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Abstract—In this conference paper, we solve an optimiza-
tion problem involving investor payoffs and credit derivatives
such as credit default swaps (CDSs) and mortgage-related
collateralized debt obligations (CDOs). In a continuous-time
framework, this model enables us to solve a stochastic optimal
credit default insurance problem that has investor consumption
and investment in structured mortgage products as controls.
Finally, we provide numerical results involving mezzanine CDO
tranches being hedged by CDSs and explain their link with the
global financial crisis (GFC).

Index Terms—credit derivatives; collateralized debt obliga-
tion; credit default swap; credit risk; systemic risk; global
financial crisis.

I. I NTRODUCTION

The period prior to the GFC was characterized by financial
product development intended to achieve objectives such
as offsetting a particular risk exposure (such as mortgage
default) or obtain financing. Examples pertinent to this crisis
include the pooling of subprime mortgages into mortgage-
backed securities or collateralized debt obligations (CDOs)
for investment via securitization and a form of credit default
insurance known as credit default swaps (CDSs). In partic-
ular, CDO issuance grew from an estimated $ 20 billion
in Q104 to its peak of over $ 180 billion by Q107, then
decreased to under $ 20 billion by Q108. Further, the credit
quality of CDOs declined from 2000-2007, as the level
of subprime and other non-prime mortgage debt increased
from 5 % to 36 % of CDO assets. In addition, CDOs
and portfolios of CDSs called synthetic CDOs enabled a
theoretically infinite amount to be wagered on the finite value
of mortgages. In this regard, buying a CDS to insure a CDO
ended up giving the seller the same risk as if they owned the
CDO when the CDO market imploded. This boom in credit
derivatives was accompanied by more complexity (compare
with the IDIOM hypothesis postulated in [12]). This process
increased the number of agents – such as mortgage brokers,
specialized originators, special purpose vehicles and their due
diligence firms, managing agents and trading desks as well
as investors, insurances and repo funding providers – related
to mortgage originations. The disconnect from the underly-
ing mortgages resulted in these agents relying on indirect
information that included FICO scores on creditworthiness,
appraisals, organizational due diligence checks as well as
computer models of rating agencies and risk management
desks. Instead of spreading risk this provided the ground for
fraudulent acts, misjudgments and finally market collapse.
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Some relevant literature about the GFC and its relationship
with credit derivatives is given below. Subprime mortgage-
related problems were exacerbated by CDO distribution
methods, off-balance sheet vehicles, derivatives that resulted
in negative basis trades moving CDO risk as well as
derivatives that created additional long exposure to subprime
mortgages (see, for instance, [3] and [7]). Determining the
extent of this risk is also difficult because the effects on
expected mortgage losses depend on house prices as the
first order risk factor. Simulating the effects of this through
the chain of interacting securities is very difficult (see, for
instance, [2]). On the other hand, [11] (see, also, [2] and [5])
shows that credit risk transfer through the derivatives market
resulted in the origination of inferior quality mortgages by
originators. We believe that mortgage standards became slack
because securitization gave rise to moral hazard, since each
link in the mortgage chain made a profit while transferring
associated credit risk to the next link (see, for instance, [8]
and [11]). The increased distance between originators and
the ultimate bearers of risk potentially reduced originators’
incentives to screen and monitor mortgagors (see [2]). The
increased complexity of residential mortgage-backed securi-
ties (RMBSs) and markets also reduces the investor’s ability
to value them correctly (see, for instance, [8]).

In this paper, we solve an optimal control problem that
depends on a stochastic dynamic model for investor payoff
that incorporates credit default insurance and CDO dynamics
(see Subsection II-C of Section II). In particular, we are
able to set-up an optimal credit default insurance problem
that seeks to establish the optimal rate of consumption,k�t ;
over a random term,[t; � ℄; and terminal payoff for CDO
investors at� (see Theorem 2.2 in Section II). In terms of the
GFC, we consider problematic issues such as the reduction of
incentives for monitoring SPEs, incentives to destroy value,
credit derivative market opacity, industry self-protection and
systemic risk as well as the mispricing of credit (see Theorem
2.2 in Section II).

II. CDSS HEDGING CREDIT RISK FROMCDO TRANCHES

In this section, we construct a stochastic model for in-
vestor payoff that incorporates CDSs. The economic agents
involved are investor banks that purchase subprime CDOs
and protection from monoline insurers.

A. Structured mortgage products and their losses

In this subsection, we consider subprime CDOs and their
losses. We suppose that a investor bank can invest in riskless
Treasuries whose price at timet; given by T follows the
process dTt = rTTtdt; for somerT � 0: (1)
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The investor can also invest in a risky CDO whose price att is given byP and follows the processdPu = Pu�rP du+ �dZu�; (2)

where the CDO raterP > rT and� are constants. In addition,Zt is a standard Brownian motion with respect to a filtration,(Gt)t�0, of the probability space(
; G; (Gt)0�t�T ; P):
Also, the investor is subject to an insurable credit risk

modeled as a compound Poisson process, in whichN is a
Poisson process with deterministic parameter�(t) and the
CDO loss process,S: Assume thatN is independent ofZ;
which is the Brownian motion of the CDO process. Also,
the random CDO loss amountS is independent ofN:
B. Investor payoff under credit default insurance

In this subsection, we present a stochastic differential
equation describing the dynamics of investor payoff under
mortgage securitization as well as the risks that can be
associated with components of this equation.

1) Model for investor payoff under credit default insur-
ance: At time t; let �t and t be the investor payoff and
the amount that the investor invests in CDOs, respectively.
The investor earns an exogeneous income rate of�(t) and
consumes at a rate ofkt at t: For a CDO portfolio with
unhedged credit risk we have thatd�uu = �rT�u + (�� rT) u + �(u)� ku�du+ � udZu�S(�u; u)dNu; u � t; �t = �; (3)

where� = rP � rT for the transaction costs rate,rT :
Next, we consider a CDO portfolio in which credit risk is

hedged via CDSs. In this case, if the investor suffers a loss,S; from CDO default, then it is paidC at time t: The result
is thatd�u = �rT�u + (�� rT) u + �(u)� ku�du+ p(u)du+� udZu � �S(�u; u)� Cu(S(�u; u))�dNu;u � t; �t = �; (4)

where the CDS premium payment leg rate and default
payment leg are given byp(u) = �(1 + �(u))�(u)EP[Cu(S)℄ andCu(S(�u; u)); (5)

respectively.
2) Numerical results for investor payoff under credit de-

fault insurance: In this subsection, a motivating example is
provided by the relationship between the insurer AIG (CDS
protection seller) and Merrill Lynch (CDO tranches buyer).
The latter’s major losses in 2008 were attributed in part to
the drop in value of its unhedged CDO portfolio after AIG
ceased offering CDSs on CDOs. The loss of confidence of
trading partners in Merrill Lynch’s solvency and its ability to
refinance its short-term debt eventually led to its acquisition
by the Bank of America. Subsequently, values for investor

payoffs are considered for 2000 to 2008. The simulation is
obtained via the Euler-Maruyama numerical method. Firstly,
we consider the dynamics of investor payoff where credit
risk from CDO tranches is unhedged.

Fig. 1: Investor Payoff–Unhedged Credit Risk from CDO
Tranches

Next, we present investor payoff dynamics where credit
risk from CDO tranches is hedged by CDSs.

Fig. 2: Investor Payoff–Hedged Credit Risk from CDO
Tranches

Figures 1 and 2 reflect investor payoff dynamics when
credit risk from CDO tranches was unhedged and hedged
by CDSs. If we consider the components of (3) and (4),
low interest rates prevailed in 2001-2004 preceded by an
increase in interest rates by the Federal Reserve Bank that
scuppered the ability of mortgagors to refinance. Defaults
increased dramatically in the U.S. in late 2006 and triggered
a global financial crisis from 2007 onwards. The downturn of
the housing market caused mortgage losses to increase signif-
icantly. Notice that losses were significantly less when CDO
tranches were hedged than when they were not (compare
Figures 1 and 2). The region inside the red circle in Figure 2
bears testimony to an increase in protection seller payments
to compensate for counterparty defaults. Simultaneously, the
investor’s payoff decreased significantly due to subprime
bond losses as well as mortgage defaults, foreclosures, etc.

Figures 1 and 2 also support the hypothesis of [3] where
it was observed that new issuance of CDOs came to an
abrupt halt in early 2007. This took place subsequent to
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the implosion and re-pricing of credit risk in the capital
markets. Here it was found that the market inefficiencies
were substantial, given the size of the CDO market and
the magnitude of CDO fees. During the GFC, CDOs were
used to arbitrage a substantial price discrepancy in the
mortgage markets and to convert existing mortgages that are
priced accurately into new fixed income mortgage-related
instruments that are overvalued. Also, the aforementioned
figures are related to [7] that uses data on privately-securited
subprime mortgages to examine study the increase in defaults
after 2007.

C. Optimal credit default insurance

In this section, we solve an optimal credit default insurance
problem related to the stochastic model of investor payoff
with hedged credit risk given by (4). Because of the un-
predictable shutdown of CDO markets, the solution to the
insurance problem is determined for a random term[t; � ℄:

1) Statement of the optimal credit default insurance prob-
lem: We let a set of control processes (laws),A; which is
adapted to investor payoff,�; have the formA = f(kt;  t; Ct) : measurable w.r.t.Ft;(4) has unique solutiong: (6)

The objective function of the stochastic optimal credit default
insurance problem is given byJ(�; t) = supA EP�Z �t expf�Ær(u� t)gU (1)(ku)du+expf�Ær(� � t)gU (2)(�� )�; (7)

where, for the first- and second-order differential operators,D andD2; respectively, we haveDU (1)(:) > 0; D2U (1)(:) < 0; DU (2)(:) > 0
andD2U (2)(:) < 0:

Here,U (1) andU (2) are increasing, concave utility functions
and Ær > 0 is the rate at which the utility functions for
consumption,k; and terminal payoff,�� ; are discounted. Of
course, in principle, one can formulate any utility function.
The question then is whether the resulting Hamilton-Jacobi-
Bellman equation (HJBE) can be solved (smoothly) analyti-
cally ? In the sequel, we obtain an analytic solution for the
choice of power utility functions.

We are now in a position to state the stochastic optimal
credit default insurance problem for the investor’s consump-
tion rate,k; and terminal payoff,�� ; for an adjustment term,[t; � ℄:

Problem 2.1: (Optimal Credit Default Insurance): Sup-
pose that the admissible class of control laws,A 6= ;;
is given by (6). Moreover, let the controlled stochastic
differential equation for the�-dynamics be given by (4) and
the objective function,J : A ! <+; by (7). In this case, we
solve supA J(kt;  t; Ct);

and the optimal control law(k�t ;  �t ; C�t ); if it exists,(k�t ;  �t ; C�t ) = arg supA J(kt;  t; Ct) 2 A:
The optimal credit default insurance problem determines

the optimal consumption rate,k�; and investor’s optimal
investment in mortgages, �; over a random interval. In
this regard, Theorem 2.2 provides the general solution to
this problem (see Problem 2.1). We note that the objective
function in (7) is additively separable inU (1) andU (2) which
is not necessarily true for all investors. In our problem,
we have a discount rate,Ær, which is used to discount
these utility functions. This discount rate is chosen by the
investor and it is not the market discount rate. In the sequel,
connections between specific solutions of the optimal credit
default insurance problem and the GFC are forged.

2) Solutions to the optimal credit default insurance prob-
lem: In this section, we determine a solution to Problem 2.1
in the case where the term[t; � ℄ is random. In order to find the
optimal control processes, we use the dynamic programming
method where we consider an appropriate HJBE. In the
sequel, we assume that the optimal control laws exist, with
the objective function,J; given by (7) being continuous
twice-differentiable. Then a combination of integral calculus
and Itô’s formula (see, for instance, [14]) shows thatJ
satisfies the HJBEÆrJ = Jt +maxk �U (1)(k)� kJ��+ (rT� + �(t))J�+max �(�� rT) J� + 12�2 2J���+maxC ��(t)�EP[J(� � (S � C(S)); t)℄� J(�; t)��(1 + �(t))�(t)EP[C(S)℄J��+!b(t)�U (2)(�)� J(�; t)�; (8)EP� exp�� Z st (�+ !b(u))du�J(��s ; s)j��t = �� = 0;

as s!1:
In the sequel,Jt; J� andJ�� denote first and second order
partial derivatives ofJ with respect to the variablest and�: The objective function,J; is increasing and concave with
respect to payoff,�; because the utility functionsU (1) andU (2) are increasing and concave. In this case,!b(t) is the
hazard rate for investor at timet (compare with the hazard
rate analysis in [7]). During the GFC, the hazard rate was
very high due to dysfunction in the CDO market. It is
important to note that the HJBE (8) can be deduced by
using the methods contained in [14]. As a consequence, the
integrability and regularity conditions that arise in our paper
are covered by these contributions. For instance, in our case,
we can use the verification theorems in [14] to show that if
our objective function,J; has a smooth solution as well as
the related HJBE,bJ; then under our regularity conditions,J = bJ:
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Theorem 2.2: (Optimal Credit Default Insurance): Sup-
pose that the objective function,J(�; t); solves the HJBE(8).
In this case, a solution to the stochastic optimal credit default
insurance problem is �t = ��� rT�2 J�(��t ; t)J��(��t ; t) ; (9)

in which ��t is the optimally controlled payoff under
credit default insurance. Also, the optimal consumption rate,fk�t gt�0; solves the equationDkU (1)(k�t ) = J�(��; t); (10)

whereDk represents the ordinary derivative with respect tok:
Proof. The proof is completed via standard arguments about
static optimization (see, for instance, [14]).

3) Optimal accrued premiums: We recall that the CDS
accrued premium is the amount owing to the protection seller
for investor’s credit default protection for the period between
the last premium payment and default at�: This premium
has a direct influence on optimal CDS represented byC�:
For instance, from insurance theory (see, for instance, [1]
and the extension to continuous-time in [9]), we have that
the optimal CDS process is related to classical insurance
theory. Analogous to [9] where deductibles were discussed,
we can show that in the continuous-time setting, optimal
CDS is accrued premium CDS. In this regard, we assume
that 0 � C � S: Taking our lead from insurance theory
and the assumption thatp(u) is proportional to the nett CDS
premium for a portfolio with mass of type-A CDOs,�; the
optimal CDS contract takes the formC(S) = ( 0; if S � �;S � �; if S > �: (11)

Some features of the aforementioned CDS contract are as
follows. If S � �; then it would be optimal for the investor
not to buy CDS protection. IfS > �; then it would be optimal
to buy CDS protection. In the sequel, the maximization of
the CDS contract purchased by the investor is now reduced
to the problem of determining the optimal accrued premium,�:

Proposition 2.3: (Optimal Accrued Premium): The op-
timal CDS contract is either no protection or per-loss accrued
premium CDSs, in which the accrued premium,�; varies
with time. In particular, at a specified time, the optimal
accrued premium,��t ; solvesJ�(��t � �t; t) = [1 + �(t)℄J�(��t ; t): (12)

No CDSs contract is optimal at timet if and only ifJ�(��t � ess supS(��t ; t); t) � [1 + �(t)℄J�(��t ; t): (13)

Proof. Again the proof is completed via standard arguments
about static optimization (see, for instance, [14]).

In order to determine an exact (closed form) solution for
the stochastic optimization problem in Theorem 2.2, we are
required to make a specific choice for the utility functionsU (1) andU (2): Essentially these functions can be almost any
function involvingk and�; respectively. However, in order
to obtain smooth analytic solutions to the stochastic optimal
credit default insurance problem, in the ensuing discussion,
we choose power utility function and analyze the result.

From Proposition 2.3, we deduce that the optimal CDS
contract coincides with the optimal accrued premium,��:
In this regard,�� is attained when the marginal cost of
decreasing or increasing� is equals to the marginal benefit
of the CDS contract. Moreover, if� = 0 then the optimal
accrued premium should be zero, i.e.,�� = 0: In this
case, if the investor holds no type-A CDOs,�; – which is
indicative of a high PD for reference mortgage portfolios –
then it may be optimal for the investor to purchase a CDS
contract which protects against all such losses. However,
full protection may also introduce high costs in the event
that the protection seller fails to honor its obligations. In
particular, during the GFC, many investors that purchased
CDS contracts promising to cover all losses, regretted making
this decision when the protection sellers were unable to
make payments after a credit event. Notwithstanding this,
certain investors that bought CDS contracts that only pay
when the losses exceed a certain level set by the protection
seller found protection beneficial. In particular, they did not
experience the same volume of losses as those who purchased
full protection (see, for instance, [2]).

D. Optimal credit default insurance with power utility

For a choice of power utility, we have thatU (1)(k) = k�� andU (2)(�) = 
 ��� ; (14)

for some � < 1; � 6= 0, and 
 � 0: The parameter
 represents the weight that the investor gives to terminal
payoff versus the consumption rate and can be viewed as a
measure of its propensity to retain earnings. This leads to
the following result.

Proposition 2.4: (Optimal Credit Default Insurance
with Power Utility): Let the power utility functions be
given by (14) and assume that the investor’s CDO losses,S; are proportional to the investor’s payoff under mortgage
securitization so thatS(�; t) = '(t)�;
for some deterministicS and severity function,'(t); where0 � '(t) � 1: Under power utility, the objective function
may be represented by�J(�; t) = ��� #(t); #(t) > 0; (15)

where#(t) solves the differential equation#0 +G(t)#+ (1� �)# ���1 = �
!b(t); (16)

with G(t) having the form
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G(t) = �Ær + (rT� + �(t))�� + 12 (�� rT)2�2(1� �)�+ �(t)�� �EP[(� � ��)�℄� ���� (1 + �(t))�(t)��EP[S � ��℄� !b(t)
In this case, the investor’s optimal rate of consumption is

given by k�t = # 1��1�; (17)

and the investor’s optimal investment in CDOs is �t = (�� rT)�2(1� �)�: (18)

Furthermore, under power utility, the optimal accrued pre-
mium is given by��t = min��1� (1 + �(t)) 1��1 �; '(t)��: (19)

Proof. The proof follows from Theorem 2.2 and Proposition
2.3 as well as (8). Furthermore, a consideration of [13,
Chapter V, Section 3] yields a unique solution to (4) under
power utility.

In Proposition 2.4, the optimal controls in (17), (18)
and (19) are expressed as linear functions of the investor’s
optimal profit under mortgage securitization,��: In this case,
we see that the optimal consumption rate,k�; is independent
of the frequency and severity parameters� and '; of the
aggregate CDO losses,S; respectively. These results are true
because the power utility function exhibits constant relative
risk aversion which means that��D2U (2)(�)DU (2)(�) = 1� �:
Here, we see that if the relative risk aversion increases, the
amount invested in CDOs decreases which may be indicative
of the fact that the mass of type-A CDOs,�; is low at
that time. The expression for# in (16) reveals that not
only the objective function,�J; is affected by the horizon�; but also the optimal consumption,k�: Moreover, the
investor’s optimal investment in CDOs, �; is affected by the
time horizon� via the optimal consumption rate,k�; which
impacts on the investor’s profit. In addition, the expression
for # in (16) shows thatk� depends on the frequency
and severity parameters,� and '; of the CDO losses,S;
respectively. Furthermore, the investor’s optimal investment, �; is affected by mortgage losses that indirectly involvesk�: From Proposition 2.4, it is clear that the amount invested
in CDOs, ; depends on the profit,�: Reference mortgage
portfolio defaults will cause a decrease in the investor’s profit
under mortgage securitization, which will later affect the
consumption rate,k: In particular, this may cause a liquidity
problem in the secondary mortgage market since� may
decrease as a result of this effect onk:

If profits, �; decrease, it is natural to expect that some
investors will fail as in the GFC. For instance, both the failure

of Lehman Brothers investment bank and the acquisition in
September 2008 of Merrill Lynch and Bear Stearns by Bank
of America and JP Morgan, respectively, was preceded by
a decrease in profits from securitization. A similar trend
was discerned for the U.S. mortgage companies, Fanie Mae
and Freddie Mac, who had to be bailed out by the U.S.
government at the beginning of September 2008.

III. C ONCLUSIONS AND FUTURE WORK

In this paper, we constructed a stochastic dynamic model
for investor payoff that incorporates credit derivatives. This
model related to problems experienced with credit derivatives
in the GFC such as the reduction of incentives for monitoring
SPEs, incentives to destroy value, credit derivative market
opacity, industry self-protection and systemic risk as well
as the mispricing of credit. In continuous-time, we obtained
optimal investor payoff in the presence of CDOs and credit
default insurance with consumption, CDO value and credit
default insurance as controls. Finally, we were able to explain
elements of the GFC in a quantitative way via numerical
results involving credit derivatives.

In future, it is important that we increase the sophistica-
tion of our model by incorporating interest rate and credit
risk more effectively. Also, our model has to accommodate
dealing with real financial market interest rates. structuring
the securitization and pricing its outcome or for explaining
the economic mechanism behind the recent crisis. In this
regard, we have to account for important issues such as
moral hazard in expanding mortgage portfolios, incomplete
information among market players about their counterparties,
myopia in decision making in subprime mortgage market
and monetary policy incentives boosting the growth of the
subprime market.
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