, meta-

heuristics, artificial bee colony, phase transition

1 Introduction

A constraint satisfaction problem (CSP) involves finding
values for problem variables which are subject to given
constraints specifying the acceptable combinations of val-
ues. Such combinatorial search problems are ubiquitous
in artificial intelligence and pattern analysis, including
scheduling, planning, resource allocation, or machine vi-
sion.

To solve large-scale and hard constraint satisfaction prob-
lems (CSPs) that are NP-complete, meta-heuristics for
stochastic search approaches has been recently made re-
markable progress[1]. Artificial bee colony (ABC) [2],
based on the intelligent foraging behaviour of honeybee
swarm, is one of typical meta-heuristics. Although it is
expected that the ABC algorithm can be effective for
many optimization problems, the ABC algorithm can
not be directly applied to CSPs that are one of typical

∗This research was partially supported by Grant-in-Aid for Sci-
entific Research (C), No. 25330267, Japan Society for the Promo-
tion of Science, 2013-2016.

†Y. Aratsu, K. Mizuno and H. Sasaki are with the De-
partment of Computer Science, Takushoku University, Ha-
chioji, Tokyo 193-0985, Japan e-mail: yk.aratsu15@gmail.com,
mizuno@cs.takushoku-u.ac.jp.

‡S. Nishihara is with Department of Computer Science, Univer-
sity of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

combinatorial search problems because the original ABC
algorithm[2] has been applied to only continuous opti-
mization problems. In contrast, Kashan, et. al. have pro-
posed the ABC algorithm for binary optimization, which
is an example of discrete or combinatorial optimization
problems, called DisABC[3].

In this paper, we propose an ABC algorithm for solv-
ing hard and large-scale CSPs. The proposed algorithm
is based on DisABC[3] modified to be applied to binary
CSPs and a hybrid method combined with GSAT[4] to
supplement local search ability. Furthermore, we provide
greedy scout bees, which try to find a new food source, or
candidate solution, by using source position information
of the best solution so far. We experimentally demon-
strate that our algorithm can efficiently solve hard bi-
nary CSPs around the phase transition region and dis-
cuss what types of behavior of greedy scout bees is more
effective.

The CSP is well-known as an NP-complete problem, but
actual problem instances with such computational com-
plexity are found only in a locally limited region of the
problem space. Recent studies have revealed that re-
ally hard problem instances tend to happen in situa-
tions very similar to physical phase transitions[5]. Prob-
lem instances within phase transition regions are very
hard to solve for not only backtracking based systematic
approaches but also repair-based stochastic approaches.
Hence, it is important for the studies of meta-heuristics
to place their interests on how well they cope with such
hard problem instances within phase transition regions.

2 Problem definition and ABC algo-
rithms

2.1 Constraint Satisfaction Problem

Let us briefly give some definition and terminology about
CSPs. A CSP is defined as a triple (X, D, C) such that

• X = {x1, . . . , xn} is a finite set of variables,

• D is a function which maps every variable xi ∈ X
to its domain Di, i.e., the finite set of values that
should be assigned to xi, and
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• C is a set of constraints, each of which is a rela-
tion between some variables which restricts the set of
values that can be assigned simultaneously to these
variables.

In this paper, let D1 = · · · = Dn = D and |D| = m. We
also employ binary CSPs which have only binary con-
straints, i.e., every constraint involves exactly two vari-
ables. Fig. 1 gives an example of binary CSP instances.

Binary CSP instances for using the experiments can be
generated randomly. A class of randomly generated in-
stances is characterized by 4 components, 〈n, m, p1, p2〉
where n is the number of variables, m is the domain size,
or the number of values, p1 is the probability of adding
a constraint between two different variables, and p2 is
the probability of ruling out a pair of values between two
constrained variables.

X = {x1, x2, x3, x4}
D = {a, b, c} (= D1 = · · · = D4)
C = {c12, c23, c14}

c12 = {(a b), (b c)}
c23 = {(c b), (b a), (b b)}
c14 = {(a c)}

Solutions: (x1 x2 x3 x4) = {(a b a c), (a b b c)}

Figure 1: An example instance of binary CSPs.

2.2 ABC Algorithm

The ABC algorithm is a population-based meta-
heuristics inspired by the intelligent foraging behavior
of honeybee swarm[2]. The foraging bees are classified
into three categories of employed, onlookers, and scouts.
Employed bees determine a food source within the neigh-
bourhood of the food source in their memory. They share
their information with onlookers within the hive and then
the onlookers select one of the food sources. Onlook-
ers select a food source within the neighbourhood of the
food sources chosen by themselves. An employed bee of
which the source has been abandoned becomes a scout
and starts to search a new food source randomly. In the
ABC algorithm, the position of a food source is a possible
solution of the optimization problem and nectar amount
of a food source corresponds to the fitness of an associ-
ated solution.

2.3 DisABC Algorithm

The ABC algorithm has been designed for optimization
in continuous space and cannot work with vectors with
discrete values. In contrast, the DisABC algorithm has
been proposed to solve binary optimization[3]. In the
DisABC algorithm, to measure distance between food
sources, the ”−” operator used in the original ABC al-
gorithm is substituted with a dissimilarity measure of
binary vectors by employing the Jaccard coefficient of

similarity[3]. Letting Xi = (xi1, xi2, · · · , xid, · · · , xiD)
and Xj = (xj1, xj2, · · · , xjd, · · · , xjD) where xid and xid

can take only 0 or 1 values, Dissimilarity (Xi, Xj) is de-
fines as

Dissimilarity (Xi, Xj) = 1− Similarity (Xi, Xj) ,

where

Similarity (Xi, Xj) =
M11

M11 +M10 +M01
,

M11 =
∑D

d=1 I(xid = xjd = 1),

M10 =
∑D

d=1 I(xid = 1, xjd = 0),

M01 =
∑D

d=1 I(xid = 0, xjd = 1),

M00 =
∑D

d=1 I(xid = xjd = 0).

3 The Proposed Artificial Bee Colony
Algorithm

3.1 Basic Strategies

In this paper, we propose an ABC algorithm for solving
CSPs, summarized as follows:

i. The proposed algorithm is based on the DisABC al-
gorithm which can solve binary optimization prob-
lems.

ii. CSP instances to be applied to the our algorithm
are encoded or reexpressed to a binary optimization
form.

iii. To supplement local search abilities of the ABC,
GSAT proposed by Selman[4] is combined with our
algorithm.

iv. Scout bees create candidate solution, i.e., new food
source positions, by randomly using parts of the best
solution so far.

Thus, our method can efficiently solve CSPs, although
each CSP instance is needed to be reexpressed.

3.2 The Algorithm

Fig. 2 gives the proposed algorithm, in which DisABC is
extended to solve binary CSPs. To apply binary CSP to
our algorithm, CSP instances need to be reexpressed.

Fig. 4 gives the procedure to reexpress CSP instances.
For example, when the CSP instance denoted in Fig.
1 is applied to this procedure, The binary version is
output as shown in Fig. 5. In Fig. 2, the ith food
source, Xt

i (i = 1, · · · , Ns), at the cycle t, which corre-
sponds to the assignment of values to variables is first
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begin
Initialization;
For t = 1 to MaxCycle do

EmployedBeesPhase();
OnlookeredBeesPhase();
If rand < Gp then

GSAT(Xt);
End if
ScoutBeesPhase();
Memorize the best solution achieved so far;

End for
end

procedure EmployedBeesPhase()
For i = 1 to Ns do

Generate a new assignment V t
i from Xt

i (and based on
Xt

k (k �= i)) via NBSG proposed by [3];
Evaluate the new solution;
If Conf(V t

i ) < Conf(Xt
i ) then

Xt
i ← V t

i ;
triali ← 0;

Else
Remember Xt

i ;
triali ← triali + 1;

End if
End for

end procedure

procedure OnlookerBeesPhase()
For i = 1 to Ns do

Calculate the probability proportional to the quality of
food sources pi;
Produce a new assignment V t

i from Xt
i (and based on

Xt
k (k �= i)) selected depending on pi via NBSG

proposed by [3];
Evaluate the new solution;
If Conf(V t

i ) < Conf(Xt
i ) then

Xt
i ← V t

i ;
triali ← 0;

Else
Xt+1

i ← Xt
i ;

triali ← triali + 1;
End if

End for
end procedure

procedure ScoutBeesPhase()
If max {triali} ≥ limit then

Replace the abandoned assignment with a new assignment
by the procedure ConstructAssignmentByGreedyScout();

End if
end procedure

Figure 2: Hyblrid DisABC

procedure ConstructAssignmentByGreedyScout()
Initialize the abandoned assignment, Xi;
k ← 0;
While k < (deflection× n) do

Select the j-th variable, Xij , randomly;
If Xij is unassigned then

Xij ← bestij ;
k ← k + 1;

End if
End while
For j = 1 to n do

If Xij is unassigned then
Xij ← 0 or 1 (randomly);

End If
End for

end procedure

Figure 3: The proposed algorithm for Scout Bees.

generated at ”Initialization”. Then, the main three
processes, EmployedBeesPhase, OnlookerBeesPhase, and
ScoutBeesPhase, are repeated until a solution with no
constraint violations, i.e., Conf(X) = 0, is found or t
reachesMaxCycle. Conf(X) is the number of constraint
violations of X. GSAT, which can perform a greedy local
search, is hybridized with our algorithm and is employed
after the onlooker phase. Gp controls the rate of recalling
the GSAT module in our algorithm.

In the scout bee phase of the original ABC algorithm,
candidate solutions that cannot attain to a optimal solu-
tion are abandoned and scout bees attempt to generate
new candidate ones randomly. This operation seems to
be effective in the sense of preventing candidate solutions
from getting stuck in locally optimal solutions. However,
it can make the search more slow to conduct completely
random generation of new candidate solutions and possi-
bly fair partial solutions may exist in the abandoned solu-
tions. We improve the scout bee phase, as shown in Fig.
3, where a partial assignment which is equal to or less
than a certain proportion, say deflection, of the whole
assignment is generated by assigning that of the best so-
lution so far and the remaining assignment is generated
randomly when a scout bee generates a new candidate
solutions.

4 Experiments

4.1 Experimental Settings

To evaluate the efficiency of the proposed methods, we
attempt to briefly conduct the experiments. We employ
two types of randomly generated binary CSP instances:
〈30, 4, 0.14, p2〉 for 19 cases of p2 = 0.30, 0.32, 0.34, 0.36,
0.38, 0.40, 0.42, 0.44, 0.46, 0.48, 0.50, 0.52, 0.54, 0.56,
0.58, 0.60, 0.62, 0.64 and 0.66, and 〈50, 4, 0.14, p2〉 for 19
cases of p2 = 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28,
0.30, 0.32, 0.34, 0.36, 0.38, 0.40, 0.42, 0.44, 0.46, 0.48

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



begin
Generate n×m variables;
For i = 1 to n do

For j = (i+ 1) to n do
If cij ∈ C then

For k = 0 to (m− 1) do
If k == (ci −′ a′) then

ci(′a′+k) ← 1;
Else

ci(′a′+k) ← 0;
End if
If k == (cj −′ a′) then

cj(′a′+k) ← 1;
Else

cj(′a′+k) ← 0;
End if

End for
End if

End for
End for

end

Figure 4: The procedure to reexpress CSPs.

X = {(x1a, x1b, x1c),
(x2a, x2b, x2c),
(x3a, x3b, x3c),
(x4a, x4b, x4c)}

D = {0, 1} (= D1a = · · · = D4d)
C = {c1∗2∗, c2∗3∗, c1∗4∗} (*: a, b, or c)

c1∗2∗ = {(1 0 0 0 1 0), (0 1 0 0 0 1)}
c2∗3∗ = {(0 0 1 0 1 0), (0 1 0 1 0 0), (0 1 0 0 1 0)}
c1∗4∗ = {(1 0 0 0 0 1)}

Solutions: (x1∗ x2∗ x3∗ x4∗) = {(1 0 0 0 1 0 1 0 0 0 0 1),
(1 0 0 0 1 0 0 1 0 0 0 1)}

Figure 5: An example instance of the reexpressed binary
CSPs.

and 0.50 we randomly generate 100 instances per case,
i.e., a total of 1900 × 2 generated instances, whose search
space size is 430(� 1018) and 450(� 1030), respectively.
However, the search space size of reexpressed ones is
2120 (� 1036) and 2200 (� 1060). These instances are
located around phase transition[5] regions derived by the
following equation[6]:

κ =
n− 1

2
p1 logm(

1

1− p2
). (1)

In particular, κ = 1.015(� 1) in the case of p2 = 0.50,
corresponding to critically constrained regions.

Let us clarify the parameter settings of the methods. The
number, Ns, of food sources is set to 50, ’MaxCycle’ de-
noted in Fig. 2 is set to 10,000, and the number, limit,
of trials for releasing a food source is set to n×m. As for
parameters on GSAT in our algorithm, Gp and MAX-
FLIPS are set to 0.05 and 10, respectively. The pa-

rameter, deflection, which is the proportion making the
partial assignment inherit from the best solution in the
scout phase, is set to 0.1, 0.3, 0.5, 0.7, and 0.91

We also briefly conduct experiments on naive GSAT, in
which parameters, MAX-TRIES and MAX-FLIPS in
[4] are set to 5,000 and 100, respectively.

We evaluate the percentage of solved CSP instances, that
is, the proportion of the number of instances for which
the method can find a solution to all instances to be tried
to search and average cycles required for solving. The
method is implemented in language Java on a PC with
3.07GHz of Intel Core i7 880 and 4GBytes of RAMs.

4.2 Experimental Results and Discussion

Figs. 6, 7, 8, and 9 give the results. Figs. 6 and 8 show
the percentage of solved CSP instances. Figs. 7 and 9
show the average of total cycles in our approach.

As shown in Figs. 6 and 7, the percentage of solved CSPs
is the lowest around p2 = 0.42 for every value of the
parameter deflection. More search cycles are required
around p2 = 0.46. Thus, hard problem instances are con-
centrated in the region from p2 = 0.42 to p2 = 0.46 for
the 30 variables case. As for each deflection value, there
is few difference in the percentage of solved instances for
deflection= 0.0∼ 0.5. The search cycles can also be held
down in those parameters. However, the lower percent-
age appears for deflection = 0.7 and 0.9. In particular,
in deflection = 0.9, both of the percentage and search
cycles become substantially worse.

On the other hand, as shown in Figs. 8 and 9, the hard
problem instances are concentrated in the region from
p2 = 0.30 to p2 = 0.36. As well as the results of the
30 variables case, the search can be more effective and
almost synchronized for deflection = 0.5 or less. When
deflection = 0.5, the percentage of solved instances is the
highest in p2 = 0.30 where the hardest instances seems
to be concentrated.

These results demonstrate that the search performance
can grow down by using partial assignments with high
probability. This seems to be the reason why the candi-
date solutions being inclined to get stuck in locally op-
timal solutions can be easily constructed by inheriting
more partial assignments from the best solution. In con-
trast, the search performance can slightly be more effec-
tive for the lower proportion, e.g., deflection = 0.3 and
0.5 than for deflection = 0.0, i.e., scout bees in the orig-
inal ABC algorithm. Thus, our greedy scout bees can
make the search more efficiently.

1In deflection = 1, new assignments generated in the scout
phase are equal to the best solution. In deflection = 0, those
assignments are generated completely randomly.
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Figure 6: Experimental result of the 30 variables case on
the percentage of success.

Figure 7: Experimental result of the 30 variables case on
average of total cycles.

5 Conclusion

We have described a new approach to deal with hard and
large-scale CSPs using the ABC algorithm in this paper.
In our method, DisABC[3] is modified to be applied to bi-
nary CSPs and a hybrid method combined with GSAT[4]
to supplement local search ability. Moreover, we provide
the parameter which is the proportion making the par-
tial assignment inherit from the best solution in the scout
phase to find a new food source, or candidate solution,
by using source position information of the best solution
so far.

We conduct brief experiments, demonstrating that our
algorithm can be effective to solve CSP instances. Our
most important future works should consist in immedi-
ately conducting more experiments and comparing with
other meta-heuristics and swarm intelligence approaches
such as particle swarm optimization[7].

Figure 8: Experimental result of the 50 variables case on
the percentage of success.

Figure 9: Experimental result of the 50 variables case on
average of total cycles.
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