


Abstract— Mobile applications testing is the most important

factor in its software development. Mobile applications testing is
a process by which application software developed for hand
held mobile devices is tested for its functionality, usability and
consistency. Mobile applications either come pre-installed or
can be installed from mobile software distribution platforms.
Increasing complexity of the mobile applications system makes
difficult to test and evaluate the quality properly. As a result,
automated testing methodology is becoming popular and in turn
decline of manual testing. Because of the characteristics of Mobile
applications software, automated testing has difficulty
performing all relevant tests and evaluation of the areas of
concern. Model-Driven Testing Techniques (MDT) artefacts
software engineering bases on model transformation principle.
This implies increasing research on automation of the testing
processes.

In this paper, we present an approach to derive tests from
the model of mobile applications system. The analysis of
methodologies used for mobile applications as well as for
standard system development demands creation of a bridge
between them. We also will discuss the reliable testing
processes. In particular, test development for each phase of
system engineering is proposed. Input signals as continuous,
discrete and real time constraints are the factors indicating
object oriented or function oriented approach. Finally, Model
Driven Testing ideas are mentioned so as to elaborate the full
overview on test process automation for Mobile applications
systems.

Index Terms—

I. INTRODUCTION

New software development methods based on models
and distributed component technology is a major step
towards more efficient software systems. The growing
complexity of such systems increases the need for solid
testing to ensure the reliability. However, testing is often not
well linked with other development phases. One reason for
this is that designers, developers and testers use different
languages, file formats and tools, making it difficult to
communicate with each other and to exchange documents
[1,2]. The early integration of test development into the
system development process becomes more and more
important. Design mistakes and implementation faults can be
detected in an early stage of the system development. This
allows for reducing the overall software production time and
costs significantly [3]. Mobile applications systems vary in
size and complexity, and might include such divergent things.
Although the use of models is beneficial to both types, there
are certain trade-offs required when using model driven

Heang-Kon Kim is with School of Information Technology, Catholic
University of Daegu KyungSan, Daegu, 712-702, Korea (corresponding
author to provide phone: 053-850-2743; fax: 053-850-2740;

 e-mail: hangkon@ cu.ac.kr).

development on such Mobile applications systems. Small and
resource-constrained systems may have such limited memory.
Within Mobile applications software circles, the practices of
Test-Driven Development (TDD) and Continuous
Integration (CI) are either unknown or have been regarded as
prohibitively difficult to use. Real-Time Operating System
(RTOS) becomes prohibitive. In such cases, operating
system services like threads, processes, or tasks are not
available. Modeling tools that provide MDD capabilities
need to take these diverse requirements into account[4].

The idea of this paper is to perform the automation of
testing engineering parallel to the automation of system
engineering. The innovation bases on bringing together the
existing approaches with UML to use in Mobile applications
and standard system. The aim is to split testing processes into
main software engineering phases so as to begin to test at the
early stage of the development. Further, signal types
(continuous, discrete) and real time constraints at the model
input side distinguish between object oriented and function
oriented approaches.

II. RELATED WORKS ON SPATIAL INDICES

2.1 Mobile applications Software Testing

Testing is a method to find defect(s) in software.
Especially in Mobile applications software development,
there are many hardware related limitations compared to
generic software development. Testing must work in a way
that does not influence these limitations and must fit the
following criteria:

· Real time testing: by definition, testing must be done in real
time

· Non-interference of testing: testing must not interfere with
elements not being tested.

· Support various kinds of connection methods: an mobile
applications system must connect and runs on different
kinds of network connections.
Thus, the Mobile applications software developer must

have knowledge about software and hardware to best
construct and execute the appropriate test(s).

Testing can be divided in a two forms: manual and that
using automated tools. Using the manual method, hardware
related knowledge are prerequisites and the tester’s
knowledge and experience is also an important factor in
testing.

Fig. 1. Mobile applications software testing tool

Test Driven Mobile Applications Development

Haeng Kon Kim

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Using an automated tool means using source code or a

design model in predefined way to create a test case and tests
automatically. Today complexity of Mobile applications
software makes manual based testing ineffective and requires
lot of time so automated testing is taking place of it.

Figure 1 shows the general structure of an automated
Mobile applications software testing tool. Source code is
analyzed in the host and from that test cases are generated.
The test cases are then sent to a target board using various
methods and then finally executed. Results of the test case
then are sent back to the host and analyzed.

Some of the typical automated Mobile applications
testing tools are presented below:

· Codescroll: a source code based testing tool.
· VectorCAST: a source code based testing tool.
· Qtronic: an automated model based testing tool.

There are parts that can’t be done using an automated
testing tool. Automated test operate in a predefined way and
mostly use source code to test factors internal to the system.
This makes errors produced in an area not defined, or
unpredicted way of error [5], hardware related parts like LCDs
and switches cannot be tested or cannot be tested in an efficient
way. So, it is said that the importance of the manual testing of
hardware related aspects are increased.

Mobile applications software testing especially in
manual testing where testing is manually intensive;
experience is an important factor affecting the test. Therefore
the results of the test are highly affected by the tester’s
experience. This leads to the assessment that there must be a
way to share the experience of testers.

2.2 Mobile applications Software Quality and Evaluation

Use of Mobile applications system is rapidly increasing.
This increase of Mobile applications systems creates many
similar systems for the customer to choose from. This
influences the quality required of Mobile applications systems,
because the system can’t be improved or fixed when the
development is over and fatal errors can affect the product, and
consequently the evaluation of the company. It’s because of
consumer requirements that the importance of quality has been
increased [6].

Developers and testers are very increasing in serving the
customer with quality products, because now quality is an
influence on the sales of a mobile applications product.
Quality evaluation results can view differently by the people
who see it. So we need classification of elements. Quality
evaluation is another important factor which effects entire
development process. Since evaluation collects element form
entire development process, it can be used as resource for
manual testing and reducing testing time.

2.3 Mobile applications Software Testing Process

Mobile applications software testing is a disciplined
process that consists of evaluating the application (including
its components) behavior, performance, and robustness. One
of the main criteria, although usually implicit, is to be as
defect-free as possible. Expected behavior, performance, and
robustness should therefore be both formally described and

measurable. Verification and Validation (V&V) activities
focus on both the quality of the software product and of the
engineering process. These V&V activities can be
sub-classified as preventative, detective, or corrective
measures of quality. While testing is most often regarded as a
detective measure of quality, it is closely related to corrective
measures such as debugging. In practice, software developers
usually find it more productive to enact testing and
debugging together, usually as an interactive process.
Debugging literally means removing defects.

 Mobile applications software industries in airborne,
train, and automotive domains is becoming more mature, and
catch up with other industries such as the computer hardware
industry. Model based development processes are established
and exercised for real-time Mobile applications systems.
Nowadays, there is a strong trend to automate the
safety-critical functions, which in turn requires application of
safety standards. Automation demands the application of
formal methods and formal verification. The development
process of Mobile applications systems considers the
question which process steps in the product life cycle have to
be covered [7] and supported by appropriate tools. The most
important steps are:
- capturing of textual specification
- modeling of software and hardware topology and its
functions considering all the constraints automatic code
generation from the models automatic test code generation
from the test models
- efficient software development, testing and debugging
environment Mobile applications software engineers and test
engineers have to develop and verify their software using
model checking together.

The corresponding benefits cope with design failures,
which are detected early in the overall process. The quality of
specification models increases. These improvements result in
significant cost reductions during the software development
process. The Mobile applications software design methods
used for years suffered from informal specifications, lack of
adequate support for verification, fairly long design times.
This situation has become untenable as their complexity and
safety, cost and power consumption requirements put on
them has scaled up. The situation has been made even more
difficult by the increasing degree of integration in the
semiconductor industry that has made possible to build
Systems-on-Chips (SOC) with unparalleled compute power.
In too many cases, errors in conception and implementation
of Mobile applications controllers have caused dramatic
problems especially in the area of space exploration and
applications. On the other hand, the opportunities offered by
technology for Mobile applications controllers are immense.

III. MOBILE APPLICATIONS SYSTEMS TESTING WITH

MDT(MODEL DRIVEN TESTING)

The development process of Mobile applications
systems influences the test methodology. That is why it
is very important to choose the appropriate
methodology concerning both of them so as to succeed.
For Object-Oriented Development (OOD) the emphasis
is put on organizing the structure of a system around the
fundamental objects and data, and their associated
functionality. For Function-Oriented Development
(FOD) the emphasis is put on organizing the structure of

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

a system around its required behaviour. Object Oriented
Development on the system side implies rather standard
approach to testing, however the time constraints and
continuity must be preserved. Function Oriented
Development (FOD) on the system side means working
with a new approach to testing. The main system and
test characteristics are defined by the weighting of
continuous versus discrete behaviour, existing
distribution of functions and communications versus
basis user functionality. In this paper, we mainly focus
on the appearances especially in the context of safety
critical and space restricted mobile applications
systems, where test must be reliable, repeatable and
flexible. Figure 2 shows the overall architecture for
Mobile applications software MDT(Model Driven
Testing) to concern it.

Fig. 2. Overall architecture for Mobile applications software

MDT(Model Driven Testing)

3.1 Model Driven Testing for Mobile applications Software

In usual software engineering approaches, object
oriented modeling with UML has become popular as in
figure 3.

Fig. 3. UML Architecture to use for Mobile applications

software testing tool

In this area, object orientation has been extremely
beneficial: object oriented modeling allows structuring the
application data in a way that eases maintenance and allows
distributing the responsibility for certain functionality among
the participating objects or components. Finally, object
oriented techniques enable the use modern design pattern that
improves flexibility and maintainability. In the area of
Mobile applications systems, models like Simulink [8] or

languages like Very High Speed Integrated Circuit Hardware
Description Language (also VHSIC Hardware Description
Language) shortly VHDL [9] are used to describe hardware
circuits. C is used to program electronic control units (ECUs).
Programmable logic controllers are programmed in some
kind of assembler, using function block diagrams or Pascal
like structured text. Object oriented concepts are widely
considered as inefficient and unsafe. They usually imply
some kind of pointer concept and dynamic organization of
heap memory. Pointers may be null or point to already freed
memory cells. The heap consumption may grow
uncontrollably. Numerous functional requirements in an
automotive electronic control unit (ECU) cannot be handled
at once. Thus these aspects are handled separately in a deeply
structured process, e.g. user functions, communication,
software and hardware architecture as well as software
distribution on the components. The realisation of a
structured process handling different abstractions along the
path requires the use of the most appropriate notation for
each abstraction. UML provides a much broader range of
means of description, with advantages especially for the
analysis and design phases. In Simulink a clear defined
methodology and modelling guidelines are necessary in order
to realise the necessary abstractions and topology
descriptions.

Dealing with hybrid signals (continuous and discrete
ones) with additional real-time conditions, it is difficult to
choose the methodology/technology to design a model of
Mobile applications system. Furthermore, the real-time
constraints on system side are still valid for the test model.
That is why the decisions taken for system development
influence the test. In the case of standard software these
effects are not as critical because the test methodology is
more independent of the system development methodology.
In the case of real-time Mobile applications software one
deals with the simulation based on the system model. This
simulation is defined on the system side, however from
certain perspective it impacts the test. For example, running
simulations of the model provides information about model
coverage that helps testing groups to determine which aspects
of the implementations are covered by equivalent tests. Test
data and vectors can be generated for use in test harnesses,
either directly from the requirements or based on the design.
This is particularly valuable for systems that contain large
amounts of logic, where designing of test sequences is
particularly difficult. It results from the critical nature of the
system, which implies performing the simulation fed with the
concrete examples of data, taking into account real-time
conditions.

3.2 From Specification, through Models, towards Tests

Test specification can be partly derived from system
specification. This implies formalisation of the system
requirements. Such requirements-driven testing enables test
teams to develop tests against current requirements, rather
than building them in isolation. Since testing is based on
conformance to requirements instead of general test statistics,
this approach delivers higher quality results: test teams can
validate that the system, software or product does what is
required. The approach is provided by DOORS tool. The
automated transfer of information appears, however manual
methods to retrieve the final test requirements are used.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig. 4. Mapping Between Test specification and MDT

(PIM and PSM)

MDT gives the possibility to design and implement
functions of time continuous behaviour, while discrete
behaviour or modeling the architecture on abstract level can
be done in UML (but also in Simulink). Depending on the
system engineers one has to adapt testing methodology to
their requirements. One of the options is to use UML 2.0
models as completion of MDT models for Mobile
applications systems. Both kinds of models should be
mapped and developed parallel completing each other and
taking into account system requirements as given in figure6.
Model transformation between the different philosophies of
object orientation in UML and functional orientation in
Simulink is still a matter of research. Successful results and
prototype realizations. In this paper, we promise practical
solution in mid-term future. Simulink model is tested during
its simulation. It can be additionally tested using
Classification Tree Editor for Mobile applications Systems
(CTE/ES) and Mobile testing tools. UML 2.0 models (e.g.
HybridUML Profile) must be additionally tested with
traditional approach. The testing methodology against UML
models is the application of UML 2.0 Testing Profile (U2TP)
being the Object Management Group (OMG) standard. Test
artefacts retrieved from UML models and applied by UML
2.0 Testing Profile models serve as the base for further
testing procedures. Moreover, the interfaces between
Simulink models and UML models should be also tested, at
least partly automatically. All the connections found, have to
be tested. Further, at least two ways are possible – derivation
of test code from the test model or derivation of test code
from the system implementation code. The first one
corresponds to Model Driven Testing concepts, that is why
only this will be investigated. It is again a challenge, as the
information must be derived not only from the UML 2.0
Testing Profile test models, but also from Simulink model
and simulation. This can be done by using the formal
methods. All the testing processes described till now
correspond to black box testing. That is why the good
candidate for test implementation code applied for real-time
systems is extended version of Test and Testing Control
Notation version 3 (TTCN-3). Finally, implementation code
generated either manually or automatically from the models
must be tested in white box testing. Although in the second
case it has been proven that the code provides fewer failures
than in the first case.

MDA prescribes certain model artefacts used along
system development line, how those models may be prepared
and their relationship. It is an approach to system

development that separates the specification of functionality
from the specification of the implementation of that
functionality on a specific technology platform. Main MDA
artefacts are platform independent system models (PIMs),
platform specific system models (PSMs) and system code.
There is a clear distinction between PIM, PSM and system
code although it depends on the context, the development
process and the details of the system and target platform,
where the border between PIM, PSM and system code is to
be placed. Within these three abstraction levels,
transformation techniques are used to translate model parts of
one abstraction level into model parts on another abstraction
level. These MDA abstraction levels can also be applied to
test modelling as according to the philosophy of MDA, the
same modelling mechanism can be reused for multiple targets.
As shown in Figure 4, platform independent system design
models (PIM) can be transformed into platform specific test
models (PIT). While PIMs focus on describing the pure
functioning of a system independently from potential
platforms that may be used to realize and execute the system,
the relating PITs contain the corresponding information
about the test. In another transformation step, test code may
be derived from the PIT. Certainly, the completeness of the
code depends on the completeness of the system design
model and test model.

Figure 5 shows the sequence diagram for MDT that is
consists of 4 different classes to make it

Fig. 5. Sequence diagram for MDT

The following code is Test conductor integration tests

for interactions with Mobile applications hardware and
model with MDT. The “_Expect” and“_Return” functions
are automatically generated by MDT from the interfaces
specified in header files.

static void testRunShouldNotDoAnythingIfItIsNotTime(void)
{
AdcModel_DoGetSample_Return(FALSE);
AdcConductor_Run();
}
static void
testRunShouldNotPassAdcResultToModelIfSampleIsNotComplete(v
oid)
{
AdcModel_DoGetSample_Return(TRUE);
AdcHardware_GetSampleComplete_Return(FALSE);
AdcConductor_Run();

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

}
static void
testRunShouldGetLatestSampleFromAdcAndPassItToModelAndStar
tNewConversionWhenItIsTime(void)
{
AdcModel_DoGetSample_Return(TRUE);
AdcHardware_GetSampleComplete_Return(TRUE);
AdcHardware_GetSample_Return(MDTU);
AdcModel_ProcessInput_Expect(MDTU);
AdcHardware_StartConversion_Expect();
AdcConductor_Run();
}

Figure 6 shows the Execution Environment for Mobile
applications on MDT. It consist of system model and test
model as development and execution

Fig. 6. Execution Environment for Mobile applications on

MDT

IV. CONCLUSION AND FUTURE WORK

In this paper, we design and implement the automation
of testing development parallel to system development. The
innovation in relation to standard software engineering is the
analysis of this development considering the input signal type
(continuous, discrete) and real time constraints. Object
oriented and function oriented approaches are compared and
combined. Finally, Model Driven Testing ideas are used so as
to elaborate the full overview on testing automation process
for Mobile applications systems.

Future work requires further investigation on test
information retrieval from MDT models. It implies a lot of
effort in the context of transformation, mapping rules and
technical possibilities Such transformations follow the
principles of MDA-based testing, which differentiates
between platform-independent tests (PIT), platform-specific
tests (PSTs), test code and the relations to the corresponding
model artifacts. PIM, PSM) for the system. Transformation
from PIM to PIT is discussed in the presented approach.
However particular concepts are still to be completed. Also
focus is to be put on input/output signal specific information
on the system model as well as on the test model side. Test
implementation code (e.g. TTCN-3) for time continuous
behaviour is to be developed. Research on this will allow us
to investigate the relation between object and function
oriented design on system model and test model side.

In Mobile applications software development, testing and
quality evaluation is one of the most important factors and can
affect the entire Mobile applications software development
process. These factors require lot of time, so reducing the
testing and evaluating time is an effective factor to release the
product early.

In this paper, we proposed manual testing as way to
make up for problems of automated testing. We proposed
model based on existing problem of manual based testing
areas and analysis the requirements. Using this technique, we

can achieve more effective testing on hardware related
software areas. Test results can be used as resource for other
testers for sharing of experience.

Acknowledgments.
This research was supported by the MSIP(Ministry of

Science, ICT and Future Planning), Korea, under the
CITRC(Convergence Information Technology Research
Center) support program (NIPA-2013-H0401-13-2008)
supervised by the NIPA(National IT Industry Promotion
Agency)"

REFERENCES

[1] Design of Mobile applications Controllers for Safety Critical
Systems, http://www.columbus.gr /innovation.htm

[2] Z. R. Dai: Model-Driven Testing with UML 2.0, Second
European Workshop on Model Driven Architecture (MDA)
with an emphasis on Methodologies and Transformations
(EWMDA'04), Canterbury, England, September 2004.

[3] U. Brockmeyer, Automatic Model Validation and Automatic
Test Generation in a Model based Development Process, OSC
– Mobile applications Systems, Model-Based Design
Conference, Munich 2005

[4] U. Brockmeyer, Automatic Model Validation and Automatic
Test Generation in a Model based Development Process, OSC
– Mobile applications Systems, Model-Based Design
Conference, Munich 2005

[5] B.Dobing, J.Parsons. How UML is Used. Communications of the
ACM, 49(5), 109-113.

[6] OMG. Introduction to OMG’s Unified Modeling Language,
Version 2.0. Object Management Group,
http://www.omg.org/gettingstarted/what_is_uml.htm

[7] J.Arlow, I Neustad. UML2 and the Unified Process: Practical
Object-Oriented Analysis and design. Pearson Education, Inc,
2005.

[8] V.Garousi, L.Briand, Y.Labiche. Control flow analysis on UML
2.0 Sequence diagram. In Model Driven
Architecture:Foundations and Applications, Lecture Notes in
Computer Science, vol.3748, Springer, Berlin, 2005.

[9] A. Cavarra, C.Crichton, J.Davies. A method for the automatic
generation of test suites from object models. Information and
Software Technology vol.46 no.5, pp. 309-314, 2004.

[10] Y. G. Kim, H. S. Hong, D. H. Bae, S. D. Cha. Test cases
generation from UML state diagrams. Software vol.146, no4,
pp. 187-192, 1999.

[11] J. Offutt, A. Abdurazik. Generating tests from UML
specifications. Proceeding of the second International
Conference on UML. Lecture Notes in Computer Science,
1723, Springer-Verlag , GmgH, Fort Collins, TX, pp. 416-429,
1999.

[12] S.Kansomkeat, W.Rivepiboon. Automated-generating test case
using UML statechart diagrams. Proceedings of SAICSIT
2003, ACM, pp.296-300, 2003.

[14] L. Briand, Y. Labiche. A UML-based approach to system
testing. Journal of Software and Systems modeling 1 (1), pp.
10-42, 2002.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

