
 

 
Abstract—This research focuses on the development and 

integration of the touch-based 3D visualization environment 
for the Semantic Information System. It allows for 
collaboration between multiple users in a dynamic 
environment, facilitating the users’ ability to generate 
metadata and associative content in real-time. Both metadata 
and content are stored in a database while their semantics are 
represented in the XML–based tree structure display. The 
UML diagrams present detailed visualizations and 
interconnectivity of the following system components: 
OpenGL-based GUI, XML parser, object-generating Scraping 
Tool, and Qt-based widgets that comprise a traditional GUI 
environment. These modeling diagrams demonstrate the 
interactive processes between system components of the touch-
based 3D and the traditional 2D GUI environments in terms of 
data visualization and enhanced system functionality. The 
visual multilevel metadata representation provides the users of 
Semantic Information System with operational flexibility for 
efficient content management and organization. 
 

Index Terms— Graphical User Interface (GUI), Semantic 
Information System (SIS), Unified Modeling Language 
(UML),Visualization Environment. 
 

I. INTRODUCTION 

REVOUSLY, Structures, Pointing, and Control 
Engineering (SPACE) University Research Center 

(URC) has developed a prototype of the Semantic 
Information System (SIS) [1]. SIS is designed from the 
concept of the Semantic Web, a platform where information 
is organized based on a machine recognizable matter [2]. In 
the SIS, the semantic information is  generated, stored, and 
hierarchically organized by a collaborative group of users. 
Human intervention is a necessary step during the 
generation of semantics of information, as the information’s 
appropriate description and categorization result in more 

 
Manuscript received July 13, 2013; revised August 11, 2013. This work 

was supported in part by the NASA University Research Center Program 
under Grant NNX08A44A 

A. Milshteyn is with the Structures Pointing and Controls 
Engineering(SPACE) University Research Center at California State 
University of Los Angeles, Los Angeles, CA 90032 USA  (phone: 323-343-
5445; e-mail: aleks.milshteyn@gmail.com).  

G. Herman is with the Structures Pointing and Controls 
Engineering(SPACE) University Research Center at California State 
University of Los Angeles, Los Angeles, CA 90032 USA  (e-mail: 
gartheherman@gmail.com). 

S. Mendoza was with the the Structures Pointing and Controls 
Engineering(SPACE) University Research Center at California State 
University of Los Angeles, Los Angeles, CA 90032 USA  (e-mail: 
smendoz2@calstatela.edu). 

precise and powerful search engines [3]. Moreover, the 
users who acquire information may also trigger the 
Semantic Web to categorize and reorganize such 
information for enhancing the search capability in the 
future. 

 
Fig. 1.  Semantic Information System Architecture 

 
This paper is focused on the UML design of an enhanced 

graphical visualization module with navigational 
capabilities for the Semantic Information System. The 
primary aspect of the SIS is the ability for its users to 
collaboratively generate new content based on the semantics 
of interrelated objects. The resulting project-specific 
database is available for further user-modifications and top-
level visualization of interrelated object hierarchy. The SIS 
architecture is presented in Figure 1, showing the 
communication interactions between primary server-side 
components. The Tuple Space in this architectural design 
serves as a bridge for all the SIS intra-cluster 
communication [4]. 

The core SIS client-side functionalities are primarily 
composed of the object-generating Scraping Tool, an 
integrated web browser for content searching and a XML 
parser for metadata extraction [5]. These tools are 
responsible for generating, storing, retrieving, and 
displaying of semantic relationships between objects based 
on the XML metadata. 

The UML (Unified Modeling Language) is geared for 
object-oriented analysis and design. It is used to model, 
document, and visualize individual elements of an object-
oriented system. The UML presents system components in 
various perspectives of the project. It is commonly used in 
industry for designing visual models of software-intensive 

UML of a Touch Based 3D Visualization 
Environment for the Semantic Information 

System 

A. Milshteyn, S. Mendoza, G. Herman, E. Tsai, A. Lin, Adrienne S. Lam, H. Boussalis, and C. Liu 

P

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



 

and complex systems, thus formalizing the organization of 
the project architecture.  

The initial UML system design of the SIS Network 
provided assistance with visual evaluation of the system 
interdependencies. This top-level visualization accelerated 
the implementation process of new system components, as 
well as the enhancements of existing system components. 
The UML diagrams are presented throughout the paper in 
reference to the corresponding system modules, which are 
discussed as follows: Chapter 2 presents the original version 
of the Semantic Information System, focusing on its initial 
core components. Chapter 3 discusses the touch-based 3D 
version of the SIS, focusing on the processes of 
initialization, user control aspects, and texture mapping. 
Chapter 4 presents results of the multi-level project 
examples and compares the two GUI designs.  Chapter 5 
summarizes the need for transition from the traditional 
version of the Semantic Information System to the 3D 
touch-based navigating environment. 

 
II. ORIGINAL SEMANTIC  INFORMATION SYSTEM  

A. The Scraping Tool 

In the Semantic Information System, the mechanism for 
gathering content and populating the tree structure is called 
the Scraping Tool. Through this content gathering and 
publishing process, users can obtain relevant material from 
variety of remote sources and generate their own project 
based on the information collected. The Scraping Tool is 
initiated upon user selection and provides a pop-up menu 
with several steps, as seen in Figure 2. 

 

 
Fig. 2. Scraping Tool Object Generation 

 
 

Fig. 3. Traditional GUI Display after Object Generation 

 
Figure 3 shows a resulting step of the publishing 

process, where the object (node of information) generated 
by a user via the Scraping Tool application is displayed in a 
traditional GUI.  

After a newly generated object has been published by 
the user, its metadata is stored in a new entry in the 
database, while its content (i.e. file) is uploaded on a file 
server. The steps involving the database and file server are 
transparent to the user, occurring in the background of the 
application and will be further discussed in this chapter. The 
tree structure shown in the GUI is immediately updated after 
the objects have been created, in order to allow users access 
to the modified project content.  

It was previously mentioned that the accumulated content 
can consist of project work itself or merely the information 
related to the project. In either case, the SIS is more 
effective when the scope of its usage is well-defined by the 
project collaborators. This is an inherited trait of the SIS 
Network; as its scope becomes broader in focus, the benefits 
for its audience are minimized. Researching information in 
an unfocused SIS Network will provide insignificant 
improvements over a regular Internet search. The SIS 
network is heavily dependent on the users that proactively 
add content that is relevant to a project or knowledge base. 

B. Database and FTP 

  The database in the SIS serves as a means for storing 
metadata, facilitating searching functions, and managing 
user accounts. The objects within the network can be 
searched by the metadata parameters such as date created or 
file type. For larger and more heavily populated networks, 
the ability to search within specific branches can be 
compounded on top of the metadata parameters. 

 Each object within the database has a unique ID 
associated with it. These IDs are present in the XML tree 
file and are called when a user selects the object. The 
metadata for that particular object is pulled from the 
database by using the object’s ID. As the project tree is 
populated with new objects, their respective database IDs 
are added to the XML file to provide a respective reference. 
The complete process is represented via the UML activity 
diagram, which is shown in Figure 4 below.  

 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



 

 
Fig. 4. UML Activity Diagram of the SIS FTP and Database 

Intercommunication 

 
 

The connection between the XML-based project tree and 
the database is also necessary for retrieving content from the 
server. In addition to the aforementioned metadata 
parameters, the database also keeps a list of files associated 
with each object. This list must be embedded to the project 
tree in order to retrieve the object files from the FTP server. 
Whenever a user views or downloads an object’s content, it 
is transparently being retrieved from a file server. 

 

C. The Traditional GUI Display 

This section describes the operations for the traditional 
GUI used in displaying a tree structure. The original GUI 
contains a hierarchical string-based tree structure as the sole 
method to navigate through the system. Such methods of 
navigating through files have become uncommon and have 
little visual impact on the user.  

 Figure 5 shows the activity UML diagram that depicts 
the user invoking the traditional GUI, which in turn 
communicates with the XML parser. This XML parser loads 
a previously user-created project tree by identifying the 
hierarchical level structure relationships within the project’s 
information nodes.  

 

 
Fig. 5. UML Activity Diagram between traditional Application GUI and the 

XML Parser 

 
Figure 6 shows a comprehensive example of a 

hierarchical visual tree structure that has been generated by 
a group of SIS participants via Scraping Tool application. 
On the left hand side in Figure 6, the tree structure is 
displayed using XML, giving the user the ability to expand 
and collapse the parent/child content and see what branches 
it contains.  

 

 
Fig. 6. Hierarchical XML-based Tree Structure of a SOFIA Project 

 
When users select a node of information, its respective 

metadata is displayed on the content page. The metadata 
includes the following node information: the title, date 
created, date modified, source information, object 
description, and file type. The content tab allows 
modification and creation of nodes on the user-loaded 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



 

semantic tree structure. Users can also load a different 
existing tree by clicking on the GUI folder button. Nodes 
can easily be deleted when selected by cursor, followed by 
pressing the delete button.  The SIS also includes an 
embedded browser and a web-page parser. When the user 
visits a certain web-page, s/he is able to utilize the parser for 
identifying related terms. The current version of the web-
page parser is limited in listing several related objects to the 
user-provided keyword within the web-page. 

After entering the keyword in the Search Tab and 
invoking the “Search” function, the web-site in the 
embedded browser is parsed for the input terms specified by 
the user.  

The Display Tab returns the output results with words 
preceding and succeeding the term; providing a context for 
the result. Instead of looking back through the web-page to 
determine the context of the keyword, the user can quickly 
identify the relevance of results on the Results Tab. When 
users find the content relevant to their query, they can create 
a new object on the tree via the Scraping Tool or modify 
content on an existing object. 

 
III. OPENGL SEMANTIC INFORMATION SYSTEM 

A. XML Facilitation 

Throughout the system design in both initial and final 
versions of the SIS, the XML syntax is facilitated through 
major system components. This facilitating technology is a 
communication backbone that propels seamless client-server 
interaction, Active Directory inter-cluster synchronization, 
as well as fulfilling metadata representation [6].  In the 
original design of the Semantic Information System, a 2D 
tree structure was implemented based on the XML format to 
represent relationships between objects. The textual and 
image data of the contents was embedded within the objects 
tags to take advantage of XMLs inherent hierarchical 
structure. The original tree display allowed for a convenient, 
yet purely static and plain interface. 

When an object is selected within the tree widget, the 
metadata is immediately displayed to the user, however the 
user is able to view only one currently selected object. The 
information regarding its interrelated components could be 
only recognized by the objects’ text-based title name. The 
user had to manually browse through the list of objects in 
order to gather the complete information. This time 
consuming and visually obstructed process of object 
identification resulted in a proposal of an “all at once” 
visualization component design, which accounted for a 
multiple-object viewing environment, as well as for the 
ability to effectively browse through the “objectized” 
hierarchical database.  Since 2D display cannot effectively 
show cross-category relations, the implementation of a 3D 
tree display to visualize semantic relations was necessary. 
Rather than to overwhelm users with the sentences of 
textual content contained in each object description, this 
proposed design allows user to visually identify whether or 
not the object of interest is relevant to their search criteria 
based on the visual tree representation. The tree can be 
expanded and collapsed while navigating through the 
available content.  

In order to visually represent these interrelated objects, 
the Open Graphics Library (OpenGL) Application 

Programming Interface (API) was chosen due for its multi 
platform capabilities and compatibility with the Qt platform, 
where initial SIS design was implemented[7].  

B. Initialization Phase 

 The implementation of OpenGL features inside the Qt-
based environment is achieved via QGLWidget class, 
specifically designed to provide functionality for rendering 
OpenGL graphics inside the Qt applications [8]. 
QGLWidget is a subcomponent of the Qt Vertical Layout 
widget (QVBoxLayout class). 

OpenGL works through a low level programming, and 
hence allows the programmer to control the rendering of the 
environment. The programming language allows for what is 
called texture mapping, technique which is responsible for 
mapping pixels around primitive polygons.  

QGLWidget class is composed of three virtual functions 
that can be reimplemented in a custom-made subclass: 
paintGL, resizeGL, and initializeGL.  
 The objective of initialization function is to set up the 
OpenGL rendering context and to define display lists. The 
initialization process involves setting up event filters for 
supporting mouse tracking and touch-based commands 
within the QGLWidget. The procedure is also responsible 
for enabling core OpenGL capabilities, such as texture 
mapping, shade model, and color/depth settings. The 
initialization process continues with the configuration of the 
axis rotation and prepares the extracted XML information 
for texture generation. 

C. Control Panel 

The traditional GUI represents an effort to display the 
content on the network but it falls short when it comes to 
graphical capabilities and user control. The traditional GUI 
does not offer an instant visual representation of the content. 
 SIS participants will have an advantage in navigating 
through SIS database when offered a visual representation 
of the content, leading to faster decision-making by instantly 
identifying the necessary information. 
 PaintGL function contains a sequence of commands that 
lead to the texture mapping and rendering of graphical 
objects. The PaintGL function concludes with the buffer-
swapping command that refreshes the screen changes via 
double buffering [9]. Figure 7 shows the 3D Control Panel 
with features of zoom in/out and rotational options around 
the X and Y axes. The figure also displays the portion of the 
loaded SIS project in a hierarchical multi-level structure. 
 

 
Fig. 7. 3D Touch-based Control Panel GUI (Zoom and Rotational 

Features) 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



 

 
Current features of the 3D touch-based GUI include 

regular zoom in/out, level-based filtering (local-zoom) and 
tree rotation functionalities. The later allows the user to 
rotate the tree by ten degrees either along the X or Y axes 
using either the mouse or touch-screen display. 

Besides default zoom operations, the right portion of the 
QGL Widget’s rendering region is reserved for what is 
referred to as a “Local Zoom Menu” (Figure 8). It is 
designed to conserve visual space on the QGL Widget. 
Upon user-selection of a necessary level of viewing, the 
local zoom capability will filter out (visually remove) the 
distant levels of information from the QGL Widget, while 
displaying only the level selected and its adjacent levels 
(parent and child levels).  

This feature helps users to visually concentrate on the 
specific level of information, displaying only the selected 
level, as well as the nearest preceding and succeeding levels 
of information. The visual data of all other levels within the 
tree structure will be temporary concealed from the user. 

 

 
Fig. 8. Local Zoom Menu and Original View Features 

D. Texture Mapping 

The final step in setting up OpenGL GUI environment is 
the texture mapping [10]. The process initially starts with 
loading image data of every object into the memory and 
converting it to the GL recognizable data type. Then, the 
primitive polygons are created based on the required 
number of textured objects. Each object is bound onto its 
corresponding polygon as it is graphically rendered on the 
widget’s reserved region. Figure 9 shows the UML Activity 
diagram of the texture-binding process. The QTreeWidget 
class describes an XML tree which contains the interrelated 
items of a single SIS project [11]. Each of the individual 
items is represented by the QTreeWidget Item class [12]. 
The node information is retrieved from the traditional GUI 
line fields. Based on the extracted metadata information, the 
corresponding textures are created for graphical rendering.  

 

 
Fig. 9. UML Activity Diagram of Texture Generation and Binding 

 
IV. SIS PROJECT EXAMPLES AND IMPLEMENTATION 

RESULTS 

Figures 10 and 11 present two SIS projects inside the 
original GUI environment. As previously discussed, user is 
only exposed to a textual content description and a single 
image representation of the current object within the project. 
Users are able to navigate the project in a text-based 
environment embedded in a QTreeWidget display on the 
left. 

 

 
Fig. 10. Project Example – “The Solar System” – 2D 

 
Fig. 11. Project Example – “The Changing Earth” – 2D 

 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



 

Figures 12 and 13 below show the same projects inside 
of the enhanced SIS 3D touch-based GUI. "The Solar 
System" project example is shown in three-levels, while 
"The Changing Earth" project example is shown in five-
levels respectively. The amount of levels can be easily 
identified by the user simply by looking at the visual project 
structure.  

 

 
Fig. 12. Project Example – “The Solar System” – 3D 

 

 
Fig. 13.  Project Example – “The Changing Earth” – 3D 

 
 Figures 14 shows Local Zoom feature applied on "The 

Changing Earth" project. The visual information filtering 
allows the user to focus on the specific level target, when 
the user selects Level 3 Zoom, the distant level  information 
(levels 1, 2 and 5) is visually removed. 

 

 
Fig. 14. Local Zoom Feature – Information Filtering 

V. CONCLUSIONS 

This paper presents the UML design of the traditional 
and enhanced graphical user interfaces within the Semantic 
Information System.  The SIS core components are 
thoroughly discussed for both versions of the system.  

The 3D GUI interface of the SIS is presented and 
described from the activity UML diagram perspectives. This 
interface is also evaluated and compared to the traditional 
2D SIS environment.  The OpenGL processes of the touch-
based GUI are described in details of their operations. The 
XML parser, the FTP module, and the database system 
components are presented using UML in respect to the 
whole system component interactivity.  

The comprised system is based on the XML facilitating 
technology, which allows its platform participants to 
effectively create, recognize, edit, and manipulate 
interrelated information in the hierarchical tree-structural 
format by utilizing visualization environment with flexible 
touch-based controls. While the traditional user interface is 
straightforward at storing, retrieving, and modifying the 
encapsulated content, the lack of the visual aspects hinders 
the dynamic cross-category visualization.  

The flexible control panel with touch-based zoom and 
rotational capabilities demonstrates visual and navigational 
superiority in information browsing over static and mostly 
text-based interface of the earlier version of the SIS.  

REFERENCES 
[1]  E. Tsai, N. Arellano, S. Mendoza, G. Nunez, A. Lin, G. Carter, A. 

Lam, JP. Adigwu, J. Estrada, A. Milshteyn, H. Boussalis, and C. Liu. 
Semantic Information System : Applicaitons in K-12 Education. The 
Journal of Computing Sciences in Colleges (Vol . 26, Num. 4) , April 
2011. 

[2]  W3C Semantic Web Activity Available at http://www.w3.org/2001/sw/ 

[3]  R. Mathis, L. Caughey A Metadata Model for Electronic Images 
Available at http://mathiswebs.com/papers/mathiscaugheyfinal.pdf 

[4]  R. Tolksdorf, F. Liebsch, and D. Minh Nguyen, XMLSpaces.NET: An 
Extensible Tuplespace as XML Middleware. 

[5]  XML Marker Available at  http://symbolclick.com/navigation.htm 

[6]  JP. Adigwu, A. Alegre, S. Beltran, J. Estrada, A. Lam, A. Milshteyn, 
C. Liu, H. Boussalis Semantic Network Active Directory Service 
System International Conference on Data Engineering and Internet 
Technology (DEIT 2011).  

[7]  OpenGL Coding Resources Available at http://opengl.org/resources 

[8]  QGLWidget Class Reference Available at http://doc.qt.nokia.com/4.7-
snapshot/qglwidget.html 

[9]  OpenGL Double Buffering Available at 

http://swiftless.com/tutorials/opengl/smooth_rotation.html 

[10] A. Edward OpenGL: A Primier 3rd Edition 2007. 

[11] QTreeWidget Class Reference Available at 

 http://qt-project.org/doc/qt-4.8/QTreeWidget.html 

[12] QTreeWidget Item Class Reference Available at  

http://qt-project.org/doc/qt-4.8/QTreeWidgetItem.html 

 
 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013




