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Homotopy Perturbation Method for Solving
Some Initial Boundary Value Problems with
Non Local Conditions

A. Cheniguel and M. Reghioua

Abstract— In this paper, initial boundary value problems with
non local boundary conditions are presented. The homotopy
perturbation method (HPM) is used for solving linear and non
linear initial boundary value problems with non classical
conditions. The obtained results as compared with previous
works are highly accurate. Also HPM provides continuous
solution in contrast to finite difference method, which only
provides discrete approximations. It is found that this method
is a powerful mathematical tool and can be applied to a large
class of linear and nonlinear problem in different fields of
science and technology

Index Terms— Homotopy perturbation method (HPM), Partial
differential equations, Initial boundary value problems,

. INTRODUCTION

Recently, much attention has been to partial differential
equations with non local boundary conditions, this

attention was driven by the needs from applications
both in industry and sciences. Theory and numerical
methods for solving initial boundary value problems with
nonlocal conditions were investigated by many researchers
see [1-10, 12-14,16-18,22-27] and the reference therein. In
the last decade, there has been a growing interest in the
analytical new techniques for linear and nonlinear initial
boundary value problems with non classical boundary
conditions. The widely applied techniques are perturbation
methods. J.He [20] has proposed a new perturbation
technique coupled with the homotopy technique, which is
called the homotopy perturbation method (HPM). In
contrast to the traditional perturbation methods. a homotopy
is constructed with an embedding parameter =2 [0; 1],

which is considered as a small parameter. HPM has gained
reputation as being a powerful tool for solving linear or
nonlinear partial differential equations. This method has
been the subject of intense investigation during recent years
and many researchers have used it in their works involving
differential equations see in [11,15]. He [19], applied HPM
to solve initial boundary value problems which is governed
by the nonlinear ordinary (Partial) differential equations, the
results show that this method is efficient and simple. Thus,
the main goal of this work is to apply the homotopy
perturbation method (HPM) for solving linear and nonlinear
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initial boundary value problems with nonlocal boundary
conditions. The general form of equation is given as:

ou ou 0%u
ou _ udu <
or G(x,t,u,ax,axz)a<x<b,0<t_T Q)

Subject to the initial condition:
u(x,0)=f(x),0<t<T )

And the non local boundary conditions

u(a,t) = f: o, ulx,t)dx+go(t), 0<t<T (3)

ub,t) = [Pl Oulx, dx + g, (), 0<t<T  (4)
Where £, go, g2, @, are  sufficiently smooth  known
functions and T is a given constant.

Il. ANALYSIS OF HOMOTOPY PERTURBATION
METHOD

To illustrate the basic ideas, let Z; and ¥ be the topological
spaces. If ¢ and y are continuous maps of the spaces Z into
WV, it is said that ¢ is homotopic to v;if there is continuous
map F:X x[0,1] — Y such that F(x,0)=f(x) and
F(x,1) = g(x) for each £2 ZE, then the map is called
homotopy between ¢ and y.

We consider the following nonlinear partial differential
equation:

AW) - f(r) =0, Q (5)
Subject to the boundary conditions

B(u,‘;—’;) =0r €Tl (6)

Where A'is a general differential operator. ¢ is a known
analytic function, ' is the boundary of the domain Q and %

denotes directional derivative in outward normal direction
to Q. The operator A, generally divided into two parts,
Aand N, where Ais linear, while N is nonlinear. Using
A =A +N, eq. (5) can be rewritten as follows:
A(v)+N(v)-¢(p)=0

()

By the homotopy technique, we construct a homotopy
defined as

H(v,p):Qx[0,1] — R (8)
Which satisfies:

H(v,p) = (1 = p)(L(W) = L(up)) + p(A(w) = f(r),p €
[01],r €Q )
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Or

H(v,p) = L(v) — L(u) + pL(ug) + p(Nw) — (1)) =
0,p€e[01],r €Q

(10)

Where 2 [0;1] is an embedding parameter , v, is an
initial approximation of equation (5), which satisfies the
boundary conditions. It follows from the equation (10) that
H(w,0) = L(v) —L(uy) =0 (12)
Hv,)=AWw)—f@r)=0 (12)
The changing process of = from O to 1 monotonically is a
trivial problem. H(v,0) = L(v) — L(uy) =0is
continuously transformed to the original problem H(v, 1) =
A(w) — f(r) =0.(13)

In topology, this process is known as continuous
deformation. L(v) — L(u,) and A(v) — f(r) are called
homotopic. We use the embedding parameter = as a small
parameter , and assume that the solution of equation (10)
can be written as a power series of  :

v =p% + pvy + P2, + p3vg + -+ pMoy + - (14)
Setting © =1 we obtain the approximate solution of equation
(5) as:

u=lim, ; v=vo+v; +v,+ - +v, + (15)
The series of equation (15) is convergent for most of the
cases, but the rate of the convergence depends on the
nonlinear operator N (v ) . He (1999) has suggested that:

- The second derivative of N (v ) with respect to v should
be small because the parameter may be relatively large i.e

n | 1and the norm of L‘l(Z—Z) must be smaller than one in
order for the series to converge.

I1l. EXAMPLES

A. Example 1
We consider the problem

ou  d%u_ ou  9%u 3 2 4,3 _ 1942
U E =B T (40 + 1262 — 4x — 12x2)
0<x<1,0<t<T

With the initial condition:
u(x, 0) = x4,2—1:(x,0)=0, 0<x<1,0<t<T
And the boundary conditions:

u(0,6) = [} @ Cx, ulx, )dt + go(t) = 1+ t*
Where ¢(x,t) = % and g, (t) = z—:

u(1,6) = f; @O ulx, )dt + g, () = 1+ t*
Where ¢(x,t) = % and g,(¢t) = %
For solving this problem, we construct HPM as follows:

a a 3] 92 a 02
Hop) = (1 p) (2 25) @2 4 0020

(16)

(17)

(18)

(19)

(E otz ox  oxZ

(4¢3 + 1263 — 4x3 - 12x2)) =0 (20)
The component v; of (15) are obtained as follows:
%"%= 0,9 = u(x,0) = x* (21)

ov, 0*vy, Odv, 0%, s 5 s 5
W-l_ 302 —E—W—(‘}t + 12t% — 4x3 — 12x%)

=0,
v;(x,0) =0 (22)
v, 5 0%, , 021,
xS e =0
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v
L= 4¢3 + 12¢2
ot
Hence
v, = t* + 4¢3 (23)
vy, | 0%vy  Ovy  0%vy _ _
T T =Y v,(x,0) =0 (24)
0%v, ov, 0%v,
= 12t? + 24t,— = =
a2 MRS R
av,
—= = —12t% — 24t
ot
Then, we have
v, = —4t3 — 12¢t? (25)
For the next component:
ovy 0%v, Odv, 0%v,
= -2 —2=0,v;(x,0)=0
ot T ax axz - 0V 0)
vy = 12t2 + 24t,v, = —24t, (26)

And so on, we obtain the approximate solution as follows:

u=1in}v=v0+v1+vz+...+Un+...
) d

And this leads to the following solution

u(x,t) = x* + t* 27)
We can, immediately observe that this solution is exact.

B. Example 2
Consider the following nonlinear reaction-diffusion
equation:
ou_ 0% _ o Oy
o T U (ax) 0<x<1,0<t<T (28)
Subject to the initial condition
u(x,0) =e* 0<x<1, (29)
And the boundary conditions:
u(0,6) = [, p(x, hu(x, )dt + go(t) = e** (30)
With @(x,t) = 1 and go(t) = et
u(1,6) = fJ Pl Oulx, )dt + g, () = 5e* (31)

With ¥(x, t) = %and g.(t) = %et
Solving the equation (28) with the initial condition (29),

yields:
6170 auo _ _ _ x
o at—O,vo—uo—e

v, 0v,, 0%,

—v3=0,v; =te*,v,(x,0)=0

ot Ox 0x?
v, 0v, v t?
ot~ Gx) T VIO =gen,

And we can deduce the remaining components as:

3 ",
vz =et,, vy =—et, (32)

Using equation we get :
t t* 3 t"
- X — — — cee — “ee
u(x,t) =e (1+1!+2!+3!+ +n!+ )

And finally the approximate solution is obtained as :

u(x, t) = eXtt (33)
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C. Example 3
Consider the problem
2 2 2
Z—t—%( 2% yzg—;:+22371:) 0<xy,z<1,0<t<T
(34)

Subject to the initial condition:

u(x,y,z,0) = x?y?z? (35)

And the boundary conditions
_ 1,1 ,1 _ 1 ¢ _
u0,y,2,6) = [ fy [y uCx,y,2 )dxdydz + g, = e, g, =0

u(l,y,zt) = fol fol folu(, x,y,2,t)dxdydz + g, = 21—7et +
%t' 92 = %t

u(x,0,z,t) = fol fol folu(,x,y, z,t)dxdydz + g5 = %(et + 1),
1

93 =73

u(x,1,2,t) = f01 f01 folu(,x,y, z,t)dxdydz + g, = %(e‘ +3),
1

94 =73

1,01 01 1 1
u(x,y,0,t) = fo fo fo u(x,y,z t)dxdydz + g =;et +2,
1

9s =3

u(x,y,1,t) = f01 f01 folu(, X, ¥,z t)dxdydz + g¢ = %et + %t,
1

g1 = gt, (36)

As above, we get the components of (15):
dvg  dug

. =0 = x2y?z? 37

v, 1( ,0%, ,0%v, ,0%v,

E‘E(" oxz TV Gyr TE gz )= 00 =0
dv; 1

Tl (2x%y?z% + 2x2%y?z% + 2x%y?z% ) = x?y?7?
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vy = xzyzzz% (38)

Hence, the approximate solution is given by:
ulx,y,zt) = lin}v =V +v,+v+ -ty
p—)
Now, the solution of (34) whent | 1 reducesto :
t t* 3 t"
— 124,22 _ _ i i
u(x,y,z,t) = x*y*z (1+1!+ T + 3 + +n!+ )

And the solution in a closed form is given by:

u(x,y, z,t) = x2y?z%et (39)
D. Example 4

As a last example, consider the following problem:

U = W luy)y) 0<x,y,2<1,0<t<T (40)

With the initial condition

u(x,0) = ——, u,(x,0)=0, (41)

(1+x)2’

And the boundary conditions:

u(0,6) = [, p(x, hulx, )dt + go(t) = 1 + 0.5¢,
With ¢(x,t) = 1and go(t) = 0.5

u(L,0) = [ Ylx ulx, t)dt + g, (t) = 1 + 0.125¢
With (x, t) = 0.25 and g, (t) = 0.875

According to the HPM, we have:

%y 9%uy

H“m):“‘Pﬁa?“aﬂ+Pé§‘%«Vﬂ%»:
0 (20)

By equating the terms with the identical powers of r , yields

%y a%u %y 1
0 o 0 ()
L= = =0,y = 43
at2 at2 " at2 770 T (14x)2 (43)

0%v ) v,
pl: ﬁ‘ﬂ((”"_la_;D =0m(x0) =0

v, 2

v, = xzyzzzﬁ itz (1+x)?
v, 1( ,0%, 0%, ,0%°v
- _Z =0, ,00=0 2
ot 6(x oz Y oy T o v2(x,0) vlz%
ov. 1 211+ x
6_t2 =z (2x2y?z% 4+ 2x%y%z2 + 2x%y?2% )t = x2y22%t
2 0%v, 0 ov
n=ayey P G a((”fl an)) =05, 0) =0
51]3 1 Zazvz Zazvz 2021]2 6217 2 2t2
e\ Pttty )= om0 =0 T2 20
s . x Y z , at2  (1+x)? 21 (1 + x)?
— =—(2x%y%z% + 2x%y?2% + 2x%y?z% ) —
at 6 2! Uy =1y
_ 2ot We then obtain the exact solution:
=x’ytzt o e
' u(x,t) = (44)
vy = x2y?z? ﬁ (?
3!
And we deduce the general form of v, as follows :
v, 1( ,0%v,, 0%, 0%, 4
at 6 (x a2 YV ez T
=0,v,(x,0) =0 .
av 1 t"-
a—t” = (2x2y?2z% + 2x%y?z% + 2x%y?z? =D
tn—l '
— 24,22
XY =)
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Table 1 Example 1
1 1

hx T ht ~ 350!

X; Upx Uppm 3-iterates |uex - uhpm|
0.0 2.56x 1072 -1.92000 x 1073 0.0224

0.1 0.0001 -9.2x 1075 8.0x 107°
0.2 0.0016 1584 x 1073 1.6x 1075
0.3 0.0081 7.908x 1073 1.92x 107*
0.4 0.0256 2.5408% 1072 1.92x 107*
0.5 0.0625 6.2308% 1072 1.92x 1074
0.6 0.1296 0.12941 0.00019 N
0.7 0.2401 0.23991 0.00019
0.8 0.4096 0.40941 0.00019
0.9 0.6561 0.65591 0.00019
1.0 1.0 0.99981 0.00019

t 0

X

Variation of u,, = x* + t* for different values of x and t

Variation of uy,,,,=x* + t* — 12t*for different values of x and t

Table 2 Example 2
1 1
hoe = 75 0 = 255
X; Ugy Uppm S-iterates [tex — Unpm| N
0.0 1.004 1.004 0
0.1 1.1096 1.1096 0
0.2 1.2263 1.2263 0
0.3 1.3553 1.3553 0
0.4 1.4978 1.4978 0
0.5 1.6553 1.6553 0
0.6 1.8294 1.8294 0
0.7 2.0218 2.0218 0
0.8 2.2345 2.2345 0
0.9 2.4695 2.4695 0
1.0 2.7292 2.7292 0
Varition of approximate solution for different values of x and t
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Table 3 Example 3
1 1
hx=hy=hz=ﬁlht=ﬁ

Xi Vi Z; Upy Uppm 5-Iterates |uex - uhpm|
00 0 0 0 0
0.10.10.1 1.004x107° 1.004x107° 0
0.20.20.2 6.4257x107° 6.4257x107° 0
0.30.30.3 7.3192x107* 7.3192x10™* 0
040404 4.1124x1073 7.1124x1073 0
050505 1.5688x107% 1.5688x1072 0
0.60.60.6 4.6843x107% 4.6843x1072 0
0.70.70.7 0.11812 0.11812 0
0.80.80.8 0.26319 0.26319 0
0.90.90.9 0.53357 0.53357 0
1.0 1.01.0 1.004 1.004 0

Table 4 Example 4

1 1

hy=—,h;=—,
10 250

X; Upy Uppm 3-iterates |uex - u,,pm|

0.0 1.0 1.0 0.0

0.1 0.82646 0.82645 0.00001
™ 0.2 0.69446 0.69444 0.00002

0.3 0.59173 0.59172 0.00001

0.4 0.51021 0.51020 0.00001

0.5 0.44445 0.44444 0.00001

0.6 0.39063 0.39063 0.0

0.7 0.34603 0.34602 0.00001

0.8 0.30865 0.30864 0.00001

0.9 0.27701 0.27701 0.0

1.0 0.25 0.25 0.0

Variation of approximate solution for different values of x , y and z for
t=0.004

IV. CONCLUSION

In this paper, we have made a detailed study of homotopy
perturbation method. For this, we discussed in length its
applications in solving various diversified initial boundary
value problems with non local boundary conditions. This is  Variation of approximate solution for different values of x and t
employed without using linearization, discretization,

transformation or restrictive assumptions. The results

demonstrate the stability and convergence of the method, the

obtained solutions are shown graphicllay. . Moreover, the

method is easier to implement than the traditional

techniques. It is worth mentioning that the technique and

ideas presented in this paper can be extended for findng the

analytic solution of the obstacle, unilateral and contact

problems which arise in mathematical and engineering

sciences.
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