
An Empirical Study to Redefine the Relationship
between Software Design Metrics and

Maintainability in High Data Intensive Applications

Ruchika Malhotra and Anuradha Chug

 Abstract—Software maintainability is defined as the ease
with which modifications could be made in to the software once
it is delivered to the customer. While evaluating the quality of
the software product, software maintainability is one of the
most important aspects and it is desirable that the software
should be designed and coded in such a way that it becomes
more maintainable. Tracking the maintenance behavior of the
software product is very complex and widely acknowledged by
the researchers. We can accurately measure 'maintainability'
of any software once it comes into operations but it would be
too late by then, hence much has been examined in literature to
measure the maintainability before software start operations
by making use of software design metrics. It has proved
empirically many times that there exists strong relationship
between software design metrics and its corresponding
maintainability. However, the framework and reference
architecture in which the softwares are developing now days
have changed dramatically as they make heavy use of
databases. There is a strong need to re-define the relationship
between software design metrics with subsequent
maintainability in this changed scenario. In an attempt to
address this issue quantitatively, we have proposed new suite of
metrics by the induction of two new metrics which are more
important and meaningful in data intensive applications. To
analyze the proposed metric suite, their values are computed
on five real-life applications which make use of databases with
a great deal. The result shows that proposed new metrics suite
is very effective indicator of software maintainability in the
environment which provide remote connections to the server
for accessing large database files. Based on the results it can be
reasonably claimed that new metrics suite proposed in the
current study would be able to predict software maintainability
more precisely and accurately for those applications which
makes heavy use of databases during operations.

Index Terms - Object Oriented Metric, Maintainability
predictions, Software quality, Empirical validation, Database
design metrics

I. INTRODUCTION

The modifications in the software are required to meet the
changing requirements of customers which may arise due to
many reasons such as change in the technology, introduction
of new hardware or enhancement of the provided features
etc. Producing software which is not required to be changed
is not only impractical but also very uneconomical. This
process of changing the software which has been delivered
previously is called software maintenance and the ease with
which it could be achieved is defined as software
maintainability [1].

 Manuscript received Aug 07, 2013; Revised Aug 17, 2013.
 Ruchika Malhotra is with Dept of Software Engineering, Delhi
Technological University, Delhi, India (ruchikamalhotra2004@yahoo.com)
 Anuradha Chug is with USICT, GGSIP University, Dwarka, New Delhi,
India (corresponding author +91-11-25302715/25302318; e-mail:
a_chug@yahoo.co.in).

It has been observed that the amount of resource, effort
and time spent on software maintenance is much more than
what is being spent on software development [2]. Thus,
producing software that is easy to maintain may potentially
save large costs. One of the most common approaches for
controlling maintenance cost is by utilizing software design
metrics during the development phase [3]. Various metrics
have been proposed in the literature along with their
corresponding impact on software maintainability. In this
paper we have selected significant subset of seven metrics
proposed in literature and added two new metrics as they
found to be more impactful on software maintainability in
current scenario where applications are intensely using
databases during operations. The main purpose of this paper
is twofold, firstly:

(a) Review the role of various metrics which are
proposed in literature on software maintainability
and secondly

(b) To purpose and empirically validate a new suite of
metrics with the induction of two new metrics
which have larger impact on software
maintainability in current scenario where more data
intensive application development is in progress.

For empirical validation of the proposed metrics suite we
have collected the data from five windows based and web
based applications. All applications were based on object
oriented (OO) methodologies and developed in Microsoft
Visual Studio using C# language and exploit the use of
databases. Values of proposed metrics are collected for every
class of each application. The independent variables are nine
design metrics used to measure OO feature and database
design feature present in the code. Dependent variable in our
study is ‘Change’ and counted as number of lines of source
code added, deleted or modified during operations. Use of
Artificial Neural Network (ANN model) for the prediction of
maintainability has reported as best fitting machine learning
model [8, 9, and 10]; therefore it is used in current study for
building the prediction model using data points collected
from all five real-life application for new proposed metrics
suite. We hope that while designing and coding, developers
can analyze and predict maintainability more precisely with
the help of proposed metrics suite. Detecting the
‘Maintainability’ in early phases of Software Development
Life Cycle (SDLC) would ensure that correction has no side
effects on dependent modules. Further, developers can judge
if the application is maintainable or not. This in itself would
save time and money for the organization responsible for
developing and deploying.

The remainder of the paper is organized as follows:
Section II summarizes related work. Section III elucidates
empirical data collection method. In Section IV, independent
and dependent variables selected in the study are discussed.
Section V enumerates research methodology. In Section VI

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

explores characteristics of the collected data using
descriptive statistics. The results and analysis is presented in
Section VII. Section VIII states threat to validity and finally
section IX concludes the paper with future directions.

II. RELATED WORK

 There are several models and metrics proposed in
literature to predict the maintainability of the software.
Chidamber et al. [4] outlined some initial proposals for
language-independent OO design metrics in 1991 and
proposed six object oriented design metrics to predict the
maintainability of OO systems. This suite is further expanded
in 1994 and the metric suite was tested on systems developed
in C++ and Smalltalk(TM) by Chidamber et al [6]. Two
more metrics were added in to existing C&K metrics suite by
Li et al [5 and 7]. The proposed metrics suite became quite
popular and evaluated analytically in several studies by many
researchers including Dagpinar et al. [8], Thwin et al [9],
Aggarwal et al [10], Koten et al [11], Zhou et al [12], Elish et
al [13] and Kaur et al [14] which were conducted to validate
C&K metrics suite. Many prediction models were built using
statistical algorithms as well as machine learning algorithms.
Neural Network was used by Thwin et al [9], Bayesian
Belief Network (BBN) was used by Koten et al [11],
Multivariate Adaptive Regression Splines (MARS) was used
by Zhou et al [12] and TreeNets was used by Olish et al [13]
to build models for the prediction of software maintainability
using OO design metrics suite. Ping [15] suggested that more
quantitative approach to measure maintainability should be
adopted. Jin et al [16] have successfully applied use of
Support Vector Machine (SVM) to predict software
maintainability using OO metric suite. Recently Malhotra et
al [17] have proposed the use of Group Method of Data
Handling (GMDH) to predict software maintainability more
concisely and precisely. However, there is strong need to
redefine the metrics suite used for prediction of software
maintainability which is more relevant in data intensive
applications. In an attempt to address this problem, the
current study was undertaken to ascertain the cumulative
effects by the attributes of object oriented paradigm and
database design characteristics on software maintainability.
To achieve this aim, authors have proposed and validated
new metrics suite which is found to be more appropriate and
precise in predicting maintainability for data intensive
applications.

III. EMPIRICAL DATA COLLECTION

Five customized softwares were selected for empirical
validation out of which three were window based
applications and two were web based applications. All five
applications were data intensive and sophisticated as they
concentrate on collecting, maintaining, indexing and
computing data from database. Their functioning is described
in brief as follows:

 FLM is a customize software to handle the File Letter
Monitoring System. (FLM System)

 EASY is a web portal for an Educational Institute which
provide study material online. (EASY System)

 SMS system is Student Management System which
maintains the record of students & teacher for private
educational institute. (SMS System)

 IM System is Inventory Management System which
maintains inventory of company at different branch offices
in different cities. (IMS System)

 ABP system is Angel Bill Printing software maintains
fully editable items list by client itself with generation of a
common bill format. (ABP System)

To measure the maintainability we first found out the

“change effort” which is defined as amount of average
efforts required to add, change or delete lines of source code.
To measure the various features of object oriented paradigm
such as data hiding, inheritance, cohesion, coupling, memory
allocation etc different metrics were carefully selected. We
reviewed various metrics proposed in literature and compiled
in Malhotra et al [17] and Aggarwal et al [18]. We selected
only those software design metrics which were proven to be
strongly associated with software maintainability. Further
two more metrics were proposed (described in section 4) in
the study as they found to be more meaningful in data
intensive applications. Two versions of each of the software
were taken and analyzed for “Changes” made into it.
Changes were counted in terms of added, deleted and
modified lines in the recent version with respect to the
previous version. Addition and deletion of line in source
code was counted as one change whereas modification was
counted as two (one line added, one line deleted) changes.
Selected Metrics as described in section 4 were collected for
these five web and window based applications. Tool was
created in visual studio which collected the values of selected
metrics which were further used for constructing prediction
model to drive object oriented software maintainability.

IV. INDEPENDENT AND DEPENDENT VARIABLES

The selected five applications namely FLM, EASY, SMS,
IMS and ABP were developed in Visual Studio 2010. To
measure various attributes of OO paradigm such as size,
coupling, cohesion and inheritance, one metric alone would
not be sufficient hence total nine metrics were selected and
compiled in Table I and Table II. Five metrics namely
Maintainability Index (MI), Cyclomatic Complexity (CC),
Depth of Inheritance (DOI), Coupling between Objects
(CBO) and Lines of Code (LOC) were retrieved from the
Visual Studio by considering all applications one by one in
the .net environment. For description of these metrics please
refer Table I wherein the metrics mentioned were calculated
from the intermediate language code generated while
compiling the project. In the next stage of our research work,
we have created a tool in visual studio to collect four metrics
namely Code to Comments Ratio (CCR), Number of Data
Base Connections (NODBC), Weighted Methods per Class
(WMC) and Lack of Cohesion of Methods (LCOM). First
two metrics namely CCR and NODBC have been proposed
for the first time in the current study and as the part of our
research project, we proposed that these two metrics carries
more impact on software maintainability in database
intensive applications. Apart from database design, all
aspects of object oriented design such as coupling, cohesion
and inheritance are equally important. Since complexity and
cohesion were missing in Table I, two metrics WMC and
LCOM were taken from C&K Metrics suite [4-7] to cover
complexity and cohesion respectively. For description of
these metrics please refer Table II.

 Next, source codes of two versions (original version
and modified version) were taken for each application.
Values of first five metrics as described in Table I were
obtained through .net and values of remaining four metrics as
described in Table II were obtained through the Tool we
created in first phase. We investigated source code of both
versions (original version and modified version) for each

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

TABLE I : METRICS COLLECTED FOR OBJECT ORIENTED
SOFTWARE

S
no

Metric Name Description

1 Maintainability
Index (MI)

Calculates an index value between 0 and
100 that represents the relative ease of
maintaining the code.

2 Cyclomatic
Complexity (CC)

Measures the structural complexity of the
code. It is created by calculating the
number of different code paths in the flow
of the program module. A program that
has complex control flow will require
more tests to achieve good code coverage
and will be less maintainable.

3 Depth of
Inheritance (DIT)

Indicates the number of class definitions
that extend to the root of the class
hierarchy. The deeper the hierarchy the
more difficult it might be to understand
where particular methods and fields are
defined or/and redefined.

4 Coupling
Between Object
classes

Count the number of other classes to
which it is coupled. To measures the
coupling to unique classes through
parameters, local variables, return types,
method calls, generic or template
instantiations, base classes, interface
implementations, fields defined on
external types, and attribute decoration.

5 Lines of Code
(LOC)

Indicates the approximate number of lines
in the code. The count is based on the
Intermediate Language (IL) code and is
therefore not the exact number of lines in
the source code file. A very high count
might indicate that a type or method is
trying to do too much work and should be
split up. It might also indicate that the type
or method might be hard to maintain.

application to calculate the amount of 'change' made in
each class. It is calculated manually by comparing the recent
version of source code for class with the previous version of
the same class. Difference is observed in terms of lines of
source code added, deleted or modified for each class. The
values of collected metrics were finally compiled class wise
with respective values of 'change' made in that class in the
recent version and combined respectively to generate data
points. We have compiled all the classes for each application
to generate data points. For FLM System, EASY System,
SMS System, IMS System and for ABP System the number
of data points are 233, 292, 129, 96 and 114 respectively.
Same methodology is adopted in Zhou et al [19].

TABLE II : METRICS COLLECTED BY TOOL FOR SELECTED WEB
AND WINDOW BASED APPLICATIONS

SN
o

Metric Name Description

1 CCR (Comments
to Code Ratio)

Ratio of number of comments lines to
number of code lines in C# code file.
Number of comment lines to the tatal
number of lines in the source code were
compared to find the values of this metric.

2 NODBC
(Number of Data
Base
Connections)

Number of Data Base Connection is a
measure to count number of times database
connection were made. It is counted by
counting 'Open()' function call for database
connection in the source code.

3 WMC
(Weighted
Methods per
Class)

The sum of Mc Cabes’s cyclomatic
complexities of all local methods in a class.
Let a class K1 with method M1… Mn that
are defined in the class. Let C1…….Cn be
the complexity of the methods.

4 LCOM (Lack of
Cohesion of
Methods)

The number of disjoint sets of local
methods. Each method in a disjoint set
shares at least one instance variable with at
least one member of the same set.

V. RESEARCH METHODOLOGY

Recent research activities have revealed that Artificial
Neural Network (ANN) have powerful pattern classification
and pattern recognition capacity. They are well suited for
prediction problems in which required knowledge is difficult
to specify but enough data or observations are available to
learn. Although it was proposed in 1964 by Hu [20] brought
into use by 1986 when back propagation algorithm was
introduced for learning by Rumelhart et al [21]. Originally
they were developed to mimic basic biological neural
systems particularly the human brain, composed of number
of interconnected simple processing elements called neurons
which receive input signal from other nodes, process it and
produce output signal to other nodes. Before ANN can
forecast any desired task, it has to be trained first. Typical
case of ANN i.e. Feed Forward Neural Network (FFNN) was
used in the current study. In FFNN, information moves in
only one direction i.e. forward from input nodes to output
nodes through hidden nodes and there are no loops in the
network. FFNN is the most practical ANN model and
presented in Figure 1. Artificial Neural Network Model
(ANN) in Mat Lab Tool was created for the prediction of
software maintainability and Multi-Layer Feed-Forward
Neural Network Model was selected for learning using
empirical data collected in Section-3 and Section-4. The
number of hidden neuron selected as 10 for the sample data
collected from these five real life applications. Independent
variables selected in the current study are nine metrics as
described in Table I and Table II and dependent variable is
'Change'. In total, metrics of 864 classes were collected and
combined with corresponding 'Changes' made in that class to
generate data points for all five applications mentioned in
section 3. We partitioned our data into three parts in the ratio
of 3:1:1 for training, testing and validation respectively. 60%
of the data was used for training i.e. machine learn from the
data patterns using specified algorithm, 20% of the data was
used for testing where we check how much the predicted
values are closer to actual values, 20% of the data was used
for validations. Prediction accuracy is calculated by
comparing actual value of 'Change' calculated manually in
section 4 with predicted values of 'Change'.

Fig. 1 : A typical Feed Forward Neural Network (FFNN)

VI. DESCRIPTIVE STATISTICS

Descriptive statistics (minimum, maximum, mean, and
Median and standard deviation) were calculated and their
interpretations are presented in this section. Table-III
represents descriptive statistics for class level metrics which
were collected for 864 classes consists of five applications
FLM, EASY, SMS, IMS and ABP and 233, 292, 129, 96,
114 classes respectively considered in the current study.
Following are the observations made from descriptive
statistics:

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

TABLE III : DESCRIPTIVE STATISTICS OF CLASS LEVEL METRICS COLLECTED FOR FIVE SELECTED APPLICATIONS

 FLM System EASY system

 Max Min Mean Median
Std
Dev Max Min Mean Median

Std
Dev

Cyclomatic Complexity
(CC) 29 1 19.31 16 13.76 22 1 20.6 19 14.27
Depth of Inheritance (DIT) 7 1 4.379 5 1.321 5 1 3.6 4 2.503
Coupling Between Object
classes 50 3 26.14 30 13.86 54 0 33.5 38.5 21.59
Lines of Code (LOC) 7749 33 189.9 113 207.3 4189 91 207 188 171.7
CCR 5 2 3.276 3 2.978 7 3 4.57 5 5.58
NODBC 12 0 2.483 0 3.532 7 0 2.7 0.5 3.433
WMC (Weighted Methods
per Class) 16 1 6.276 5 4.978 23 1 10.5 9.5 8.58
LCOM (Lack of Cohesion of
Methods) 0 0 0 0 0 0 0 0 0 0
Maintainability Index (MI) 91 40 61.14 56 18.04 94 43 64.1 56.5 17.92

Change 95 5 41.98 67 45.67 87 9 52.52 63 43.23

 SMS System

Max Min Mean Median
Std
Dev

Cyclomatic Complexity
(CC) 27 1 21.5 19.5 19.62
Depth of Inheritance (DIT) 6 1 3.25 4 2.121
Coupling Between Object
classes 59 3 45.38 52.5 18.66
Lines of Code (LOC) 9699 83 367.6 351 219.5
CCR 6 2 4.625 16.5 9.18
NODBC 6 0 3 3 2.507
WMC (Weighted Methods
per Class) 29 2 16.63 17.5 9.18
LCOM (Lack of Cohesion of
Methods) 0 0 0 0 0
Maintainability Index (MI) 81 49 55.25 52 10.57

Change 79 13 67.89 47 32.43

 IMS System ABP System

 Max Min Mean Median
Std
Dev Max Min Mean Median

Std
Dev

Cyclomatic Complexity
(CC) 13 2 10.79 7 12.39 14 2 10.33 8.5 8.886
Depth of Inheritance (DIT) 5 4 4.029 4 0.171 6 3 4.017 4 0.131
Coupling Between Object
classes 30 2 13 13.5 8.09 29 4 14.93 17 8.569
Lines of Code (LOC) 8319 117 43.65 21.5 65.46 7156 171 40.91 32 40.37
CCR 12 0 3.147 3 2.572 11 1 2.483 2 1.847
NODBC 5 0 2.118 1 3.859 8 0 4.931 1 1.041
WMC (Weighted Methods
per Class) 12 0 3.147 3 2.572 11 1 2.483 2 1.847
LCOM (Lack of Cohesion of
Methods) 3 0 0.147 0 0.558 6 0 0.155 0 0.812
Maintainability Index (MI) 100 48 71.79 67 17.85 100 40 69.5 61 21.04
Change 213 18 79.87 103 67.93 189 19 91.23 78 45.63

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

 Value of LCOM for FLM, EASY, SMS, IMS and ABP
are 0, 0, 0, 3 and 6 respectively which represents that
classes are quite cohesive in first three applications.

 Values of DIT for FLM, EASY, SMS, IMS and ABP are
7, 5, 6, 5 and 6 which represents that inheritance is
properly exploited in all the selected applications.

 Comments to code ratio is medium in FLM, EASY and
SMS and High in IMS and ABP which means IMS and
ABP would be easier to understand in maintenance
phase.

 Numbers of database connections are more in IMS and
ABP systems and less in FLM, EASY and SMS
systems.

VII. RESULTS AND DISCUSSION

Many measures have been proposed in literature to
estimate the accuracy of different prediction models as part
of the studies carried by Conte [22], Kitchenham [23] and
Bryson [24], however in the current study we have used most
prevalent model i.e. Mean of Absolute Relative Error
(MARE) suggested by Kitchenham[23]. To calculate MARE,
first we calculate Absolute Relative Error (ARE) using
equation (1) followed by Mean of ARE using equation (2).
For n observations it is calculated as follows:

ܧܴܣ ൌ 	
ܸܣ| െ ܸܲ|	

ܸܣ
………………………… . . ሺ1ሻ

ܧܴܣܯ ൌ	
1
݊
݅ܧܴܣ
݊

݅ൌ1

………………… . ሺ2ሻ

AV is actual values of 'Change' and PV is predicted
values of 'Change' using FFNN modeling. MARE values of
all five applications FLM System, EASY System, SMS
System, IMS System and for ABP System are 0.3478,
0.3676, 0.4769, 0.4966 and 0.4568 as plotted in Figure-2.
The prediction accuracy achieved in the current study using

ANN Modeling was compared with other proposed

models as determined by Dagpinar et al. [8], Thwin et al [9],
Aggarwal et al [10], Koten et al [11], Zhou et al [12], Elish et
al [13] and Kaur et al [14] for software maintainability
prediction. It can be easily observed that noticeable and quite
competitive predication accuracy has been achieved using
new proposed metric suite.

Fig 2 : Applications' and their respective MARE values

To further analyze the results we closely observed the

amount of data handled in each application. Maximum
values of NODBC for FLM, EASY, SMS, IMS and ABP are
12, 7, 6, 5 and 8 respectively. It is obtained by counting for

how many times ‘Open ()' is used in each application. We
observed that 'EASY' application is more data intensive
while IMS is least data intensive when compared against
number of database connections made in each application.
We also analyzed the results from different perspective to
observe the effects of CCR metrics on maintainability which
is the ratio of number of code lines to number of comment
lines. This metric mainly affects the understandability of the
code. The value of CCR metric is highest for FLM system
while lowest for SMS system. When the predicted results
were compared with actual changes, it was indicated that for
FLM systems best prediction accuracy has been achieved and
for IMS system, value of MARE is minimum. For FLM
systems predictions accuracy was 81% (0.3478/0.4291) more
than average prediction accuracy achieved from all other
applications. Correlation charts were also drawn between
NODBC and 'Change' using SPSS and found to be
significant as shown in Figure 3(a). We also observed the
correlation between CCR and 'Change' as shown in Figure
3(b). Predicted results are very close to actual values of
change. Based on the above findings, followings conclusions
are drawn:
 The predicted values are very close to actual values

using new metrics suite.
 Proposed metrics (NODBC and CCR) are significantly

correlated with software maintainability.
 NODBC and CCR are more impactful while predicting

software maintainability for data intensive applications.

Fig. 3 :(a) Correlation chart between ‘NODBC’ and ‘Change’.

Fig. 3 : (b) Correlation chart between ‘CCR’ and ‘Change’

0

0.1

0.2

0.3

0.4

0.5

FLM
System

EASY
System

SMS
System

IMS
System

ABP
System

0.3478
0.3676

0.4769
0.4966

0.3966

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

VIII. THREATS TO VALIDITY

An empirical study always carries few threats to its
validity which are equally applicable to the current study and
taken into consideration. Empirical data collected from real
life application got few specific characteristics and cannot be
generalized. Judgments were based on cumulative effects of
all metrics on maintainability however it would be more
preferable to have controlled environment where at any given
time only two new metrics proposed in the study are
observed and all other metrics remained constant. Apart from
the metrics suite which is used to measure internal quality
attributes in the current study, maintainability also depends
upon external quality attributes such as quality of the code,
expertise of developers, familiarity of the code, reusability
etc. In the current study we have considered only internal
design metrics and external quality attributes have been
deliberately ignored. Although we have tried our best to
minimize these threats by taking five different applications
which varies greatly on account of database handling,
comments and lines of source code. However, these threats
can only be removed by conducting more replicated studies
using different platforms, different architecture and with
different datasets.

IX. CONCLUSION

Objective of our current study was to empirically
investigate the effect of newly proposed metrics suite on
software maintainability in highly data intensive
applications. FFNN modeling techniques was used for the
prediction of OO software maintainability using five real life
applications. A total of nine important metrics were used to
capture attributes of object oriented design and database
design. Definition of seven OO design metrics were picked
up from the literature and two new metrics were proposed to
capture attributes of database design. Newly proposed
metrics suite was found to be more meaningful in today's
application development scenario which is highly data
intensive. Proposed new metrics suite was empirically
verified as competitive prediction accuracies were achieved.
From the results it can be safely suggested that new metrics
suite proposed in the current study appears to be more useful
in predicting maintainability of the OO software. Researchers
and practitioners developing data intensive applications can
make use of this metrics suite for the prediction of software
maintainability in early phases of software development in
order to achieve better planning of resources. We would like
to conduct additional empirical studies in future with an aim
to verify and support the findings of this paper on other
datasets. Finding of this paper are valid for object oriented
medium size system. We are planning to replicate this study
for large OO systems. We are also planning to investigate the
capability of newly proposed metrics suite in emerging
software development scenario such as aspect oriented
software development, service oriented software
development and component based application development
in predicting the maintainability.

REFERENCES

[1] Software Engineering Standards Committee of the IEEE Computer

Society, IEEE Std. 828-1998 IEEE Standard for Software
Configuration Management Plans, standard, 1998

[2] Aggarwal K. K. and Yogesh Singh, “Software Engineering”, New
Age International Publishers, Third Edition, 2008.

[3] Dimitris S, Xenos M, Dimitris C. Relation between Software Metrics
and Maintainability. Proceedings of Federation of European Software
Measurement Association 1999, Amsterdam, Netherlands: 465-476

[4] Chidamber, Shyam R. and Cris F. Kamerer, “Towards a metrics Suite
for Object-Oriented Design Proceedings”, OOPSLA'91, July 1991,
pp.197-211 Conference 1991

[5] W. Li and S. Henry, "Object-Oriented Metrics that Predict
Maintainability," Journal of Systems and Software, vol. 23, pp. 111-
122, 1993.

[6] S. Chidamber and C. Kemerer, "A Metrics Suite for Object Oriented
Design," IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476-493, 1994

[7] W. Li, “Another Metric Suite for Object-oriented Programming”, The
Journal of System and Software, 44:155–162,1998

[8] Dagpinar M and Jahnke JH, “Predicting Maintainability with Object-
Oriented Metrics - An Empirical Comparison”, Proceeding of WCRE
'03 Proceedings of the 10th Working Conference on Reverse
Engineering; IEEE Computer Society Washington, DC, USA ©2003.

[9] M. Thwin and T. Quah, "Application of neural networks for software
quality prediction using object oriented metrics", Journal of Systems
and Software, vol. 76, no. 2, pp. 147-156, 2005.

[10] K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, and Ruchika
Malhotra, Application of Artificial Neural Network for Predicting
Maintainability using Object- Oriented Metrics, World Academy of
Science, Engineering and Technology 22 2006

[11] C. van Koten, A.R. Gray, “An application of Bayesian network for
predicting object-oriented software maintainability”, Information and
Software Technology, Journal,48(2006)59-67.

 www.elsevier.com/locate/onfsof
[12] Y. Zhou and H. Leung, "Predicting object-oriented software

maintainability using multivariate adaptive regression splines,"
Journal of Systems and Software, vol. 80, no. 8, pp. 1349-1361, 2007.

[13] M.O.Elish, K.O. Elish, “Application of TreeNet in Predicting
OOSoftware Maintainability: A Comparative Study”, European
Conference on Software Maintenance and Reengineering , 2009

[14] Arvinder Kaur, Kamaldeep Kaur, Ruchika Malhotra,” Soft
Computing Approaches for Prediction of Software Maintenance
Effort”, 2010 International Journal of Computer Applications (0975 -
8887) Vol 1,No. 1680

[15] Liang Ping, “A Quantitative Approach to Software Maintainability
Prediction “, 2010 International Forum on Information Technology
and Applications

[16] Cong Jin, Jin-An Liu , “Applications of Support Vector Machine and
Unsupervised Learning for Predicting Maintainability using Object-
Oriented Metrics”, 2010 Second International Conference on Multi
Media and Information Technology

[17] Ruchika Malhotra and Anuradha Chug,“Software Maintainability
Prediction using Machine Learning Algorithms”, Software
Engineering: An International Journal (SEIJ). Vol 2 , number 2, pp-
19-36, 2012.

[18] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,
Empirical Study of Object-Oriented Metrics, Journal of Object
Technology, Vol. 5, No. 8, November-December 2006

[19] Zhou Y, Leung H, Xu B, ‘Examining the potentially confounding
effect of class size on the associations between object oriented metrics
and change proneness’. IEEE Transaction of Software Engineering
vol: 35, issue 5 :607–623, 2009

[20] Hu M.CJ. 1964, Application of the adaline system to wether
forecasting. master thesis, technical report 6775-i, stanford electronics
laboritries, stanford, ca, june

[21] Rumelhart D. E., Hinton GE, Williams RJ: Learning internal
Presentation by back-propagating errors, The PDP research Group,
Parallel Distributing Processing: Exploration in the Microstructure of
cognition, MIT Press, MA, 1994

[22] S. Conte, H. Dunsmore, and V. Shen,” Software Engineering Metrics
and Models”. Menlo Park, CA:Benjamin/Cummings, 1986.

[23] B.A. Kitchenham, L.M. Pickard, S.G. MacDonell, M.J. Shepperd,”
What accuracy statistics really measure”, IEE Proceedings-Software
148 (3) (2001) 81–85

[24] Bryson AE, Ho YC, “Applied optimal control: optimization,
estimation, and control”, Blaisdell Publishing Company or Xerox
College Publishing. pp. 481.1969

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

