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A Parameter Identification Technique for
Structured Population Equations Modeling
Erythropoiesis in Dialysis Patients

Doris H. Fuertinger, Franz Kappel

Abstract—Individualization of therapy plays an increasing erythropoiesis has to include submodels for various cell pop-
role in the context of chronic diseases. A model for erythro- ylations. A rather comprehensive model for erythropoiesis

poiesis, consisting of coupled partial differential equations, is vel in | The m | or n
adapted to an individual patient. The numerical approximation as developed [5] (see also [6]). e model presented

for the population equations is based on semigroup theory, " [5] con5|§ts of five strugtured populatlon equ_atlons _W|th
respectively on the theory of abstract Cauchy problems. The Cell age being the structuring attribute, two ordinary differ-
system state is approximated by system states of high order ential equations describing the development of endogenous
differential equations on finite dimensional subspaces of the gnd administered EPO over time plus a number of auxiliary
state space of the original system. A standard Least-Squares g ations describing the influence of EPO on maturation
formulation is used to define the cost-functional used for d talit t d th trol of EPO fi b
the parameter identification. An example of (locally) well an moraly rates an € contro 0_ Se_cre lon by
identifiable parameters expressing numerical convergence for the kidneys based on the oxygen carrying capacity of blood
increasing dimensions of the finite dimensional approximating which is proportional to the erythrocyte population.
system is discussed. We demonstrate that a low approximation  |n comparison to healthy persons CKD patients have a
gg;gstfsnfgﬂfr']%esat?a;t:%':‘s accurate numerical solutions and yary high inter-individual variability in red blood cell (RBC)
P ' lifespan, bone marrow response to EPO, endogenous EPO
_ Index Terms—abstract Cauchy problems, structured popula-  production and half-life of the administered EPO compound.
tion equations, erythropoiesis, chronic kidney disease, parame- potine measurements of these quantities are not practicable
t timat : o . . . .
er estimation in a clinical environment or are simply impossible. Therefore
prediction of the individual response to EPO administration
I. INTRODUCTION schemes is extremely difficult and is further aggravated

NEMIA effects almost all patients suffering frombY the fact t_hat there is a long delay in reaction of the

chronic kidney disease (CKD) and is mainly causeBBC_ popul_atlon to EPO levels. The do_se and frequency of
by a failure of renal excretory and endocrine functiofdMministration of an ESA treatment regimen are most often
Already partial correction of anemia in dialysis patientd®€rmined based on prior experience of the physician and
reduces cardiac-related morbidity and mortality, which {@n established guidelines. This approach bears some severe
the most common cause of death among these patients (4B#ations so that hemoglobin levels in CKD patients tend
for instance [1]-[3]). It has been suggested that chroni@ fluctuate widely and cycling phenomena are frequently
renal disease progression may be slower when anemig®Rserved, [7], [8]. _ _ _
reversed, emphasizing the benefits of early correction ofSincé the mathematical model developed in [5] is based
the anemia with erythropoietin stimulating agents (ESAP" the physiological mechanisms governing er)_/throp0|e5|s
ESAs stimulate the bone marrow to produce red blodh ¢@n be used — as we shall show — to guide and to
cells, exerting a similar effect than the endogenous hormolféividualize the ESA treatment regimen for CKD patients.
erythropoietin (EPO) which is released by the kidneys andlis requires in particular tq adapt to the spemﬂc_pat@nt
which is insufficiently produced in CKD patients. those model parameters which correspond to physiological

Erythropoiesis — the production of new red blood cells guantities which are known to have a high inter-individual

is a very complex process. Stem cells in the bone marrd@iability. _ _ _
commit to the erythroid lineage and start to develop into red !N the next sections we shall show how to find numerical
blood cells, so called erythrocytes. This process takes abg@tutions for the erythropoiesis model and identify parame-
two weeks. During this time the cells divide, differentiatd€’S- The construction makes use of semigroup theory and
and some of them eventually die. The development frofs P@sed on approximation of age distributions by Legendre
stem cells into erythrocytes involves a number of differefolynomials. A standard nonlinear least-squares formulation
cell stages which exert diverse characteristic patterns wiff the cost functional is used and minimized using a
regard to the rate of proliferation, the rate of apoptosidoWnhill simplex method. Thus, avoiding the need to provide
the maturation velocity and the need for EPO and othggrivatives for the relatively complicated PDE-ODE system.

substances (for details see e.g. [4]). Therefore a model fgf€ Numerical approximation scheme presented in Section I
are used for parameter identification and we present results
Manuscript submitted July 02, 2013; revised: July 31, 2013 which show that a low approximation dimensidh suffices
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[l. GENERAL POPULATION EQUATION AND NUMERICAL  obtained by formally applyingd,, to ¢. In generalg is not
APPROXIMATION in dom A,,, because is differentiable orj0, 1] but¢(0) # 0

As already mentioned in the introduction the core of th general. Formally applyingd,, to ¢ means.A,¢ =

model developed in [5] consists of a coupled system of fiv@wfx’(E(t)W j (ko h)¢N+ /50‘15(0])\} Then A" isNgiven
structured population equations which are of the foIIowingy AVg = —wo(E()IIT ¢" 4+ 117 (k o h)¢ + 65" ¢(0),

type: € XN. The ‘approximating’ delta impulsé})’ € XV is
defined by(6}, #)x,, = ¢#(0) for ¢ € XN
éu(t,z) +U(E(t))£u(t,x) Whereas one could argue that there are probably easier
ot o ways to create an approximation for a hyperbolic PDE, than
= (B —a(B®),z))ult,z), this specific approach, the semigroup approach possesses
t>0, 2 €Q=[Tmin, Tmax, 1) critical advantages over other methods, like for instance a
u(0,z) = ¢(z), z€Q, finite-element method. One is, this method allows for a very

low approximation dimension in our case. Numerical results
v(E@)ult 2min) = f(8), 20, indicaptg that forV about 10 we get accurate numerical ap-
where u(t, x) is the population density at time and cell proximations of the total population. Hence, we need to solve
agex. Furtherv(E(t)) denotes the maturation velocity ofonly a system of 11 ODEs which amounts to a relatively
cells according to the erythropoietin levEl(t) at timet¢, 5 low computational cost. Whereas this might not be of utterly
is the proliferation rateq(FE(t), z) the rate of apoptosis de-importance when it comes to run one simulation, this plays
pending on the erythropoietin levél(t) at timet and the cell a more critical role when you do parameter identification. A
agez. The initial population density is denoted Byz) and process where, in general, the model has to be solved several
f(¢) is the influx of cells from the precedent population cladsundred times.
attimet. The general population equation presented here, is 8Another minor advantage over most other schemes is, that
linear hyperbolic partial differential equation (PDE). Hypereur approach allows us to get the total populatieft) of a
bolic PDEs are in general more difficult to approximate thecell class at time, which is defined by
elliptic or parabolic ones, because approximations tend to
express spurious, numerically induced, oscillatory behavior. P(t) = / u(t, r) d,
Our approach for solving the model equations numerically @
is based on semigroup theory respectively on the theory \Whereu(t, z) is the solution of (1), without actual integrating
abstract Cauchy problems (see e.g. [9], [10]) and makes (88 population density over all cell ages. It can be easily
of Trotter-Kato type approximation results for such problemghown (see [6]) that the approximating total population
The idea is to formulate problem (1) as an abstract Cauchy' (t) can simply be read from the numerical approximation,

problem in the state spacé = L?(Q, R), more precisely,
at) =At)ut) + f(t), t>0 PY(t) = Vamax — Tmmwp (1),
u(0) =¢, wherew(’ (t) is the coefficient ofey in the representation
where the operatotd(t) is given by €(t,2) — 8 — of the apprommatyng solution as linear combination of the
(E(1), 2)) basis elements;, j =0,..., N.
@ 2 Further, certain characteristics of the original system are
dom A(t) = {¢ € X|¢ absolutely continuous of?, transferred to the approximation, because we are approxi-

A(Tmin) = 0, v(E(t)¢ — k(t, )¢ € X} mating a dynamical system using again a dynamical system.
e , ’ ’ ' The preservation of characteristics of the original system
At)p = —v(E))¢ +K(t, )¢, & € dom A(t). plays an increasingly important role when you are dealing

The term f(¢) reflects the boundary condition in (1) andVith parameter identification or, for instance, optimal control.

is given by &, f(t), whered, is the delta impulse defined Both, are situations, where we try to make qualitative and

by (60, #)x = ¢(0) for continuouse. It is convenient to quantitative statements of the behavior of the original system

transform the abstract Cauchy problems for each populatiy in general, only looking at the numerical approximations.

equation to an abstract Cauchy problem on the weighted LThese raises questions like, do the parameters we identify,

spaceX,, = L2(0,1;R) with the constant weighty = when using a specific numerical scheme, really converge to

Tomax — Tonin. The transformation is given by — ¢ o b, the’optimal’ parameter of the original system? Is the optimal

¢ € X, whereh(r) = Zumin + 7(Tmax — 2min), 0 < 7 < 1. control we define for the approximating system indeed an

The weightw is introduced in order to make’ _and_Xw optimal control for the original problem? The answer is: not

isometric under this transformation, i.e., necessarily. Hence, preserving characteristics of the original
l¢lx = |l¢ o hllx,. In order to to get approxima- System in the numerical scheme is an important objective in

tions to the solutions of (1) respectively of the Cauch§€se situations.

problem on X,, we choose finite dimensional subspaces

XN — span(eq,...,en) C Xu, N = 1,2,..., where Ill. PARAMETER IDENTIFICATION

ej(r) = wPLj(-1+27),0 <7< 1,5 =12.... We are using the following nonlinear least-squares formu-

Here, L; denotes thej-th Legendre polynomial. Following lation for the cost functional

the approach taken in [11] we define the approximating

operatorsA”™ on XV as AV ¢ = IV A, ¢, ¢ € XV, where J(p) = Z (y; — g (t;,p)?, )
IV is the orthogonal projectioX,, — X7 and A, ¢ is =
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wherep is the set of parameters to be estimated. Furthermc
y; are post-dialytic hemoglobin measurements @fid, p) is 15
the corresponding ‘'model output’. The sampling timesre
the days at which the dialysis treatment takes place (usue
on Monday, Wednesday and Friday every week).

The datay; is obtained using a Crit-Line Monitor. The
Crit-Line device provides readings of the hemoglobin cor
centration and the oxygen saturation during hemodialys
It is a non-invasive method based on an optical sens 1gg0 EPO dose administered
technique. The sensor is attached to a blood chamber ¢
is placed in-line between the arterial blood tubing set ar _,
the dialyzer. The measurements are based on both %

w

Post-Dialytic Hemoglobin Concentration

absorption properties of the hemoglobin molecule and tlw 4000

scattering properties of RBCs. We use these readings 2000 HHHHHHHWH m HHH
the hemoglobin concentration (g/dl), which is the amoul 0 o a 50 o
of hemoglobin all RBCs carry divided by the total blooc time [days]

volume, to identify the parameters. Note, the funcgoéh p),

which is the hemoglobin concentration predicted by th&g. 1. The upper panel shows the model output for the initiahmeter
model, is not a state variable of the model. Therefore welue sets that were used and model output for the 'optimal’ parameter.
need to expre3§(t,p in terms of the state variables of theStars denote measured data. The lower panel shows the administered EPO
system such that it corresponds indeed to the hemoglobin

concentration in the patients blood. In order to obtain this

submodel we need to make some assumptions about #hgorithm. In fact, in [15] a counterexample is presented
system: for a family of strictly convex functions in two dimensions.

]_) We assume that on average the mean Corpuscmspite, these unsatisfying theoretical results, Nelder-Mead
hemoglobin of the RBCs of the dialysis patient is 29€ems to do quite well in practice and is a widely used
pg. optimization method. One just has to be careful to make

2) We estimate the post-dialytic blood volume using agure that the algorithm does not get stuck at a non-optimal

empirical formula (see [12]) and assume it to b&oint. Hence, you may want to restart the algorithm with
constant over time. slightly modified parameter values to alleviate this problem.

The second assumption might not be correct. The post-
dialytic blood volume probably varies from treatment to
treatment. At the moment there is no way to measure absolutd he numerical approximation scheme described in Sec-
blood volume in dialysis patient on a regular basis. Therefofén Il was implemented in Python, see [16]. Further, we
although the assumption may not be physiologically accuratsse the Nelder-Mead simplex method implemented in the
it needs to be made, to be able to determine the hemogloBi¢iPy package (see [17]) for Python to minimize the cost-

concentration from the model output. Altogether we have functional given in equation (2). _
 M(t,p)- MCH The model is adapted to an individual CKD patient by

g(t,p) TV c, adjusting the following parameters: the total blood volume,
number of stem cells committing to the erythroid lineage

where M (t,p) is the total RBC populationM C'H is the per day, the bone marrow response to EPO, half-life of the
mean corpuscular hemoglobin in g§BV denotes the post- administered EPO compound, RBC lifespan and endogenous
dialytic blood volume in ml and: = 10° is the factor EPO level. Some of those parameters are estimated using
with which one has to multiply to get the hemoglobirempirical formulae using information on gender, height and
concentration in the unit g/dl. weight and the remaining parameters are determined using

We use a Nelder-Mead algorithm, i.e., a simplex methafle method described in Section Ill. For further details see
(for details see, for instance, [13], [14]), to find minima ofAppendix. The question how well a certain set of parameters
the cost functional/(p) given by equation (2). We choose s identifiable for a given set of data, i.e. for a certain model
direct search method, because they only use function valégfput, is not a trivial one. Some sets of parameters are
and no derivative information, neither explicit nor implicitpetter identifiable than others; and certain parameters might
for the optimization procedure. The fact, that we do not ne¢@ almost impossible to identify using a specific set of data.
to provide the derivatives (and do not need to define ame problem is, the data may not contain a lot of information
appropriate approximation scheme for them) for the complin a specific parameter and some parameters are simply
cated PDE-ODE model describing erythropoiesis, is a huget identifiable simultaneousiyFor a good overview on
advantage. Nevertheless, one should keep in mind that thee@sitivity analysis and a discussion for different approaches
are some drawbacks to direct search methods in general, andubset selection see e.g. [18]-[20]. Hence, for the sake of
the Nelder-Mead algorithm in specific. Direct search methodgnplicity and to avoid to select a subset of parameters which
tend to require a lot of evaluations of the cost functional

J(p), i.e., if solving the model is computationally expensive, “A trvial example isy = (p1/p2)y. Whereask = p1/p2 is obviously
identifiable (growth/decay-rate of an exponential process) we have no means

_they might be CompUtationa”y too COStly' Further, therﬁ identify the parameterg; and p2 simultaneously, due to the ambiguity
is practically no convergence theory for the Nelder-Mead= p1/p2=ap; /aps for any real numbery # 0.

IV. NUMERICAL RESULTS
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initSet1 initSet2
| N ” | P2 ” | p2 13.5 Post-Dialytic Hemoglobin Concentration

8 71.3589 | 15.0967 | 71.3599 | 15.0956 )
10 | 63.1753| 20.997 | 63.1755| 20.9969 13.0
14 | 63.0866 | 21.0543| 63.0867 | 21.0544 12.5
20 | 63.0237| 21.1054| 63.0238 | 21.1054
30 | 63.0314| 21.0979 | 63.0313 | 21.0979 =12.0
40 | 63.0263 | 21.0995| 63.0263 | 21.0994 o 11.5
50 | 63.0112| 21.1092| 63.0112 | 21.1092 g
60 | 63.0532| 21.081 | 63.0531 | 21.081 Ti110

TABLE | 10.5;

PARAMETER ESTIMATES OBTAINED USING TWO SETS OF STARTING

VALUES FOR THE OPTIMIZATION ALGORITHM. 10.0¢ -

9% 30 60 90 120 150

is difficult to estimate, we focus in this paper on identifying

two parameters simultaneously, using the Hgb measureméjﬁsz. Model output for N=10 (solid line) and N=60 (dashede})inStars
N . . enote measured data.
from the Crit-Line device: RBC lifespan and endogenous

EPO level.
The ’optimal’ parameters for the RBC lifespan and parameter estimations, i.6, p2) = (63.1753,20.997) and
endogenous EPO level, were estimated to bepr = (p;,p2) = (63.0532,21.081), respectively. The difference

63.05 and p, = 21.08. Thus, our optimal parameter set ispetween the two simulations is barely recognizable. Looking

optSet = (63.05,21.08). We define two sets of initial values: closely at the graphs one can observe a very small discrep-
initSetl = (56, 18.75) andinitSet2 = (70, 23.125), which ancy around day 50 — 90.

corresponds to a perturbation of the parameters of about
+10%. Further, we start parameter identification runs for

both sets of initial parameters for an increasing approxi-Our findings suggest that the parameter subset — RBC
mation dimensionN. ldeally, the parameter identificationﬁ. X
. |stpan and endogenous EPO level — is (locally) well

would give the same results, regardless of the set of InI“@entifiable using frequent measurements (3 times per week)

values which is used. Moreover, one would hope that wi or hemoglobin concentration. Further, the solutions of the

increasingV the estimated parameter values would express a

; : niinimization process of the cost-functional for different
convergent behavior. In Figure 1 we present the model outpuk P

N approximation dimensions seem to converge. Moreover, it
for both initial parameter set®itSet1 andinitSet2, as well bp 9

. eems that an approximation dimensionMf= 10 suffices
as the model output for the optimal parameter set and the - .
. : . 10-get a sufficient accurate estimate for the parameter subset
data measured. All three model simulations were determined . . -
. L . . and that the numerical solution does not express (distinct)
using an approximation dimension &f = 60.

. N oscillatory behavior.
In Table | the results of the parameter identification runs y

for N = 8,10, 14, 20, 30, 40, 50, 60 for the initial parameter
setsinitSetl = (56,18.75) and initSet2 = (70,23.125)
are shown. It can be observed that the estimated parameterkhe erythropoiesis model presented in [5] is adapted
for initSetl andinitSet2 are close to each other for allto an individual CKD patient by adjusting the following
N. These findings confirm that the estimated parameter segfameters: the total blood volunieBV, number of stem
indeed are minimizers of the cost-function&lp,, p») given Cells So committing to the erythroid lineage per day, the
in equation 2 and that the Nelder-Mead simplex algorithRone marrow response to EPChalf-life CGeg Of the drug
does not get stuck in a non-optimal point. Further, tePO , RBC lifespanu!7,, and endogenous EPO leveP™.

fact that a perturbation of the optimal parameter values diote, the notation of the parameters used here is conform
+10% provides the same estimates when minimizing thwith the notation used in [5]. For a list of the values for
cost-functional/(py, p») and is — for at leasV > 10 — very the adapted parameters see Table Il. TBV and stem cells
close to the original value, implies that the parameter subg@mmitting to the erythroid lineage were estimated using
chosen is (locally) well identifiable. Moreover, from Table Rn empirical formula (see [12]). The remaining parameters
one can see that, the parameter estimates for increasitgje estimated using the parameter identification scheme
approximation dimension®/ show a convergent behavior.presented in Section Il. Further, we have to mention that in
Whereas forN = 8 the estimates fop; and p, differ @ healthy person the endogenous EPO |&R8F is modeled
distinctly from optSet = (63.05,21.08), for N = 10 the using a compartment equation considering the amount of
estimated parameter set is already very clqse,p;) = EPO released by the kidneys (varies over time) and the
(63.1753,20.997). A further increase of the approximationdegradation rate (constant over time). In general, the kidneys
dimension, results only in minor changes of the estimatégact to a change in red blood cell mass by adapting the

parameter values. ) I . . .
In Ei 2 th del touts f§r= 10 We adapt the slope of the sigmoidal functions which describe how
n rFigure 2 we compare the model outputs 1or= the death rate of the CFU-E cells; and the maturation velocity of the

(solid line) andN = 60 (dashed line) and the correspondingeticulocytesks change according to the EPO level.

V. CONCLUSION

APPENDIX
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| Parameter| Meaning | Value | Unit | [16]
TBV total blood volume 4000 ml
So rate at which cells are | 6.64 - 106 1/d [17]
committing to the
erythroid lineage [18]
k1 constant for the sigmoid| 0.006788 | ml/mU
apoptosis rate for CFU-E
cells [19]
ko constant for the sigmoid| 0.18888 | ml/mU
maturation velocity for
reticulocytes [20]
Cleg degradation rate of 4.4124 1/d
administered EPO
Hmax maximal life span for 63.05 d
erythrocytes
Eend endogenous EPO level 21.08 muU/ml
TABLE 1l

VALUES OF THE ADJUSTED PARAMETERS FOR THE DIALYSIS PATIENT
SHOWN IN FIGURE 1 AND 2.

amount of EPO segregated. In the special setting of CKD it
is reasonable to assume that there is a low constant baseline
production of EPO by the kidneys. Thus, we adjust for those
patients the (constant) endogenous EPO level instead of the
change in productivity of the kidneys.
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