

Abstract—A procedure to construct a simple resistor

network for a given real number is presented. Given a rational

number, the procedure is an algorithm that yields a finite

simple network with the rational number as its equivalent

resistance; given an irrational number, the procedure

incrementally constructs a simple network by repeatedly

adding unit resistors to the network such that the equivalent

resistance of the network approaches the irrational number

arbitrarily closely. The results of this procedure are confirmed

computationally with Java code.

Index Terms—procedure, real numbers, resistor networks.

I. INTRODUCTION

simple resistor network [1] is defined recursively to be

either a unit resistor (i.e., a 1-ohm resistor), or a resistor

network formed from a unit resistor connected in series or in

parallel with a simple resistor network. For example, eight

simple resistor networks are shown below (Fig. 1). All

resistors used in this article are unit resistors.

Fig. 1 Some Simple Resistor Networks

Network a Network b Network c Network d

Network e Network f Network g Network h

Network a in Fig. 1 is a single unit resistor and is the basis

case of the recursive definition of simple resistor networks.

Network b is derived from network a by connecting an extra

unit resistor in parallel with network a, and network c in Fig.

1 is derived from network a with an additional unit resistor

connected in series. Similarly, network d and network e are

derived from network b by connecting an extra unit resistor

in parallel (network d) and in series (network e), and

network f and network g are derived from the network c by

adding a unit resistor in parallel (network f) and in series

(network g). When connecting a unit resistor in series with a

Manuscript received January 21, 2013.

S. C. Hsieh is with Computer Science Department, Ball State

University, Muncie, IN 47306 USA (e-mail: shsieh@bsu.edu).

S. Pradhan is with Computer Science Department, Ball State University,

Muncie, IN 47306 USA.

network, the order of the two makes no difference. For

example, network e and network h in Fig. 1 are considered

identical networks (both are derived from network b by

connecting an extra unit resistor in series).

A one-to-one correspondence has been established in [1]

between positive rational numbers and finite simple resistor

networks. In this article we present a procedure to map

positive real numbers to simple resistor networks. Each

positive real number, which can be either rational or

irrational, will be mapped to a simple resistor network,

which may or may not be finite. Given a positive rational

number, the procedure yields a finite simple network with

the rational number as its resistance; given a positive

irrational number, the procedure incrementally grows a

simple network such that the resistance of the network gets

closer and closer to the irrational number as the network

grows, and the resistance of the network can get arbitrarily

close to the given irrational number as this construction

process continues.

II. A CONSTRUCTION PROCEDURE

The following procedure maps a real number to a simple

resistor network. The input to the procedure is a positive real

number x. The procedure constructs a simple resistor

network N, which may or may not be finite depending on

whether x is rational. The network N is initialized to be a

single unit resistor, which is also the initial origin of the

network. The origin of a network is the unit resistor to which

an extra resistor will be added each time the network is

enhanced. The notation eqres(N) denotes the equivalent

resistance of a simple network N. For example, eqres(N) is 1

when N is the initial network – a single unit resistor.

while (eqres(N) is not x)

 if (eqres(N) > x)

 replace the origin of N with the origin

and an extra unit resistor in parallel

 else

 replace the origin of N with the origin

and an extra unit resistor in series

 //end if-else

//end while loop

Intuitively, when the resistance of the network is greater

than the given real number, the procedure repeatedly adds

unit resistors in parallel with the origin to lower the

equivalent resistance of the network until one of the

following cases occurs: a) the equivalent resistance becomes

less than the given real number - in this case the equivalent

Mapping Real Numbers to Simple Resistor

Networks

Samuel C. Hsieh and Sujan Pradhan

A

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

resistance is called a valley; or b) the equivalent resistance

of the network becomes equal to the given real number and

the procedure terminates. Similarly, when the equivalent

resistance is less than the given real number, unit resistors

are repeatedly added in series with the origin to raise the

equivalent resistance until the equivalent resistance becomes

greater than the given number – in this case the equivalent

resistance is called a peak, or until the equivalent resistance

becomes equal to the given real number and the procedure

terminates.

In short, the resistance of a network under construction

fluctuates between peaks and valleys. It will be shown in the

next section that, as the construction process continues, the

resistance of the network will reach lower and lower peaks

and higher and higher valleys and, eventually, either equal

the given real number (in this case the procedure terminates)

or get arbitrarily close to the real number.

Fig. 2 Construction of a Simple Network with Resistance=0.72

Network a Network b Network c Network d

Network g Network h

Network e Network f

1 1P 1SP 1SSP

1PSSP 1SPSSP

1PSPSSP 1PPSPSSP

As an example, Fig. 2 shows how the procedure

incrementally constructs a network when given the real

number 0.72 (=18/25). Beginning with network a, the

network is enhanced seven times, as shown in network b

through network h in Fig. 2. In each network in Fig. 2, the

resistor drawn in dashed lines is the origin. The equivalent

resistance of a network refers to the resistance between the

two terminals shown on the right-hand side of each circuit

diagram in Fig. 2. Since the resistance of network a is

greater than 0.72, a parallel resistor is added, as in network

b. Since the resistance of network b is 1/2, which is a valley

as it is less than 0.72, a series resistor is added to the origin,

as in network c. The resistance of network c is 2/3, still less

than 0.72, so another series resistor is added to the origin, as

in network d. Since the resistance of network d is 3/4, a peak

as it is greater than 0.72, a parallel resistor is added to the

origin, as in network e, leading to a resistance valley 5/7.

The entire construction process is summarized in Table I.

Table I. Construction of a Network with Resistance=0.72

Network in Fig. 2 a b c d e f g h

Resistance 1 1/2 2/3 3/4 5/7 8/11 13/18 18/25

Peak (P) or Valley (V) V P V P

As shown in Table I, during the construction process, the

resistance of the network fluctuates between lower and lower

peaks and higher and higher valleys, and some of the

intermediate networks, such as network c and network g, are

neither peaks nor valleys.

For each network in Fig. 2, a net string is shown as bold-

faced text. A net string is a concise text representation of a

simple network. Every net string begins with the character 1,

which denotes the origin. The letter P in a net string denotes

a resistor in parallel and S denotes a resistor in series. For

example, the net string for network a in Fig. 2 is 1. The net

string for network b is 1P, which denotes the origin and a

resistor in parallel and is derived by replacing the origin of

network a (i.e., 1) with 1P - the origin and a resistor in

parallel. The net string for network c is 1SP, which is

derived by replacing the origin of network b with 1S - the

origin and a resistor in series. The net strings of the other

networks in Fig. 2 are derived similarly. Net strings will be

used in the next two sections.

III. COVERGENCE AND LIMIT

Given a rational number, the construction procedure

terminates, yielding a network with the given rational as the

resistance of the network, since there is a one-to-one

correspondence between positive rationals and finite simple

resistor networks [1]. However, the resistance of a finite

network is always a fraction, but an irrational number cannot

be expressed as a fraction. We will now show that, when

given an irrational, the procedure constructs a simple

network with a resistance that can be arbitrarily close to the

irrational.

 First, we will show that the resistance of a network

under construction for a given irrational must reach the first

valley or first peak. If the irrational is less than 1, the first

valley will be reached because repeatedly adding parallel

resistors to the origin will eventually lower the resistance

below the irrational; otherwise, the first peak will be reached

because repeatedly adding series resistors will eventually

raise the resistance above the irrational.

Next, we show that a peak is always followed by a valley

and vice versa. Suppose the resistance of the network

(represented by the net string) 1SX, where X is a string of

S's and P's, is a peak. When the procedure adds n (>0)

parallel resistors to the origin, the network becomes

1Pn…P1SX, where 1Pn…P1 denotes n resistors in parallel

with the origin. The resistance of 1Pn…P1 falls as n rises,

and the resistance approaches 0 as n approaches infinity. In

other words, the resistance of 1Pn…P1SX falls as n rises and

the resistance approaches 1X as n approaches infinity.

However, since the resistance of 1SX is a peak, the

resistance of 1X must be less than the given irrational

(because 1X is the network right before the last series

resistor is added to reach the peak represented by 1SX). That

is, there exists an integer k (>0) such that 1Pk…P1SX is a

valley. That a valley is always followed by a peak can be

similarly shown.

Next, we show that each peak is lower than the previous

peak and each valley is higher than the previous valley. Let

the resistance of the network 1SX, where X is a string of S's

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

and P's, be the n
th

 peak, where n > 0. Suppose j parallel

resistors are added for the network resistance to reach a

valley and then k series resistors are added to reach the

(n+1)
th

 peak, resulting in the network 1Sk…S1Pj..P1SX. The

resistance of 1Sk…S1Pj..P1 is smaller than 1 since it consists

of j unit resistors Pj..P1 connected in parallel with the

network 1Sk…S1. Hence, the resistance of 1Sk…S1Pj..P1SX,

which is the (n+1)
th

 peak, must be lower than the resistance

of 1SX, the n
th

 peak. That each valley is higher than the

previous valley can be similarly shown.

 In summary, the resistance of a simple network under

construction for a given irrational fluctuates between peaks

and valleys as the peaks get lower and lower and the valleys

get higher and higher. The peaks form a convergent

sequence with the given irrational as the limit of the

sequence, and so do the valleys.

IV. COMPUTATIONAL CONFIRMATION

The following Java code implements the construction

procedure given previously:

public static void findNetwork(double real, double margin)

 {

 String netString="1"; //initial network

 double resistance=1;

 while (Math.abs(resistance - real) > margin)

 {

 if (resistance < real)

 { netString = "1S"+netString.substring(1);

 resistance = eqres(netString);

 if (resistance > real)

 System.out.println("Peak: "+ resistance);

 }

 else

 { netString = "1P"+netString.substring(1);

 resistance = eqres(netString);

 if (resistance < real)

 System.out.println("Valley: "+ resistance);

 }

 } //end while

 System.out.println("\nNet string = "+ netString);

 System.out.println("Resistance = "+ resistance);

 } //end findNetwork

public static double eqres(String netString)

 {

 int den=1, num=1; //denominator and numerator

 int len=netString.length();

 for (int i=1; i<len; i++)

 if (netString.charAt(i) == 'P')

 den=den+num;

 else

 num=num+den;

 return (double) num / (double) den;

 } //end eqres

Given a net string, the method eqres computes and returns

the resistance of a network represented by the net string.

Since the resistance of a finite simple network is always a

rational, eqres computes the resistance as a fraction

num/den. The method findNetwork constructs a network

whose resistance is the value of the parameter real (within

the given margin). The method reports the network as a net

string and the equivalent resistance of the network. During

the construction process, the method reports the peaks and

valleys: when adding a series resistor to the origin causes the

resistance of the network to rise above the given real, the

resistance is a peak; when adding a parallel resistor to the

origin causes the resistance of the network to fall below the

given real, the resistance is a valley. As expected, the

method call findNetwork(0.72,0) (to construct a network

with the resistance 0.72) outputs the following:

Valley: 0.5

Peak: 0.75

Valley: 0.7142857142857143

Peak: 0.7272727272727273

Net string = 1PPSPSSP

Resistance = 0.72

As another example, the method call

findNetwork(Math.sqrt(2.0), 0) (to construct a network with

the square root of 2 as its resistance) outputs the following:

Peak: 2.0

Valley: 1.3333333333333333

Peak: 1.4285714285714286

Valley: 1.411764705882353

Peak: 1.4146341463414633

Valley: 1.4141414141414141

Peak: 1.4142259414225942

Valley: 1.41421143847487

Peak: 1.4142139267767408

Valley: 1.4142134998513232

Peak: 1.4142135731001355

Valley: 1.4142135605326258

Peak: 1.4142135626888697

Valley: 1.4142135623189167

Peak: 1.4142135623823906

Valley: 1.4142135623715002

Peak: 1.4142135623733687

Valley: 1.414213562373048

Peak: 1.4142135623731031

Valley: 1.4142135623730936

Peak: 1.4142135623730954

Netstring=1PSSPPSSPPSSPPSSPPSSPPSSPPSSPPSSPPSSPPSSPPS

Resistance = 1.4142135623730951

It is worth noting that as the network is being constructed,

the peaks and valleys converge towards the resistance

Math.sqrt(2.0). Although the square root of 2 is an irrational

number, the construction process terminates because in Java

Math.sqrt(2.0) is the number 1.4142135623730951.

V. CONCLUSION

A procedure that maps real numbers to simple resistor

networks is presented. Given a rational number, the

procedure yields a finite simple network with the resistance

equal to the given value. Given an irrational number, the

procedure constructs a series of simple networks whose

resistance values form a convergent sequence with the given

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

irrational as the limit of the sequence – that is, the procedure

is able to construct a simple network with a resistance that is

arbitrarily close to the irrational.

REFERENCES

[1] Samuel C. Hsieh, C. Van Nelson, and Logeshbabu Sampath,

"Resistor Network-based Algorithms for Enumerating Rational

Numbers," Journal of Computing Sciences in Colleges, 25, 5 (2010),

287-293.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

