
 

 

Abstract—A procedure to construct a simple resistor 

network for a given real number is presented. Given a rational 

number, the procedure is an algorithm that yields a finite 

simple network with the rational number as its equivalent 

resistance; given an irrational number, the procedure 

incrementally constructs a simple network by repeatedly 

adding unit resistors to the network such that the equivalent 

resistance of the network approaches the irrational number 

arbitrarily closely. The results of this procedure are confirmed 

computationally with Java code. 

 
Index Terms—procedure, real numbers, resistor networks. 

 

I. INTRODUCTION 

simple resistor network [1] is defined recursively to be 

either a unit resistor (i.e., a 1-ohm resistor), or a resistor 

network formed from a unit resistor connected in series or in 

parallel with a simple resistor network. For example, eight 

simple resistor networks are shown below (Fig. 1). All 

resistors used in this article are unit resistors. 

Fig. 1 Some Simple Resistor Networks

Network a Network b Network c Network d

Network e Network f Network g Network h

 
Network a in Fig. 1 is a single unit resistor and is the basis 

case of the recursive definition of simple resistor networks. 

Network b is derived from network a by connecting an extra 

unit resistor in parallel with network a, and network c in Fig. 

1 is derived from network a with an additional unit resistor 

connected in series. Similarly, network d and network e are 

derived from network b by connecting an extra unit resistor 

in parallel (network d) and in series (network e), and  

network f and network g are derived from the network c by 

adding a unit resistor in parallel (network f) and in series 

(network g). When connecting a unit resistor in series with a 
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network, the order of the two makes no difference. For 

example, network e and network h in Fig. 1 are considered 

identical networks (both are derived from network b by 

connecting an extra unit resistor in series). 

A one-to-one correspondence has been established in [1] 

between positive rational numbers and finite simple resistor 

networks. In this article we present a procedure to map 

positive real numbers to simple resistor networks. Each 

positive real number, which can be either rational or 

irrational, will be mapped to a simple resistor network, 

which may or may not be finite. Given a positive rational 

number, the procedure yields a finite simple network with 

the rational number as its resistance; given a positive 

irrational number, the procedure incrementally grows a 

simple network such that the resistance of the network gets 

closer and closer to the irrational number as the network 

grows, and the resistance of the network can get arbitrarily 

close to the given irrational number as this construction 

process continues.  

II. A CONSTRUCTION PROCEDURE  

The following procedure maps a real number to a simple 

resistor network. The input to the procedure is a positive real 

number x. The procedure constructs a simple resistor 

network N, which may or may not be finite depending on 

whether x is rational. The network N is initialized to be a 

single unit resistor, which is also the initial origin of the 

network. The origin of a network is the unit resistor to which 

an extra resistor will be added each time the network is 

enhanced. The notation eqres(N) denotes the equivalent 

resistance of a simple network N. For example, eqres(N) is 1 

when N is the initial network – a single unit resistor. 

 

while ( eqres(N) is not x ) 

     if ( eqres(N) > x )  

          replace the origin of N with the origin  

and an extra unit resistor in parallel  

    else  

          replace the origin of N with the origin  

and an extra unit resistor in series 

   //end if-else 

//end while loop 

 

Intuitively, when the resistance of the network is greater 

than the given real number, the procedure repeatedly adds 

unit resistors in parallel with the origin to lower the 

equivalent resistance of the network until one of the 

following cases occurs: a) the equivalent resistance becomes 

less than the given real number - in this case the equivalent 
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resistance is called a valley; or b) the equivalent resistance 

of the network becomes equal to the given real number and 

the procedure terminates. Similarly, when the equivalent 

resistance is less than the given real number, unit resistors 

are repeatedly added in series with the origin to raise the 

equivalent resistance until the equivalent resistance becomes 

greater than the given number – in this case the equivalent 

resistance is called a peak, or until the equivalent resistance 

becomes equal to the given real number and the procedure 

terminates. 

In short, the resistance of a network under construction 

fluctuates between peaks and valleys. It will be shown in the 

next section that, as the construction process continues, the 

resistance of the network will reach lower and lower peaks 

and higher and higher valleys and, eventually, either equal 

the given real number (in this case the procedure terminates) 

or get arbitrarily close to the real number. 

Fig. 2 Construction of a Simple Network with Resistance=0.72

Network a Network b Network c Network d

Network g Network h

Network e Network f

1 1P 1SP 1SSP

1PSSP 1SPSSP

1PSPSSP 1PPSPSSP

 
As an example, Fig. 2 shows how the procedure 

incrementally constructs a network when given the real 

number 0.72 (=18/25). Beginning with network a, the 

network is enhanced seven times, as shown in network b 

through network h in Fig. 2. In each network in Fig. 2, the 

resistor drawn in dashed lines is the origin. The equivalent 

resistance of a network refers to the resistance between the 

two terminals shown on the right-hand side of each circuit 

diagram in Fig. 2. Since the resistance of network a is 

greater than 0.72, a parallel resistor is added, as in network 

b. Since the resistance of network b is 1/2, which is a valley 

as it is less than 0.72, a series resistor is added to the origin, 

as in network c. The resistance of network c is 2/3, still less 

than 0.72, so another series resistor is added to the origin, as 

in network d. Since the resistance of network d is 3/4, a peak 

as it is greater than 0.72, a parallel resistor is added to the 

origin, as in network e, leading to a resistance valley 5/7. 

The entire construction process is summarized in Table I. 

 
Table I. Construction of a Network with Resistance=0.72 

Network in Fig. 2 a b c d e f g h 

Resistance 1 1/2 2/3 3/4 5/7 8/11 13/18 18/25 

Peak (P) or Valley (V)  V  P V P   

 

As shown in Table I, during the construction process, the 

resistance of the network fluctuates between lower and lower 

peaks and higher and higher valleys, and some of the 

intermediate networks, such as network c and network g, are 

neither peaks nor valleys.   

For each network in Fig. 2, a net string is shown as bold-

faced text. A net string is a concise text representation of a 

simple network. Every net string begins with the character 1, 

which denotes the origin. The letter P in a net string denotes 

a resistor in parallel and S denotes a resistor in series. For 

example, the net string for network a in Fig. 2 is 1. The net 

string for network b is 1P, which denotes the origin and a 

resistor in parallel and is derived by replacing the origin of  

network a (i.e., 1) with 1P - the origin and a resistor in 

parallel. The net string for network c is 1SP, which is 

derived by replacing the origin of network b with 1S - the 

origin and a resistor in series. The net strings of the other 

networks in Fig. 2 are derived similarly. Net strings will be 

used in the next two sections. 

III. COVERGENCE AND LIMIT   

Given a rational number, the construction procedure 

terminates, yielding a network with the given rational as the 

resistance of the network, since there is a one-to-one 

correspondence between positive rationals and finite simple 

resistor networks [1]. However, the resistance of a finite 

network is always a fraction, but an irrational number cannot 

be expressed as a fraction. We will now show that, when 

given an irrational, the procedure constructs a simple 

network with a resistance that can be arbitrarily close to the 

irrational.  

 First, we will show that the resistance of a network 

under construction for a given irrational must reach the first 

valley or first peak. If the irrational is less than 1, the first 

valley will be reached because repeatedly adding parallel 

resistors to the origin will eventually lower the resistance 

below the irrational; otherwise, the first peak will be reached 

because repeatedly adding series resistors will eventually 

raise the resistance above the irrational. 

Next, we show that a peak is always followed by a valley 

and vice versa. Suppose the resistance of the network 

(represented by the net string) 1SX, where X is a string of 

S's and P's, is a peak. When the procedure adds n (>0) 

parallel resistors to the origin, the network becomes 

1Pn…P1SX, where 1Pn…P1 denotes n resistors in parallel 

with the origin. The resistance of 1Pn…P1 falls as n rises, 

and the resistance approaches 0 as n approaches infinity. In 

other words, the resistance of 1Pn…P1SX falls as n rises and 

the resistance approaches 1X as n approaches infinity. 

However, since the resistance of 1SX is a peak, the 

resistance of 1X must be less than the given irrational 

(because 1X is the network right before the last series 

resistor is added to reach the peak represented by 1SX). That 

is, there exists an integer k (>0) such that 1Pk…P1SX is a 

valley. That a valley is always followed by a peak can be 

similarly shown. 

Next, we show that each peak is lower than the previous 

peak and each valley is higher than the previous valley. Let 

the resistance of the network 1SX, where X is a string of S's 
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and P's, be the n
th

 peak, where n > 0. Suppose j parallel 

resistors are added for the network resistance to reach a 

valley and then k series resistors are added to reach the 

(n+1)
th

 peak, resulting in the network 1Sk…S1Pj..P1SX. The 

resistance of 1Sk…S1Pj..P1 is smaller than 1 since it consists 

of j unit resistors Pj..P1 connected in parallel with the 

network 1Sk…S1.  Hence, the resistance of 1Sk…S1Pj..P1SX, 

which is the (n+1)
th

  peak, must be lower than the resistance 

of 1SX, the n
th

 peak. That each valley is higher than the 

previous valley can be similarly shown. 

 In summary, the resistance of a simple network under 

construction for a given irrational fluctuates between peaks 

and valleys as the peaks get lower and lower and the valleys 

get higher and higher. The peaks form a convergent 

sequence with the given irrational as the limit of the 

sequence, and so do the valleys. 

IV. COMPUTATIONAL CONFIRMATION  

The following Java code implements the construction 

procedure given previously: 

 
public static void findNetwork(double real, double margin) 

 { 

  String netString="1";  //initial network 

  double resistance=1; 

  while ( Math.abs(resistance - real) > margin) 

     { 

       if (resistance < real) 

         { netString = "1S"+netString.substring(1); 

           resistance = eqres(netString); 

           if (resistance > real) 

              System.out.println("Peak:   "+ resistance); 

         } 

       else 

         { netString = "1P"+netString.substring(1); 

           resistance = eqres(netString); 

           if (resistance < real) 

              System.out.println("Valley: "+ resistance); 

         } 

    } //end while 

 

     System.out.println("\nNet string = "+ netString); 

     System.out.println("Resistance = "+ resistance); 

 

  } //end findNetwork 

 

public static double eqres(String netString) 

  { 

   int den=1, num=1; //denominator and numerator 

   int len=netString.length(); 

   for (int i=1; i<len; i++) 

     if (netString.charAt(i) == 'P') 

       den=den+num; 

     else 

       num=num+den; 

   return (double) num / (double) den; 

  } //end eqres 

 

Given a net string, the method eqres computes and returns 

the resistance of a network represented by the net string. 

Since the resistance of a finite simple network is always a 

rational, eqres computes the resistance as a fraction 

num/den. The method findNetwork constructs a network 

whose resistance is the value of the parameter real (within 

the given margin). The method reports the network as a net 

string and the equivalent resistance of the network. During 

the construction process, the method reports the peaks and 

valleys: when adding a series resistor to the origin causes the 

resistance of the network to rise above the given real, the 

resistance is a peak; when adding a parallel resistor to the 

origin causes the resistance of the network to fall below the 

given real, the resistance is a valley. As expected, the 

method call findNetwork(0.72,0) (to construct a network 

with the resistance 0.72) outputs the following: 

 

Valley: 0.5 

Peak:   0.75 

Valley: 0.7142857142857143 

Peak:   0.7272727272727273 

 

Net string = 1PPSPSSP 

Resistance = 0.72 

 

As another example, the method call 

findNetwork(Math.sqrt(2.0), 0) (to construct a network with 

the square root of 2 as its resistance) outputs the following: 

 

Peak:   2.0 

Valley: 1.3333333333333333 

Peak:   1.4285714285714286 

Valley: 1.411764705882353 

Peak:   1.4146341463414633 

Valley: 1.4141414141414141 

Peak:   1.4142259414225942 

Valley: 1.41421143847487 

Peak:   1.4142139267767408 

Valley: 1.4142134998513232 

Peak:   1.4142135731001355 

Valley: 1.4142135605326258 

Peak:   1.4142135626888697 

Valley: 1.4142135623189167 

Peak:   1.4142135623823906 

Valley: 1.4142135623715002 

Peak:   1.4142135623733687 

Valley: 1.414213562373048 

Peak:   1.4142135623731031 

Valley: 1.4142135623730936 

Peak:   1.4142135623730954 

 

Netstring=1PSSPPSSPPSSPPSSPPSSPPSSPPSSPPSSPPSSPPSSPPS 

Resistance = 1.4142135623730951 

 

It is worth noting that as the network is being constructed, 

the peaks and valleys converge towards the resistance 

Math.sqrt(2.0). Although the square root of 2 is an irrational 

number, the construction process terminates because in Java 

Math.sqrt(2.0) is the number 1.4142135623730951. 

V. CONCLUSION 

A procedure that maps real numbers to simple resistor 

networks is presented. Given a rational number, the 

procedure yields a finite simple network with the resistance 

equal to the given value. Given an irrational number, the 

procedure constructs a series of simple networks whose 

resistance values form a convergent sequence with the given 
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irrational as the limit of the sequence – that is, the procedure 

is able to construct a simple network with a resistance that is 

arbitrarily close to the irrational.  
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