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Abstract— The theory and methods for the Bayesian Interim 

Analysis for Clinical Trials are motivators for this 
presentation. Introductions to the Bayesian statistics, Bayesian 
Inference, and interim analysis for clinical trials are provided, 
along with detailed discussion of the theory.  Practical 
examples of the Bayesian interim analysis for clinical trials are 
provided to illustrate the methods. The Bayesian predictive 
probability approach, Interval estimation approach and 
posterior distribution summary approach on the Normal and 
Binomial distributed data are also discussed. Bayesian 
inference simulations were performed. Discussions are 
provided to the FDA’s guidance and opinion on Bayesian 
analysis, as well as FDA’s approval history on Bayesian 
analyzed clinical trials.  
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I. AN OVERVIEW OF THE BAYESIAN APPROACH 

 
UPPOSING that we are interested in estimating θ from a 
data set: X={x1 ,…,xn}. Bayes theorem provides a 

solution by using a well-known rule about conditional 
probabilities:    

 
 
                     (1) 
 
Overall, Bayesian inference is based on the posterior 

distribution of the parameter P(θ|X). However, in order to 
derive the posterior distribution, we need to specify the prior 
distribution, P(θ) – the distribution of θ, we also need to 
determine the likelihood function P(X|θ) from the data 
observed. From formula (1), one can see that the P(θ|X) is 
proportional to (i.e. has the same shape as) the product of 
the likelihood function and the prior distribution of the data:  

 
P(θ|X)~P(X|θ)P(θ)               (2) 
 

Having derived the posterior distribution P(θ|X), in 
Bayesian analysis all further inferences about θ will be 
derived from that distribution. This includes calculations of 
location parameters including the posterior mean, median, 
mode, or percentiles, among other parameters.  
 

II. SEQUENTIAL USE OF BAYES THEOREM 
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Now suppose that we decide to observe data in two or 
more segments, Xm followed by Xn. After the first segment 
is observed, our posterior distribution is given by:  

P(θ| Xm)~P(Xm|θ) P(θ). 
This posterior distribution then becomes the prior 

distribution for the next use of Bayes theorem. Then, after 
the next segment Xn is observed, the posterior conditioning 
on all the data is:  

P(θ| Xm, Xn ) ~ P(Xn |θ, Xm) P( θ|Xm) 
   ~ P(Xn |θ, Xm) P(Xm|θ)P(θ) 

This result can also be derived by considering a single step 
with the datasets (Xm, Xn), by factoring  

P(Xn, Xm|θ) = P(Xn |θ, Xm) P(Xm|θ).  
Usually, the distribution of P(Xn |θ, Xm) is equal to the 

distribution of P(Xn |θ), so this equivalence will lead to the 
same posterior distribution. 

 
A. Normally Distributed Data 
 

For a single-arm study design, we take a sufficient 
number of independent observations such that x|θ ~N(θ,σ2) 
where σ is known. In these circumstances:  
 

 
 

In this normally distributed data pool, the prior 
distribution of the data is θ ~N(μ0, σ0

2). That is: 
 
 
 

By formula (2), the posterior distribution P(θ|X) ~ 
 

 
                       (3)   

   
 
It is apparent P(θ|x) ~N(μ1, σ1

2). There are several aspects 
about this analysis that should be noted. Most importantly, 
Bayesian analysis of normal distributions is an example of 
conjugate analysis. Conjugate models occur when the 
posterior distribution is of the same family as the prior 
distribution. 

 
In this case, a normally distributed prior and likelihood of 

the data leads to a posterior distribution that is also normal. 
From formula (3), one can also see that the posterior mean 
is a weighted average of the prior mean and the data mean. 
Thus, posterior precision is greater than prior precision. 

 
B. Binomial Distributed Data 
 

For this type of endpoint, we again use a single armed 
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study with independent observations as an example. Data is 
obtained from n subjects, where the number of responders X 
has a Binomial (n, θ) distribution. In this case, θ is the 
parameter of response rate and: 

 
 
 

  In this case, we assume the prior distribution of  
θ is Beta(a, b), that means: 
 
 

 
By formula (2), the posterior then becomes θ|X ~ 

Beta(a+x, b+n-x), where the P(θ|X) ~  
 

 
 
 

It is important to note that, as with the normal 
distribution, the binomial distribution in this analysis is 
another example of conjugate analysis. 

 
As an example, let us take a study design where there are 

20 subjects in Stage 1 of the study, and another 20 subjects 
in Stage 2. 

 
In Stage 1, it is found that there are 4 responders out of 

20 subjects (20%). In this case specified here, the prior 
distribution is Beta(1,1) for response rate θ. Thus, the 
posterior at Stage 1 becomes:   
θ|x ~ Beta (1+4, 1+20-4) = Beta(5,17) 
 
In Stage 2, it is then found that there are 5 responders in 

the additional 20 subjects (25%). We can take the prior 
distribution in this case to be the posterior we derived from 
the Stage 1 data, which was θ~Beta (5, 17). Now, 
incorporating the data from Stage 2, we find that the final 
posterior of θ:  
θ|x ~ Beta (5+5, 17+20-5) = Beta(10,32). 
 
This is the same result as would have been obtained from 

a full data analysis, rather than the separate stage 
calculations as has been used above. In that case, the prior 
distribution remains: θ ~ Beta (1,1). Then, taking the full 
data into account (Stage 1 & Stage 2), we find that there are 
9 responses out of 40 subjects leading to a posterior of:  

Beta(1+9, 1+40-9)=Beta(10,32) 
 

C. Poisson Distributed Data 
 

The probability of a given number of events occurring in 
a fixed interval of time can often be modeled by the Poisson 
distribution, such that: 

 
 

In this case, the prior distribution is usually taken to be θ~ 
Gamma(a, b) such that: 

 
 

 

Again by applying formula (2), the posterior distribution 
becomes  

 
 
 
That means θ|X ~ Gamma (a+t, b+n), where t=Σ(xi). 
 

III. BAYESIAN ANALYSIS ON CLINICAL TRIAL DATA 
 
A. Decision making in Bayesian Frameworks 

 
Bayesian analysis can answer many questions that 

scientists may ask about drug candidates at the end of the 
first efficacy study in order to help them decide on how to 
develop the drug further. For example, it can determine the 
probability that the treatment effect observed was a false 
positive. It also provides an answer to perhaps the most 
important question in clinical studies: What is the 
probability that the drug works given the evidence that have 
been collected so far? The common Bayesian analytical 
methods applied in clinical trial data are posterior 
distribution summaries, interval estimation and predictive 
probability approach. 

 
B. Frequentist vs. Bayesian Approach 
 

Bayesian statistics is gaining more ground in the area of 
clinical trials. In clinical trial regulation the frequentist view 
continues to dominate, however there are areas (e.g. the 
regulation of medical devices) where the Bayesian approach 
is being applied. The following diagram illustrates the 
processes of analyzing the clinical data by these two 
approaches. 

 

 
 

Figure 1 Diagram illustrates the processes of analyzing the clinical data by 
Frequentist and Bayesian approaches. 
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C. Posterior Distribution Summaries 

Both the posterior mean and the posterior mode can be 
determined through analysis and together they provide 
insight into the observed data. 

  
Posterior mean: In general, the posterior mean is a 

compromise between the prior distribution and the observed 
data, and is calculated as: 

E(θ|x)=∫θP(θ|x)dθ       (4) 

As in the binary data example that was shown presented, 
as we know that for Beta (a, b), the mean E(X) =a/(a+b). 
Hence, the posterior mean of Beta (10,32) is 10/42. 

 
Posterior mode: In general, the posterior mode represents 

the ‘most likely’ posterior value given the prior distribution. 
As in the same binary data example, we know that for X~ 
Beta (a, b), if a, b > 1, the mode can be calculated as: 

 
 

 
Hence, the posterior mode of  Beta  (10,32) is 9/40 

 
D. Interval Estimation Approach 
 

Credible intervals are used for purposes similar to those 
of confidence intervals in frequentist statistics. The 
difference between the two is shown below. 

 
Confidence intervals: P(a(x)< θ<b(x)| θ)=1-α, 
x is the random variable and θ is unknown 

 
Credible intervals: P(a(x)< θ <b(x)| x)=1-α, 
θ is the random variable given the data x 

 
The Bayesian Credible Interval represents a posterior 

probability interval that can be used for interval estimation. 
 
For example, if the posterior probability that θ lies in an 

interval is 0.95, then the interval found is called a 95% 
credible interval. This interval would thus be the interval of 
θ between the 2.5th and 97.5th percentiles of the 
distribution. 
 
E. Predictive Probability Approach 

 
This approach can be used to predict a future i.i.d. data 

point      on the basis of a currently observed i.i.d. data x.  
 
In this approach, the prior predictive distribution of x is:  
 
                   (5) 
Therefore, the posterior predictive distribution of      will 

be: 
 

                    (6) 
Usually      and x are conditionally independent given θ. 

That means 

                      (7) 
 
Combining (6) and (7) we have 
 
                    (8) 
 
Provided we can do this integration in (8), prediction 

becomes straightforward.  
 

IV. INTERIM ANALYSIS FOR CLINICAL TRIALS 
 

A. Normally Distributed Data  
 

Assuming the analysis will be performed on the normally 
distributed endpoint, to perform these studies, n pairs of 
subjects are enrolled with two possible treatments. We call 
the estimated treatment difference      while the true 
treatment difference is θ. 

 
Independent observations are then taken such that 

    |θ ~N(θ,σ2/n),  
 

where σ is known.  In this case, the prior distribution is 
taken to be: 

    θ ~N(μ0, σ0
2),  

 
where σ0

2= σ2/n0 and n0 reflects the precision of the prior 
information about the difference. 

 
The posterior distribution is thus found to be: 

 
For these studies, we use the decision rule that the 

experimental treatment is clinically superior if:  
 

 
and the control treatment is clinically superior if: 

 
 

 
The trial will thus be stopped if either: 

 
 

          

Or 

 

 

 

The stopping rules is illustrated in the following Figure 2. 
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Figure 2  Stop Criterion for two-treatment trial based on the current 
posterior distribution:  stop the trial if  PC < εc or  PE < εE 

 

 
In 1989, L. Freedman[1] showed that depending on the 

precision of the prior information (n0), Bayes’ boundaries 
tended to converge at a rate somewhat between the 
Pocock[2] scheme and O'Brien and Fleming (OBF)[3] scheme 
as is shown below Figure 3. 

 

 
 
Figure 3 Stopping boundaries from Bayes, Pocock and O'Brien and 
Fleming (OBF) schemes. Stopping rule: |z|>Z for Pocock and OBF scheme 
and Bayes scheme with n0=22 in a trial with 200 patients 

 
B. Binomial Distributed Data – By Example  

 
For this example, the study design will be a two period 

cross over design where patients are randomized to one of 
two treatment sequences, either Treatment x followed by 
Treatment y (xy), or Treatment y followed by Treatment x 
(yx). 

 
The endpoint will be the proportion of patients achieving 

clinical response (CR/PR), which is also known as the 
Response Rate. Our H0 is therefore that there is no 
difference between the study medication and placebo in 
response rate.  

 

The procedure to be followed in conducting this Bayesian 
interim analysis is shown in Figure 4: 
 

 
 

Figure 4 The procedure in conducting Bayesian interim analysis (example) 

 
 
Let us suppose that that in Stage 1, we observed x1 

successes out of the nx1 subjects on Treatment x such that  
x1~Binomial(θ_x1, nx1)   and y1 successes out of ny1 
subjects on Treatment y such that    y1~Binomial(θ_y1, ny1) 

 
The procedure for a 2-stage design is as follows: 

 
1)  Find the Beta Prior: We can find the best Beta prior from 

previous studies by specifying the most likely value and 
extremes (quintiles) for the response rate. 

 
2) Compute the posterior distributions: This is determined 

for each treatment group (x & y), based on the observed 
data and the prior distribution:  θ ~Beta(Best_a, Best_b) 

 
Thus, for treatment x: 

    θ_x1 ~ Beta(Best_a+x1, Best_b+nx1-x1)  (9) 
Similarly, for treatment y: 

θ_y1 ~ Beta(Best_a+y1, Best_b+ny1-y1)  (10) 
 

3)  Take a random sample of response rate based on the 
previously calculated posterior distributions: For each 
treatment arm response rate (θ_x1, θ_y1), a sample is 
generated based on the previously calculated posterior 
distributions illustrated in formula (9) and (10). 
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As an example the following Figure 5 illustrates the 
best Beta prior, the likelihood and the posterior. 

 
Figure 5 Prior, Likelihood and Posterior for Treatment X and Y: Best 
Prior Beta(52.2,9.5), Data in treatment X~Binom(50, 39), Posterior 
X~Beta(91.2, 20.5), Data in treatment Y~Binom(45, 30), Posterior 
Y~Beta(82.2, 24.5) 

 
4) Simulate the number of responders in stage 2 for each 

treatment group (x2, y2): Suppose that there are nx2 and 
ny2 subjects on treatment groups x and y at this stage. 
Here we assume that the response rate will be the same 
as in stage 1, i.e. (θ_x1, θ_y1). In this case, it can be 
simulated that: 

 
x2~BINOM(nx2, θ_x1) 
y2~BINOM(ny2,θ_y1) 

 
5)  Calculate totals across both stages: Both the number of 

responders and the total number of subjects in each 
group across the 2 stages are determined.  
Respectively, these are: 
 

x = x1+x2 
y = y1+y2 

Nx =  nx1+nx2 
Ny =  ny1+ny2 

 
6)  Simulate total response rates: This will be performed on 

each arm of from the posterior distributions (θ|X) and 
(θ|Y) with all subjects.  
 
In this case, the experimental Treatment x can be 
considered superior to reference Treatment y if ≥ 95% 
of the predictive distributions lead to a relative risk> 1. 
 
Here, we are assuming that the posterior distributions 
in both stages are the same. A sample R software code 
could be read as: 
 

postRX <- rbeta(10000, a+x, b+Nx-x) 

postRY <- rbeta(10000, a+y, b+Ny-y) 
Relative_risk=postRX/postRY 

 
7)  Repeat steps (3) to (6) (e.g. 1,000 times): This is done in 

to obtain the predictive probability of success (i.e. how 
often we can declare that the trial was a ‘success’). 
 

If there is at least a 90% probability of a successful trial 
outcome for Treatment x being superior to Treatment y, 
then the trial is stopped at the interim analysis with the 
conclusion that Treatment x is superior in efficacy. 

 
Conversely, if there is a lower than 10% probability of a 

successful trial, then the trial is terminated early with the 
conclusion that further trials would be futile. 

 
If, however, the treatment’s efficacy is not demonstrated 

but also not shown to be futile (i.e. the predictive probability 
is between 10% and 90%), then the study is continued in 
order to collect more data for next stage. 

 
V. SIMULATION FOR BAYESIAN INFERENCE 

 
The Bayesian approach can, in theory, deal with 

realistically complex situations. Despite this, there are some 
non-standard posterior distributions that are mathematically 
intractable or computationally too intensive to be easily 
solved. 

 
In these cases, posterior information can be obtained from 

looking at a set of values that are drawn from the posterior 
distribution, rather than ascertaining the precise 
mathematical equation that describes the distribution. 

 
For example, a technique known as the Markov Chain 

Monte Carlo (MCMC) method can be used to draw samples 
from the posterior distribution. Therefore, results from this 
method can be used to find the posterior distribution 
empirically. 

 
This method focuses on producing a Markov chain in 

which the distribution for the next simulated value 
(θ(j+1),ψ(j+1)) depends only on the currently specified value 
(θ(j),ψ(j)). Thus, under broad conditions, the samples will 
eventually converge into an ‘equilibrium distribution’. 
 

The MCMC method can be performed via WinBUGS; 
however, this program has a number of pros and cons. In its 
favor, it has both built-in graphics and convergence 
diagnostics as well as a flexible model specification. In 
contrast though, it is a ‘stand-alone’ program. This means 
that it is not very user friendly and also assumes that users 
are already skilled at Bayesian analyses (they must know 
how to choose the prior distribution and likelihood, check 
the fit of their model, and check convergence). 

 
In addition to this specific program, though, the MCMC 

simulations can also be carried out using R or S+ software 
as well. 
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VI. FDA GUIDANCE ON BAYESIAN ANALYSIS 

 
A. Guidance from the FDA 

 
The FDA has laid out its guidance for how to use Bayesian 
analysis in the following article: 
 
Guidance for the Use of Bayesian Statistics in Medical 
Device Clinical Trials – FDA CDRH Feb. 5 2010 

 
In addition, Dr. Greg Campbell, who is the Director of 

Biostatistics at the CDRH has provided his opinion on these 
analysis[4]. In his view, Bayesian studies should be: 

 
1) Prospectively designed 

 
2) Restricted to studies that can utilize good data-based prior 

information. 
 

3) Guided by an agreement between companies and the 
FDA with regard to the validity of its prior information. 

 
4) Conducted such that the control group cannot be used as 

a source of prior information. 
 

In addition, simulations are extremely important to any 
Bayesian study in order for it to be approved by the FDA. 

 
More specifically, numerous simulations must be 

conducted to show that Type 1 errors (or some analog of 
them) are well-controlled. This is perhaps the key to FDA 
approval! 

 
Also, simulations need to be conducted in order to help in 

estimating the approximate size of the trial and the strategy 
of interim looks. This is needed because usually Bayesian 
studies are not a fixed size. 

 
B. FDA Approval History  
 

Despite these challenges, there have been at least 15 
original PMAs and PMA Supplements that the FDA has 
approved with a Bayesian analysis as its primary method. 
These supplements are varied and include numerous stent 
systems, a heart valve, and a number of spinal cage systems. 

 
REFERENCES 

[1] Laurence S. Freedman, David J. Spiegelhalter, “Comparison of 
Bayesian with group sequential methods for monitoring clinical trials” 
Controlled Clinical Trials, Volume 10, Issue 4, December 1989, Pages 
357–367. 

[2] Pocock SJ (1977). Group sequential methods in the design and 
analysis of clinical trials. Biometrika, 64, 191-99. 

[3] O’Brien PC, Fleming TR (1979). A multiple testing procedure for 
clinical trials. Biometrics, 35, 549-56. 

[4] Gregory Campbell, “Bayesian and “Small n” Trials”, Public 
Workshop on Pediatric Cardiovascular Devices September 30. 2010. 

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013




