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Abstract—In a search space of a multilayer perceptron having
J hidden units, MLP(J), there exist flat areas called singular
regions. Since singular regions cause serious stagnation of
learning, a learning method to avoid them was once proposed,
but was not guaranteed to find excellent solutions. Recently,
SSF1.2 was proposed which utilizes singular regions to stably
and successively find excellent solutions commensurate with
MLP(J). However, SSF1.2 has a problem that it takes longer as J
gets larger. This paper proposes a learning method SSF1.3 that
enhances SSF1.2 by attaching search pruning so as to discard
a search whose route is similar to one of previous searches.
Our experiments showed SSF1.3 ran several times faster than
SSF1.2 without degrading solution quality.

Index Terms—multilayer perceptron, learning method, sin-
gular region, reducibility mapping, search pruning

I. INTRODUCTION

In a parameter space of MLP(J), a multilayer perceptron
with J hidden units, there exist flat areas called singular
regions created by reducibility mapping [1], and such a
region causes stagnation of learning [2]. Hecht-Nielsen once
pointed out MLP parameter space is full of flat areas and
troughs [3], and recent experiments [4] revealed most points
have huge condition numbers (> 106).

Natural gradient [5] was once proposed to avoid singular
regions, but even the method may get stuck in singular
regions and is not guaranteed to find an excellent solution.

It is known that many useful statistical models, such as
MLP, GM, and HMM, are singular models having singular
regions. Intensive theoretical research has been done to clar-
ify mathematical features of singular models and especially
Watanabe has produced his own singular learning theory [6];
however, experimental research has been rather insufficient
so far to fully support the theories.

Recently a rather unusual learning method called SSF
(Singularity Stairs Following) [4], [7] was proposed for MLP
learning, which does not avoid but makes good use of singu-
lar regions of MLP search space. The latest version SSF1.2
[7] successively and stably finds excellent solutions, starting
with MLP(J=1) and then gradually increases J . When
increasing J , SSF1.2 utilizes the optimum of MLP(J−1)
to form two kinds of singular regions in MLP(J) parameter
space. Thus, SSF1.2 can monotonically improve the solution
quality along with the increase of J . The processing time
of SSF1.2, however, gets very long as J gets large due
to the increase of search routes. Moreover, it was observed
that many SSF runs converged into very limited number of
solutions, indicating the great potential for search pruning.
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This paper proposes a learning method called SSF1.3
which enhances SSF1.2 by attaching search pruning so as
to prune any search going through a route similar to one of
previous searches. Our experiments using artificial and real
data sets showed SSF1.3 ran several times faster than SSF1.2
without degrading solution quality.

II. SINGULAR REGIONS OF MULTILAYER PERCEPTRON

This section explains how the optimum of MLP(J−1) can
be used to form singular regions in MLP(J) parameter space
[2], [7]. Hereafter the boldface indicates a vector.

Consider MLP(J) having J hidden units and one output
unit. MLP(J) having parameters θJ outputs fJ (x; θJ) for
input vector x = (xk). Let x be K-dimensional.

fJ(x; θJ) = w0 +
J∑

j=1

wjzj , zj ≡ g(wT
j x) (1)

Here g(h) is an activation function and aT is the transpose
of a; θJ = {w0, wj ,wj , j = 1, · · · , J}, where wj = (wjk).

Given training data {(xµ, yµ), µ = 1, · · · , N}, we con-
sider finding θJ that minimizes the following error function.

EJ =
1
2

N∑
µ=1

(fµ
J − yµ)2, fµ

J ≡ fJ(xµ;θJ) (2)

Moreover we consider MLP(J−1) having J−1 hidden units
and one output unit. MLP(J−1) with parameters θJ−1 =
{u0, uj , uj , j = 2, · · · , J} outputs the following:

fJ−1(x; θJ−1) = u0 +
J∑

j=2

ujvj , vj ≡ g(uT
j x). (3)

The error function of MLP(J−1) is defined as follows.

EJ−1(θ) =
1
2

N∑
µ=1

(fµ
J−1 − yµ)2 (4)

Here fµ
J−1 ≡ fJ−1(xµ;θJ−1). Then, let θ̂J−1 =

{û0, ûj , ûj , j = 2, · · · , J} be the optimum of MLP(J−1).
Now we introduce the following reducibility mappings α,

β, γ, and let Θ̂
α

J , Θ̂
β

J , and Θ̂
γ

J denote the regions obtained
by applying these three mappings to the optimum θ̂J−1 of
MLP(J−1). Here let m = 2, · · · , J in the last mapping.

θ̂J−1
α−→ Θ̂

α

J , θ̂J−1
β−→ Θ̂

β

J , θ̂J−1
γ−→ Θ̂

γ

J (5)

Θ̂
α

J ≡ {θJ | w0 = û0, w1 = 0,

wj = ûj , wj = ûj , j =2, · · · , J} (6)

Θ̂
β

J ≡ {θJ | w0 + w1g(w10)= û0, w1 =[w10, 0, · · · , 0]T ,

wj = ûj , wj = ûj , j =2, · · · , J} (7)

Θ̂
γ

J ≡ {θJ | w0 = û0, w1 + wm = ûm, w1 =wm = ûm,

wj = ûj , wj = ûj , j ={2, · · · , J} \ {m}} (8)
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By checking the necessary conditions for the critical point
of MLP(J), we have the following result [7], which means
there are two kinds of singular regions Θ̂

αβ

J and Θ̂
γ

J in
MLP(J) parameter space.
(1) Region Θ̂

α

J is (K + 1)-dimensional since free vector w1

is (K + 1)-dimensional. In this region since w1 is free, the
output of the first hidden unit zµ

1 is free, which means the
necessary conditions do not always hold. Thus, Θ̂

α

J is not a
singular region in general.
(2) Region Θ̂

β

J is two-dimensional since all we have to do is
to satisfy w0+w1 g(w10) = û0. In this region zµ

1 (= g(w10))
is independent on µ; however, some necessary condition does
not hold in general unless w1 = 0. Thus, the following area
included in both Θ̂

α

J and Θ̂
β

J forms a singular region where
only w10 is free. The region is called Θ̂

αβ

J and reducibility
mapping from θ̂J−1 to Θ̂

αβ

J is called αβ.

w0 = û0, w1 = 0, w1 = [w10, 0, · · · , 0]T ,

wj = ûj , wj = ûj , j = 2, · · · , J (9)

(3) Region Θ̂
γ

J is a line since we have only to satisfy w1 +
wm = ûm. In this region all the necessary conditions hold
since zµ

1 = vµ
m. Namely, Θ̂

γ

J is a singular region. Here we
have a line since we only have the following restriction.

w1 + wm = ûm (10)

III. SINGULARITY STAIRS FOLLOWING

This section explains the framework of SSF (singularity
stairs following) [4], [7]. SSF is a search method which
makes good use of singular regions.

Here, we consider the following four technical points of
SSF. SSF1.2 [7] and the proposed SSF1.3 share the first three
points, but they are different in the last point.

The first point is on search areas; that is, SSF1.2 and 1.3
search whole two kinds of singular regions Θ̂

αβ

J and Θ̂
γ

J .
By searching the whole singular regions, SSF1.2 and 1.3
will find better solutions than SSF1.0 [4].

The second point is how to start search from singular
regions. Since a singular region is flat, any method based on
gradient cannot move. Thus, SSF1.0 employs weak weight
decay, distorting the original search space, while SSF1.2
and 1.3 employ the Hessian H(= ∂2E/∂w∂wT ). Figure 1
illustrates an initial point on the singular region. Since most
points in singular regions are saddles [2], we surely find a
descending path which corresponds to a negative eigen value
of H . That is, each negative eigen value of H is picked up,
and its eigen vector v and its negative −v are selected as
two search directions. The appropriate step length is decided
using line search [8]. After the first move, the search is
continued using a quasi-Newton called BPQ [9].

The third point is on the number of initial search points;
namely, SSF1.2 and 1.3 start search from singular regions in
a very selective way, while SSF1.0 tries many initial points
in a rather exhaustive way. As for region Θ̂

γ

J , SSF1.2 and 1.3
start from three initial points: a middle interpolation point, a
boundary point, and an extrapolation point. These correspond
to q = 0.5, 1.0, and 1.5 respectively in the following. Note
that the restriction eq. (10) is satisfied.

w1 = q ûm, wm = (1− q) ûm (11)

 

 

E

a starting point

Fig. 1. Conceptual diagram of a singular region.

On the other hand, SSF1.0 exhaustively tries many initial
points in the form of interpolation or extrapolation of eq.(10).
As for region Θ̂

αβ

J , SSF1.2 and 1.3 use only one initial point
in the region, while SSF1.0 does not search this region.

The final point is on search pruning, which is newly
introduced in SSF1.3; neither SSF1.0 nor SSF1.2 has such
feature. Our previous experiences on SSF indicated that
although we started many searches from singular regions, we
obtained only limited kinds of solutions. This means many
searches join together through their search processes. Thus,
we consider the search pruning described below will surely
accelerate the whole search.

Now our search pruning is described in detail. Let θ(t)

and φ(i) be a current search node and a previous search node
respectively. Here a search node means a search point to be
checked or recorded at certain intervals, say at every 100
moves. We introduce the following normalization of weights
in order to make the pruning effective. The normalization
will prevent large weight values from overly affecting the
similarity judging. Let d be a normalization vector.

dm ←

{
1/|θ(t−1)

m | (1 < |θ(t−1)
m |)

1 (|θ(t−1)
m | ≤ 1)

(12)

v(t) ← diag(d) θ(t) (13)

v(t−1) ← diag(d) θ(t−1) (14)

r(i) ← diag(d) φ(i), i = 1, · · · , I (15)

Here m = 1, · · · ,M , and M is the number of weights. I is
the number of previous search nodes stored in memory, and
diag(d) denotes a diagonal matrix whose diagonal elements
are d and the other elements are zero.

 r(i)

 v(t) r(i−1)

 l
 v(t−1)

 v(t−2)

 r(i−2)

 r(i−3)

 r(i−4)

Fig. 2. Conceptual diagram of search pruning.

Figure 2 illustrates a conceptual diagram of search prun-
ing. We consider previous line segment vectors from r(i−1)

to r(i) for i = 1, · · · , I and the current line segment
vector from v(t−1) to v(t). If the current line segment is
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close enough to any previous line segment, then the current
search is pruned at once. We define two difference vectors
∆r(i) ≡ r(i) − r(i−1), and ∆v(t) ≡ v(t) − v(t−1). Then
consider a segment vector perpendicular to both lines which
include the above difference vectors. The segment vector is
described as below.

` = (r(i−1) + a14r(i))− (v(t−1) + a24v(t)) (16)

Unknown variables a ≡ (a1, a2)T can be determined by
solving the following minimization problem.

min
a

`T ` (17)

The solution a can be written as below. Here b1 ≡ ‖4r(i)‖2,
b2 ≡ 4r(i)T4v(t), b3 ≡ ‖4v(t)‖2, b4 ≡ (r(i−1) −
v(t−1))T4r(i), b5 ≡ (r(i−1)−v(t−1))T4v(t).

a = − 1
b1b3 − b2

2

[
b3b4 − b2b5

b2b4 − b1b5

]
(18)

Both endpoints of the line segment ` are on two difference
vectors ∆r(i) and ∆v(t) if and only if the following
equations hold.

0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 1 (19)

If both of the above hold and each element `m of ` satisfies
`m < ε, then we consider the current search joins some
previous search, and prune it. Otherwise, we consider the
current search is different from any previous searches. In
our experiments we set ε = 0.3.

The procedure of SSF1.3 is described below, which is
much the same as that of SSF1.2. The only difference is
presence or absence of search pruning. SSF1.3 searches MLP
parameter spaces by ascending singularity stairs one by one,
beginning with J=1 and gradually increasing J until Jmax.
The optimal MLP(J=1) can be found just applying reducibil-
ity mapping αβ to the optimal MLP(J=0); MLP(J=0) is
a constant model. Step 1 embodies such search. Step 2-1
and step 2-2 search MLP(J+1) parameter space starting from
singular regions Θ̂

αβ

J+1, and Θ̂
γ

J+1 respectively. Here w
(J)
0 ,

w
(J)
j , and w

(J)
j denote weights of MLP(J).

SSF1.3 (Singularity Stairs Following, ver. 1.3):
(step 1) Initialize weights of MLP(J=1) using reducibility
mapping αβ:

w
(1)
0 ← ŵ

(0)
0 =y, w

(1)
1 ←0, w

(1)
1 ← [0, 0, · · · , 0]T .

Pick up each negative eigen value of the Hessian H and
select its eigen vector v and −v as two search directions.
Find the appropriate step length using line search. Then
perform MLP(J=1) learning with search pruning and keep
the best as ŵ

(1)
0 , ŵ

(1)
1 , and ŵ

(1)
1 . J ← 2.

(step 2) While J < Jmax, repeat the following to get the
optimal MLP(J+1) from the optimal MLP(J).
(step 2-1) Initialize weights of MLP(J+1) applying re-
ducibility mapping αβ to the optimal MLP(J):

w
(J+1)
j ← ŵ

(J)
j , j = 0, 1, · · · , J,

w
(J+1)
j ← ŵ

(J)
j , j = 1, · · · , J

w
(J+1)
J+1 = 0, w

(J+1)
J+1 ← [0, 0, · · · , 0]T .

Find the reasonable search directions and their appropriate
step lengths by using the procedure shown in step 1. Then
perform MLP(J+1) learning with search pruning and keep

the best as the best MLP(J+1) of αβ.
(step 2-2) If there are more than one hidden units in MLP(J),
repeat the following for each hidden unit m(= 1, · · · , J) to
split.
Initialize weights of MLP(J+1) using reducibility mapping
γ:

w
(J+1)
j ← ŵ

(J)
j , j ∈ {0, 1, · · · , J} \ {m},

w
(J+1)
j ← ŵ

(J)
j , j = 1, · · · , J

w
(J+1)
J+1 ← ŵ(J)

m .
Initialize w

(J+1)
m and w

(J+1)
J+1 three times as shown below

with q = 0.5, 1.0, and 1.5.
w

(J+1)
m = q ŵ

(J)
m , w

(J+1)
J+1 = (1−q) ŵ

(J)
m

For each of the above three, find the reasonable search
directions and their appropriate step lengths by using the
procedure shown in step 1. Then perform MLP(J+1) learning
with search pruning and keep the best as the best MLP(J+1)
of γ for m.
(step 2-3) Among the best MLP(J+1) of αβ and the best
MLP(J+1)s of γ for different m, select the true best and
let the weights be ŵ

(J+1)
0 , ŵ

(J+1)
j , ŵ

(J+1)
j , j = 1, · · · , J+1.

Then J ← J+1.

Now we claim the following, which will be evaluated in
our experiments.
(1) Compared with existing methods such as BP, quasi-
Newtons, SSF1.3 will find excellent solutions with much
higher probabilities.
(2) Excellent solutions will be obtained one after another for
J = 1, · · · , Jmax. SSF1.3 guarantees the monotonic improve-
ment of training solution quality, which is not guaranteed for
most existing methods.
(3) SSF1.3 will be faster than SSF1.0 or SSF1.2 due to the
search pruning. SSF1.3 will also be faster than most existing
methods if they are performed many times changing initial
weights.

IV. EXPERIMENTS

We evaluated the proposed SSF1.3 for sigmoidal and
polynomial MLPs using artificial and real data sets. We used
a PC with Intel Core i7-2600 (3.4GHz). Forward calculations
of sigmoidal and polynomial MLPs are shown in eq. (20) and
eq. (21) respectively.

f = w0 +
J∑

j=1

wjzj , zj = σ(wT
j x) (20)

f = w0 +
J∑

j=1

wjzj ,

zj =
K∏

k=1

(xk)wjk = exp(
K∑

k=1

wjk lnxk) (21)

For comparison, we employed batch BP and a quasi-Newton
called BPQ [9] as existing methods. The learning rate of
batch BP was adaptively determined using line search. BP
or BPQ was performed 100 times for each J changing initial
weights; i.e., wjk and wj were randomly selected from the
range [−1, +1] except w0 = y. SSF or BPQ stops when a
step length is less than 10−16 or the iteration exceeds 10,000.
For artificial data, generalization was evaluated using 1,000
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test data points independent of training data. For real data
10-fold cross-validation was used, and each xk and y were
normalized as xk/max(xk) and (y−y)/std(y) respectively.

Experiment of Sigmoidal MLP using Artificial Data 1
An artificial data set for sigmoidal MLP was generated

using MLP having the following weights. Values of each
input variable x1, x2, · · · , x10 were randomly selected from
the range [0, +1], while values of y were generated by adding
small Gaussian noise N (0, 0.052) to MLP outputs. Note that
five variables x6, · · · , x10 are irrelevant. The size of training
data was N = 1, 000, and Jmax was set to be 8.

(w0, w1, w2, w3, w4, w5, w6)
= (−6,−6,−5,−3, 2, 10, 9), (22)
(w1, w2, w3, w4,w5, w6)

=



−1 −1 1 −3 3 −6
0 7 −9 9 1 4
6 −5 8 −8 −8 3
−9 5 6 3 −4 5
−9 −1 7 −10 −6 −1

9 7 3 −7 −2 6
0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0


(23)

Table I shows the numbers of sigmoidal MLP search routes
of SSF1.2 and 1.3 for artificial data 1. For SSF1.3, initial
and final routes correspond to search routes before and after
search pruning respectively. For SSF1.3, the total numbers
of initial and final routes were 908 and 392 respectively,
meaning 56.8 % of initial routes were pruned on their ways.

TABLE I
NUMBERS OF SIGMOIDAL MLP SEARCH ROUTES FOR ARTIFICIAL

DATA 1

J SSF1.2 SSF1.3
initial routes final routes

1 5 5 5
2 29 29 21
3 65 65 48
4 83 83 44
5 122 122 49
6 161 165 76
7 195 200 80
8 245 239 69

total 905 908 392

Table II shows CPU time required by each method for
sigmoidal MLP using artificial data 1. SSF1.3 was 2.61 times
faster than SSF1.2 owing to search pruning. SSF1.3 finished
search the fastest among the four.

Figure 3 shows how training and test errors changed along
with the increase of J . BP stopped decreasing at J = 5, while
SSF and BPQ monotonically decreased training error. As for
test error, BP selected J = 7 as the best model, while SSF
and BPQ indicated J = 6 is the best, which is correct.

Figure 4 compares histograms of BPQ and SSF1.3 solu-
tions for MLP(J=6). BPQ found the excellent solution only
once out of 100 runs, while SSF1.3 found it eight times out
of 97 search routes. Moreover, BPQ solutions are widely
scattered, while SSF1.3 solutions are densely located around

TABLE II
CPU TIME FOR SIGMOIDAL MLP USING ARTIFICIAL DATA 1

(HR:MIN:SEC)

J batch BP BPQ SSF1.2 SSF1.3
1 00:04:39 00:00:04 00:00:00 00:00:01
2 00:06:35 00:00:11 00:00:09 00:00:08
3 00:08:38 00:01:54 00:02:13 00:00:39
4 00:11:19 00:06:40 00:05:43 00:01:08
5 00:13:34 00:10:01 00:08:14 00:02:39
6 00:15:08 00:14:18 00:14:29 00:08:43
7 00:17:13 00:18:02 00:34:07 00:13:21
8 00:18:59 00:21:26 00:58:34 00:20:38

total 01:36:05 01:12:36 02:03:29 00:47:16
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Fig. 3. Training and test errors of sigmoidal MLP for artificial data 1

the excellent solution. The tendencies that SSF1.3 finds
excellent solutions with much higher probability and SSF1.3
solutions are more densely located close to an excellent
solution were observed in other experiments, which are
omitted due to space limitation.
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Fig. 4. Histograms of sigmoidal MLP(J=6) solutions for artificial data 1.

Experiment of Polynomial MLP using Artificial Data 2
Here we consider the following multivariate polynomial.

Values of x1, · · · , x15 were randomly selected from [0, +1],
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while values of y were generated by adding small Gaus-
sian noise N (0, 0.052) to MLP outputs. Here five variables
x11, · · · , x15 are irrelevant. The size of training data was
N = 1, 000. Jmax was set to be 8.

y = 3− 50x3
1x

4
2 − 28x9

2x
6
3 − 23x10

4 x10
5 x5

6 − 18x4
7x

4
8

−12x6
8x

10
9 + 36x10 (24)

Table III shows the numbers of sigmoidal MLP search
routes of SSF1.2 and 1.3 for artificial data 2. For SSF1.3, the
total numbers of initial and final routes were 1432 and 610
respectively, meaning 57.4 % of initial routes were pruned
on their ways.

TABLE III
NUMBERS OF POLYNOMIAL MLP SEARCH ROUTES FOR ARTIFICIAL

DATA 2

J SSF1.2 SSF1.3
initial routes final routes

1 14 14 13
2 47 47 10
3 93 103 41
4 159 146 59
5 210 194 81
6 261 265 97
7 324 274 108
8 386 389 201

total 1494 1432 610

Table IV shows CPU time required by each method for
sigmoidal MLP using artificial data 2. SSF1.3 was 2.37 times
faster than SSF1.2 owing to search pruning. SSF1.3 finished
search the fastest among the four.

TABLE IV
CPU TIME FOR POLYNOMIAL MLP USING ARTIFICIAL DATA 2

(HR:MIN:SEC)

J batch BP BPQ SSF1.2 SSF1.3
1 00:03:34 00:02:46 00:00:05 00:00:03
2 00:04:18 00:02:18 00:01:09 00:00:10
3 00:05:20 00:03:01 00:00:59 00:00:40
4 00:06:24 00:03:23 00:03:18 00:01:59
5 00:07:24 00:05:17 00:08:27 00:04:02
6 00:07:28 00:05:38 00:13:13 00:03:55
7 00:08:16 00:06:48 00:21:28 00:08:10
8 00:08:43 00:07:03 00:20:51 00:10:21

total 00:51:27 00:36:15 01:09:32 00:29:22

Figure 5 shows how training and test errors changed
when J was increased. BP could not decrease training error
efficiently, while SSF and BPQ monotonically decreased at a
steady pace. Specifically, SSF outperformed BPQ at J=6. As
for test error, BP stayed at the same level, and BPQ reached
the bottom at J = 5 and 6, and rose sharply for J ≥ 7,
while SSF1.3 showed a steady move and indicated J = 6 is
the best model, which is correct.

Experiment of Sigmoidal MLP using Real Data
As real data for sigmoidal MLP we used concrete com-

pressive strength data from UCI ML repository. The number
of input variables is 8, and the data size is N = 1, 030. From
our preliminary experiment, Jmax was set to be 18.

Table V shows the numbers of sigmoidal MLP search
routes of SSF1.2 and 1.3 for concrete data. For SSF1.3, the
total numbers of initial and final routes were 5523 and 981
respectively, meaning 82.2 % of initial routes were pruned
on their ways.
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Fig. 5. Training and test errors of polynomial MLP for artificial data 2

TABLE V
NUMBERS OF SIGMOIDAL MLP SEARCH ROUTES USING CONCRETE

DATA

J SSF1.2 SSF1.3
initial routes final routes

1 6 6 6
2 30 30 9
3 62 51 14
4 101 87 24
5 107 103 36
6 145 139 44
7 226 176 40
8 209 223 49
9 211 275 75
10 329 422 75
11 300 329 64
12 377 411 84
13 332 484 88
14 340 547 89
15 665 429 68
16 467 692 68
17 612 500 75
18 476 619 73

total 4995 5523 981

Table VI shows CPU time required by each method for
sigmoidal MLP using concrete data. SSF1.3 was 4.06 times
faster than SSF1.2 owing to search pruning. Again, SSF1.3
finished search the fastest among the four.

Figure 6 shows how training and test errors changed along
with the increase of J . BP could not decrease training error
efficiently for J ≥ 6, while SSF and BPQ monotonically
decreased training error at a steady pace. As for test error,
BP stayed at a poor level, and BPQ fluctuated very widely
for J > 16, while SSF showed a steady move and SSF1.3
indicated J = 16 as the best model, but SSF1.2 showed a
monotonic tendency in this range of J .
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TABLE VI
CPU TIME FOR SIGMOIDAL MLP USING CONCRETE DATA (HR:MIN:SEC)

J batch BP BPQ SSF1.2 SSF1.3
1 00:05:40 00:00:05 00:00:00 00:00:01
2 00:07:14 00:07:40 00:02:01 00:00:23
3 00:09:25 00:10:22 00:06:06 00:01:34
4 00:12:33 00:13:38 00:09:00 00:03:53
5 00:14:59 00:16:27 00:16:11 00:06:22
6 00:16:48 00:18:39 00:25:17 00:08:51
7 00:19:04 00:21:28 00:45:15 00:10:10
8 00:21:07 00:23:56 00:46:36 00:15:05
9 00:23:46 00:26:47 00:52:35 00:23:12
10 00:16:18 00:20:17 01:02:19 00:19:01
11 00:18:39 00:23:16 01:03:56 00:18:13
12 00:20:49 00:26:10 01:31:29 00:27:22
13 00:23:08 00:29:18 01:30:04 00:32:26
14 00:25:13 00:32:10 01:42:01 00:37:02
15 00:27:31 00:35:11 03:40:07 00:30:21
16 00:22:53 00:31:52 02:19:24 00:28:05
17 00:24:17 00:34:22 03:17:28 00:31:36
18 00:24:16 00:34:55 02:39:15 00:34:01

total 05:33:37 06:46:31 22:09:05 05:27:35
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Fig. 6. Training and test errors of sigmoidal MLP for concrete data

V. CONCLUSION

This paper proposed a new MLP learning method called
SSF1.3, which makes good use of the whole singular re-
gions and has the search pruning feature. Beginning with
MLP(J=1) it gradually increases J one by one to successively
and stably find excellent solutions for each J. Compared with
existing methods such as BP or a quasi-Newton method,
SSF1.3 successively and more stably found excellent solu-
tions commensurate with each J. In the future we plan to
apply our method to model selection for singular models
since successive excellent solutions for each J and learning
processes can be used for such model selection.
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