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Simultaneous Plant and Controller Optimization
Based on Non-smooth Techniques

Ngoc Minh Dao, and Dominikus Noll

Abstract—We present an approach to simultaneous design Here standard choices ¢ || include theH.-norm || - ||,
optimization of a plant and its controller. This is based on a the Hy-norm || - |2, or the Hankel norm| - ||z which is

bundling technique for solving non-smooth optimization prob-  giscyssed in more detail in the sections Il and VI. Solving
lems under nonlinear and linear constraints. In the absence of

convexity, a substitute for the convex cutting plane mechanism (1) leads to non-smooth optimization problems.

is proposed. The method is illustrated on a problem of steady

flow in a graph and in robust feedback control design of a Il. A PROXIMITY CONTROL ALGORITHM

mass-spring-damper system. Bundle methods are currently among the most effective ap-
Index Terms—Robust control, Hankel norm, system with proachs to solve non-smooth optimization problems. In these

tunable parameters, nonlinear optimization, steady flow. methods, subgradients from past iterations are accumulated
in a bundle, and a trial step is obtained by a quadratic tangent
I. INTRODUCTION program based on information stored in the bundle. In the

N modern control system, desirable closed-loop charaR2Sence of convexity, tangent planes can no longer be used

teristics include stability, speed, accuracy, and robustnéss Cutting planes, and a substitute has to be found. A so-
and depend on both structural and control specificatioffflisticated management of the proximity control mechanism
Traditionally, structural design with its drive elements prdS @IS0 required to obtain a satisfactory convergence theory.

cedes and is disconnected from controller synthesis, whidfg Will show in which way these elements can be assembled

may result in a sub-optimal system. In contrast, optimizin§t® & successful algorithm.
plant structure and controller simultaneously may lead to aFor the purpose of solving the problem (1), we present here

truly optimal solution. We therefore propose design methodd10n-smooth algorithm for general constrained optimization
which allow to optimize various elements such as systeRfograms of the form

structure, actuators, sensors, and the controller simultane- minimize  f(x)
ously. subject to ¢(x) <0 (2)
Here we focus on simultaneous optimization of certain Ax <b

plant and controller parameters to achieve the best per;gﬁ

mance for a closed-loop system with constraints. This le erex € R" is the decision variable, and and c are
: p system Lo 8tentially non-smooth and non-convex, and where the linear
to a complex nonlinear optimization problem involving non=

I ) ) nstraints are gathered ix < b and handled directly.
smooth and non-convex objectives and constraints. SunaBP 9 > y

N ) xpanding on an idea in [15, Section 2.2.2], we use a
optimization methods are discussed to address such prBPdgress function at the current iterate

lems.
Consider a stable LTI state-space control system F(-,x) = max{f(-) — f(x) —ve(x)4,c(-) —e(x)+},
dx = Ax + Bu where ¢(x)4 = max{c(x),0}, andv > 0 is a fixed
G: y = Cz + Du parameter. It is easy to see thé{x,x) = 0, where either

the left branchf(-) — f(x) — ve(x)4 or the right branch
where dz representsi(t) for continuous-time systems andc(-) — c(x), in the expression of’(-, x) is active atx, i.e.,
x(t + 1) for discrete-time systems, and wherec R"* is attains the maximum, depending on whetkas feasible for
the state vector, € R™ the control input vector, angle R?  the non-linear constraint or not.
the output vector. Our interest is the case in which systemSetting P = {x € R" : Ax < b}, it follows from [16,
G is placed in a control system containing actuators, sensdiseorem 6.46] that the normal cone fat x is given by
and a feedback controllek’, and matricesd, B, C, D and
controller K depend smoothly on a design parameter Np(x) ={ATn:n>0,n" (Ax = b) = 0}.
varying inR™ or in some constrained subset®f. Denoting We remark therefore that ik* is a local minimum of
by T,—.(x) the closed-loop performance channel— z, program (2), it is also a local minimum df(-,x*) on P,

this brings to the optimization program and then0 € 9, F(x*,x*) + ATn* for some multiplier
minimize || To_s. (%) n* > 0 with n*T(Ax* —b) = 0. The symbold; here
subject to x S?Ri 1) stands for the Clarke subdifferential with respect to the

first variable. Indeed, ik* is a local minimum of (2) then

K = K(x) assures closed-loop stability ) X
c(x*) € 0, Ax* < b, and so fory in a neighborhood ok*
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This implies thatx* is a local minimum ofF’(-,x*) on P, Theorem 1: Supposef andc in program (2) are lower-
and therefore) € 9, F(x*,x*) + Np(x*). We now present C* functions such that the following conditions hold:

the following algorithm for computing solutions of program (a) f is weakly coercive on constraint s@t= {x € R" :

(2). c(x) < 0,Ax < b}, i.e., if x7 € Q, x| — oo, then
f(x7) is not monotonically decreasing.

(b) cis weakly coercive orP, i.e., if xI € P, ||x?|| — oo,

Parameters: 0 <7 <7 <1,0<y<I'<1,0<g < oo, thenc(x’) is not monotonically decreasing.
0<c<oo,qg<T < o0.

1: Initialize outer loop. Choose initial iteratex! with

Ax! < b and matrixQ;, = Q{ with —q¢I < Q; < ql.
Initialize memory element! such thatQ, + 771 - 0.

Algorithm 1 . Proximity control with downshift

Then the sequence of serious iteratdsc P generated by
Algorithm 1 is bounded, and every accumulation patrit
of thex’ satisfiesx* € P and0 € 9, F(x*,x*) + ATn* for
PULj — 1. some multipliern* > 0 with n* T (Ax* — b) = 0. O
2. Stopping test. At outer loop counterj, stop the algo- An immediate consequence of Theorem 1 is the following
fithm if 0 € 9, F(x7, x7)+ AT 1/, for a multiplierr? > 0 CoroIIary 2: U.nder the hypotheses of thg theqrem, every
with 77T (Ax? — b) = 0. Otherwise, goto inner loop. accumulation pglnt of Fhe .sequencg_of serious iterates gen-
3: Initialize inner loop. Put inner loop countet = 1 and erated by Algorithm 1 is either a critical point of constraint

initialize 7, = Tji_i_ Build initial working model violation, or a Karush-Kuhn-Tucker point of program (2).
] . , _ _ Proof: Supposex* is an accumulation point of the
Fi(,x7) = go; (- =% ) + 5(- —x7)TQ;(- — x7), sequence of serious iterates generated by Algorithm 1. Ac-

cording to Theorem 1 we havkee 0, F(x*,x*) + Np(x*).
By using [4, Proposition 9] (see also [5, Proposition 2.3.12]),
there exist constantsy, A\; such that

wheregg; € 0;F(x7,x7).
4: Trial step generation. At inner loop counterk find
solutiony” of the tangent program

minimize  Fi(y,x’/) + Z[ly — x/|? 0 € Mdf(x") + A\ 0c(x™) + Np(x™),
subjectto Ay < b,y € R". Mo =0,M 20, Ao+ A = 1.
5. Acceptance testlf
ki If c¢(x*) > 0 then 0, F(x*,x*) = 9c¢(x*), and therefore
F(yik’x_) > A, 0 € dc(x*) + Np(x*), which means thak* is a critical
Fi(y X]) point of constraint violation. In the case ofx*) <0, if x*
step 8. Otherwise (null step), continue inner loop witgqual0, and so0 € 8C( )+ Np(x*). We obtain thatc”
step 6. is either a critical point of constraint violation, or a Karush-
6: Update working model. Generate a cutting planeuhn-Tucker point of program (2). u
mi(-,x7) = a4 g (-—x7) at null stepy” and counter ~ In the absence of convexity, proving convergence to a

k usmg downshifted tangents Compute aggregate p|aﬁ@g|e Karush-Kuhn-Tucker pOInt is generally out of reach
mi(-,x)) = al +g; (._XJ) aty®, and then build new but the following result gives nonetheless a satisfactory

Pk =

working modelFy 41 (-, x7). answer for stopping of the algorithm.
7: Update proximity control parameter. Compute sec- Corollary 3: Under the hypotheses of the theorem, for
ondary control parameter everye > 0 there exists an indeyy(¢) € N such that for

everyj > jo(e), x/ is within e-distance of the sef of

k i
5 = Fen(y”,x') critical pointsx* in the sense of the theorem.

—
Fi(y*,x7) Proof: By the fact that our algorithm assures always
and put xJ — x/t1 = 0 and Ostrowski's theorem [14, Theorem
e if pr <7, 26.1], the set of limit pointZ of the sequence’ is either
Tht1 = o0 if pr = 7. singleton or a compact continuum. Our construction then

assures convergence »f to the limiting setL in the sense

Increase inner loop countérand loop back to step 4. f the Hausdorff distance. See [11] for the details. m
8: Update (); and memory element.UpdateQ); — Q11

respecting; 11 = @/, and—gl < Q;1 < ¢I. Then

store new memory element 11l. HANKEL NORM
AT it pr <T, Given a stable LTI system
U S it e =T
& = Az + Bw
Increaser 41 If necessary to ensui@; 1 + 7 J+1I = 0. G: Y — O
If 7% 1 > T then re- setr’iJrl = T. Increase outer loop
couinter; and loop back to step 2. with statez € R™=, inputw € R™, and output € R?, if we

think of w(¢) as an excitation at the input which acts over
Convergence theory of Algorithm 1 is discussed in [7the time period) < ¢ < 7', then the ring of the system after
[10] and based on these results, we can prove the followitige excitation has stopped at timiéis z(¢) for ¢t > T. If
theorem. signals are measured in the energy norm, this leads to that
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the Hankel norm of the systed is defined as for everyi € #,. Let z;(¢t) denote the number of people
present at interior nodg € Y., and timet, and w;(t)
) 1/2 . .
Gl = sup ()2t ) the number of people entering the fairground through entry
" TS0 T ’ i € Yy at timet. Then the number of people present at

interior nodej € ¥,y and timet + 1 is

J}j(f—f—l) = Z aj/jxj/(t)—i- Z bijwi(t).

G €Veray: (57, 4) €A 1€ % (1,5) €

T
/ w(t)?dt < 1,w(t) =0 for t > T} .
0

For the discrete-time case, the Hankel norm(bfis given

by We quantify the total number of individuals still inside the
fairground via the weighted sum

- 1/2
||GHH:;1;% <Zz(t)2> : z(t) = Z c;x;i(t)

t=T .
Jeni/stay

T
Zw(t)2 < Lw(t) =0 fort > T} . at time ¢, wherec; > 0 are fixed weights. We assess the
t=0 performance of the network by using the-norm to quantify

The Hankel norm can be understood as measuring tR@Ut and output flowsu, 2. This attributes a high cost to a
tendency of a system to store energy, which is later retrievéond concentration of people at a single spot. Tak®
to produce undesired noise effects known as system rirﬁ%grOUp the parametess;:, a;i, bi;j, the discrete LTI system
Minimizing the Hankel norm therefore reduces the ringirr:-%| ove has the formt’(x) = (A(x), B(x),C,0), whereC'is
in the system. It is worth to note that in both continuous-tinf@€ row vector of:;'s. The Hankel normj| G (x)||z may then

and discrete-time cases we have the following be interpreted as computing the worst-case of all scenarios
Proposition 4: If X and Y are the controllability and Where the infloww is stopped at some tim@, and the
observability Gramians of the stable systéimthen outflow is measured via the patteelt), ¢ > T', with which
the fairground is emptied. Minimizingz |2 (7,00)/ ||wl|2,(0, 1
IGllr = vV \(XY), may then be understood as enhancing overall safety of the

where \; denotes the maximum eigenvalue of a symmetrlrt]:etwork' It leads to the optimization program

or Hermitian matrix. minimize ||G(x)||x
Proof: See [6] and also [8, Section 2.3]. | subject to G(x) internally stable (5)
ajj = 0,a5, = 0,b;; > 0,(3),(4)

IV. STEADY FLOW IN A GRAPH

which is a version of (1).
Here we consider the problem of steady flow in a directed @

graph¥ = (¥, <) with sources, sinks, and interior nodes,
YV = Yiay U ¥in U Pour, and not excluding self-arcs. For
nodesi, j € ¥ connected by an ar@, j) € & the transition G
probability ¢ — j quantifies the tendency of flow going
from node: towards nodej. As an example we may for
instance consider a large fairground with separated entrances
and exits, where itineraries between stands, entrances and K
exits are represented by the graph. By acting on the transition
probabilities between nodes connected by arcs, we expect to
guide the crowd in such a way that a steady flow is assured,
and a safe evacuation is possible in case of an emergen(,Py'/g' L
Assume that an individual at interior node € ¥ay ) ] .
decides with probability:;;» > 0 to proceed to a neighboring In an extended model one might congder measuring the
nodej’ € Yy, Where neighboring mear(, j/) € <, or number of people at some selected nog@les ¥5iay U Yout,
with probabilitya;, > 0 to a neighboring exit node € 7., and use thls to react via a fe_edback controller at the entry
where (j, k) € <. The case(j, j) € < of deciding to stay gates as in Figure 1. W|th this (_:ontroller, we can regulate
at standj € ¥.y is not excluded. Similarly, an individual the number of people in the fallrground. Mor_e ficcurately,
entering ati € %, proceeds to a neighboring interior noddhe feedback co‘ntroIIeK = K (k) includes admlssm_n rates
j € Yiay With probability b;; > 0, where(i, j) € /. We +i at entry gate, and the number qf people entering may
assume for simplicity that there is no direct transmissid?® restricted based on the total weighted number of people

Control architecture in the fairground.

from entrances to exits. Then inside the fairground. Lettin@,,,.(x, ) denote the closed-
loop transfer function of the performance channel mapping
Z ajj + Z ajr =1, (3) w into z, this leads to the following problem where controller
3" €Yray:(5,5' ) €A k€ You:(j,k) €/ and parts of the plant are optimized simultaneously.

for everyj € 75y, and minimize ||Ty—. (X, k)| 1

Z by =1 (4) subject to K = K (x) assures closed-loop stability (6)

I g ) et ajjr 2 0,05 2 0,bij > 0,5 2 0,(3), (4)
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V. ROBUST CONTROL OF A MASSSPRING DAMPER where choices of] - || include theH,-norm || - ||« or the
SYSTEM Hankel norm|| - || g.

In this section we discuss a 1DOF mass-spring-damp@q
system with massn, spring stiffnessk and damping co-

efficient c. The values can be in any consistent system of " Order to apply nonlinear and non-smooth optimization
units, for example, in Sl unitsy in kilograms,k in newtons techniques to programs of the form (5), (6) and (7) it is

per meter, and: in newton-seconds per meter or knogramgecessary to provide derivative information of the objective
per second. The system is of second order, since it hadugction
mass which can contain both kinetic and potential energy. f(x) = |G)|% = M(X(X)Y (%)),

The forcel” is considered as input, anq_the. dISpla(.:ememwhereX(x) andY (x) are the controllability and observabil-
p of the mass from the equilibrium position is considered %5

CLARKE SUBDIFFERENTIALS OF THEHANKEL NORM

outputy of this system. By Hooke’s law, the force exerte Y Grarmans. In the discrete-time cas’(_é(x) andY (x) can
by the spring is e obtained from the Lyapunov equations

F, = —kp. AXXAT(x) - X +Bx)B (x)=0, (8
Let v be the velocity of the mass, then the damping force AT(X)YA(x) - Y +CT(x)C(x) = 0. 9)
Fy is expressed as Remark that despite the symmetry &f andY the product
Fre —ep — — dp . XY needs not be symmetric, but stability 4fx) guarantees
L A X =0,Y = 0in (8), (9), so that we can write
\(;IVL:Eeht;)Vg’Alembert’s principle. Using Newton’s second law, AM(XY) = Al(X%YX%) _ Al(Y%XY%),
2 . . . .
_ . dap which brings us back in the realm of eigenvalue theory of
Frisvla=m aez " symmetric matrices.
which gives Recalling the definition of the spectral radius of a matrix
mp + cp + kp = u. p(M) = max{|\| : A eigenvalue of\/},

A possible selection of state variables is the displacemept can address programs (5) and (6) in the following
p and the velocityv. The linear model of the mass-spring-program

damper is then described by N 9
minimize  f(x) := |G(x)||%

Q- {:r = Az + Bu subject to  ¢(x) := p(A(x)) —1+e<0

y=_Cz for some fixed smalk > 0. Notice thatf = || - || o G(")
where is a composite function of a semi-norm and a smooth
0 1 0 mappingx — G(x), which implies that it is lowelc?, and
A= [ k g] » B= [L] andC'=[1 0]. therefore also lowe6! in the sense of [16, Definition 10.29].
Theoretical properties of the spectral radi®), used in the
constraint, have been studied in [3]. We also hAYe) > 0
w andY(x) = 0 on the feasible sef = {x : ¢(x) < 0}, so
u L+ y thatfis well-defined and locally Lipschitz of.
K G Let M, ,, be the space oh x m matrices, equipped
with the corresponding scalar product,Y) = Tr(X 'Y),
whereX " andTr(X) are respectively the transpose and the
trace of matrixX. We denote byB,, the set ofm x m
symmetric positive semidefinite matrices with trace 1. Set
Z:=X:YX? and pick @ to be a matrix whose columns
Fig. 2. The structure of mass-damper-spring control system form an orthonormal basis of thedimensional eigenspace
associated withA;(Z). By [13, Theorem 3], the Clarke
bdifferential off at x consists of all subgradientg; of
e form

(10)

The design objective for the mass-spring-damper syst
with a disturbance is to find an output feedback contr
law v = Ky which stabilizes the closed-loop system while
minimizing worst-case energy of output= [y «]T in order  g9v = (Tr(Z1(x)TQUQT), ..., Tx(Z,(x) 'QUQT))T,
to avoid the disturbance input to affect the system. In yhere s ¢ B,, and wherelM;(x) := Bg(x)vi -1
realistic systems, the physical parametgrand c are not ¢, any matrix M (x).We next have i
known exactly but can be enclosed in intervals. Assuming L . . L
the controller is parameterized &5x), takingx to regroup ~ Zi(X) = xi(x)Y X2 + X2Y;(x) X2 + X2Yxi(x), (11)
the tunable parameteksc andx, and denoting by, . (x)
the closed-loop performance channel— z, this leads to

ey

wherey;(x) := 2269 it follows from (8) and (9) that

the optimization problem AX)Xi(x)AT (%) — X;(x) = —A;(x) X AT (x)
minimize | Ty (x)]| — A(x)X[Ai(x)]" = Bi(x)BT (x) — B(x)[B:(x)]", (12)
subjectto x = (k,c, x) € R", @) ATEYi(x)ARX) - Yi(x) = —[4:(x)] TV A(x)

K = K(kr) assures closed-loop stability

k andc are in some intervals - AT(x)Y 4;(%) - [Ci(x)] " C(x) = CT(x)Ci(x).  (13)

ISBN: 978-988-19253-1-2 WCECS 2013
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering and Computer Science 2013 Vol 11
WCECS 2013, 23-25 October, 2013, San Francisco, USA

SinceXzXz = X, wherey > 0 is a tolerance parameter, the order of matrix

N N 7, and where)\; denotes théth eigenvalue of a symmetric

X2 x(x) + x6 (%) X2 = Xi(x). (14)  or Hermitian matrix. Then
. . —1
Altogether, we obtain Algorithm 2 to compute elements of Do Do
the subdifferential off (x). VifZ) =) eMAm) N D g (2)q,(2)7,
i=1 i=1
Algorithm 2 . Computing subgradients. with ¢;(Z) the ith column of the orthogonal matrix
Q(Z) from the eigendecomposition of symmetric matrix

Input: x € R™. Output: g € 9f(x). - T L
1 Compute A; (x) aA(x) Bi(x) = 325:()’ Z = Q(Z)D(Z)Q(Z)'. This yields
Ci(x) = %}S‘), i = 1,...,n and X,Y solutions vV, (x) =
of (8), (9), respectively. Te(Z: ()T 7 Te(Z. ()T 2T
3 Fori=1,...,n computeX;(x) andY;(x) solutions of Let us note that
(12) and (13), respectively.
4: Fori = 1,...,n computey;(x) solution of (14) and F&x) < fulx) < f(x) + plnn,.
Zi(x) using (11). Therefore, to find ar-solution of problem (2), we have to
5: Determine a matrix) whose columns form an orthonor-find an <-solution of the smooth problem
mal basis of thev-dimensional eigenspace associated

with A1 (2). mln!m|ze Ju(x)
6: Pick U € B, and return subject to ¢(x) <0 (20)
Ax < b
Tr(Z,(x) ' QUQT), ..., Tv(Z,(x) ' QUQ )T,
(i 1(_ ) even alx) QURT)) with 1 = 535 This smoothed problem can be solved using
a subgradient of at x. standard NLP software. We have initialized the non-smooth

algorithm 1 with the solution of problem (20).
Remark 1: In the continuous-time case, the Gramians

X (x) andY (x) can be obtained from the continuous Lya- VII. N UMERICAL EXPERIMENTS
punov equations A. Seady Flow in a Graph
Ax)X + XAT (x) + B(x)BT (x) = 0, (15) ] \tN(;/ give ar;1 igustratior; ?Vf progr{aimQS (5) ?nd C56).
N - 3 et Yiay = {1,2,...,m2}, % = {1,2,...,m} an
AT XY +YAX) +C (x)C(x) =0, 18) oy ., — {1,2,...,p}. Taking x to regroup the unknown

Therefore,X;(x) andY;(x) are solutions respectively of thetnable parametew@j/,b” and settingA(x) = [a;j], .,
fOIIOWing equations B(X) = [bw]an , C = [Cl,. .. ,Cnm], Whereajj/ =0 if
(4,5") & o7,b;; = 0if (i,5) ¢ </, we have a discrete LTI
A)X;(x) + Xi(x)AT(x) = —A;(x) X — X[A;i(x)]" system

- B;(x)B" (x) — B(x)[B;(x)]", (17) ) - (t+1) = AX)z(t) + B(x)w(t)
AT(x)Y;(x) + Yi(x)A(x) = —[4;(x)]TY = Y Ai(x) ) 2(8) = Cu(t).

—[Gix)] Clz) - ¢ (x)Cilx). (18) Note that the linear constraint conditions in (5) as well as

In addition, let us note that for this case, the stabilitff) can be transferred to the form
constraint in program (10) is(x) = «a(A(x)) + ¢ < 0, {

AegX = beg,

wherea(-) denotes the spectral abscissa of a square matrix, S0
x = 0.

i.e., the maximum of the real parts of its eigenvalues[]
We now introduce a smooth relaxation of Hankel normae now take the graply = (¥, ) with n, = 36,
It is based on a result established by Y. Nesterov in [9), — 2 andp = 2 as in Figure 3. Letz(t) be the total
which gives a fine analysis of the convex bundle method fumber of individuals inside the fairground with doubled
situations where the objectiv&§x) has the specific structureweights at 6 nodes in the center that form a hexagon
of a max-function, including the case of a convex maximu@s compared to the other nodes. We start with the case
eigenvalue function. These findings indicate that for a givefithout controller and initialize at the uniform distribution
precision, such programs may be solved with lower algg:, wheref(x!') = 528.7672 and ||G(x")|| 7 = 22.9949. In
rithmic complexity using smooth relaxations. While thesgrder to save time, we use the minimizer of the relaxation
results area priori limited to the convex case, it may bef (x) in (19) with initial x' to initialize the non-smooth
interesting to apply this idea as a heuristic in the non-convalgorithm 1. Our algorithm then returns the optindlwith
situation. More precisely, we can try to solve problem (10}0 x) = 16.5817, meaning||G(x!) |z = 4.0721.

(2) by replacing the functioffi(x) = A (Z(x)) by its smooth ~ |n the case with controlleK = K (x), k = [k1 ... k],

approximation as shown in Figure 1, we have
NN t+1) = AX)z(t) + B(x)e(t)
= ul N (Z6)/n | | 19 Tu (i) : 4 2
fu(x) = pln (;e (19) S(em) _ Cale).
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Fig. 3. Model of the fairground.

Heree(t) = w(t) — Kz(t) = w(t) — KCx(t), which gives oot et U step o
25 5 25 S
A(x) = B(x)K(x)C | B(x) 2 . 2
Tw—>Z(X’ '%) = C | 0 . 15 15
10 B v . 10
Initializing at (x,x) = (x!0) with remarking that [~ e 5
. . . s VL S— o ——
Tw—=-(x,0) = G(x) and proceeding as in the previous case ° °
we obtain the optimalx*, x*) with f(x*,x*) = 2.0001, o 20 0 60 80 0 20 40 60 80
. Time (seconds; Time (seconds,
meaning||T—.(x*, x*)||z = 1.4142. Step responses and e R
. . . . . . ite noise signal ite noise signal
ringing effects in unit step and white noise responses trur _ From: In(1) . From: In(2)
cated afl’ = 30 for the three system&(x') = T\, (x*,0), e o
. . . ; without controller
G(x") and T,,.(x*,x*) are compared in Figure 4 and ©f - : 00 | —— vith contoller
Figure 5. oo o Ve
Step Response 0 0
. From: In(1) From: In(2) 5 5
> ! ! ! ! L L L 0 20 40 60 80 0 20 40 60 80
Time (seconds) Time (seconds)
o with controller | |
or ‘ 1 ‘ 1 Fig. 5. Experiment 1. Ringing effects of three systeGigx!) (dotted),
G(x1) (dashed) andl,— . (x*, x*) (solid). Input: Unit step signal (top)
25| J J and white noise signal (bottom).
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Amplitude

The controllerK is chosen of order 2, namely

H182 + K9S + K3

K =
() 82 + K48 + K5

1045

: : o " ! Ak | Bk
5j:f B T S A SRR A ;_“_‘__‘__‘_‘__‘_‘__‘_v__‘_‘__" = 1 0 0 = C D .
T ! L K2 — K1K4 K3 — K1Ks | K1 K K

OB ey w0 Then, the closed-loop transfer function of the performance
channel channeb — z has the state-space representation

Fig. 4. Experiment 1. Step responses of three systéffw!) (dotted),
G(xT) (dashed) and,—, - (x*, x*) (solid). € A(x) B(x) ¢
Twoz (X) : = C(X) y

z 0 w

where¢ = [z xx]T, rx the state ofK, and where
B. Robust Control of a Mass-Spring-Damper System

Alx) — A+ BDkC BCgk
Here we apply Algorithm 1 to solve problem (7), where (x) = BxC Ar |
the mass-spring-damper plant with a disturbance is given by Bl — By + BDx Doy
. Bg D2 ’
P- wl, C(X) = [Cl + D19 D C Dlch] .
" Assume that mass = 4, and spring stiffness and damping
with coefficient ¢ belong to the intervald4, 12] and [0.5,1.5],
respectively. Using the Matlab functidm nf st r uct based
A— [ 0 on [1], we optimizedH.-norm and obtained = 12,c =1
*% and
2
o = |1 0] , Dy — m andC = [1 0]. Ko — —6.0927s — 0.39815 — 5.1816.
0 0 1 52 +19.0834s + 1.1708
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VIII. CONCLUSION

We have shown that it is possible to optimize plant and
controller simultaneously if the idea of a structured control
law introduced in [1] is applied. Our approach was illustrated
for Hankel norm synthesis as well as fAt,.-synthesis, and
for a continuous and a discrete system. Due to inherent non-
smoothness of the cost functions, non-smooth optimization
was applied, and in particular, a non-convex bundle method
was presented. For eigenvalue optimization, as required for
Hankel norm synthesis, a relaxation developed by Nesterov
for the convex case was successfully used as a heuristic in
the non-convex case to initialize the bundle method.
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