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Abstract—Individualization of therapy plays an increasing
role in the context of chronic diseases. A model for erythro-
poiesis, consisting of coupled partial differential equations, is
adapted to an individual patient. The numerical approximation
for the population equations is based on semigroup theory,
respectively on the theory of abstract Cauchy problems. The
system state is approximated by system states of high order
differential equations on finite dimensional subspaces of the
state space of the original system. A standard Least-Squares
formulation is used to define the cost-functional used for
the parameter identification. An example of (locally) well
identifiable parameters expressing numerical convergence for
increasing dimensions of the finite dimensional approximating
system is discussed. We demonstrate that a low approximation
dimension suffices to obtain accurate numerical solutions and
estimates for the parameters.

Index Terms—abstract Cauchy problems, structured popula-
tion equations, erythropoiesis, chronic kidney disease, parame-
ter estimation

I. I NTRODUCTION

A NEMIA effects almost all patients suffering from
chronic kidney disease (CKD) and is mainly caused

by a failure of renal excretory and endocrine function.
Already partial correction of anemia in dialysis patients
reduces cardiac-related morbidity and mortality, which is
the most common cause of death among these patients (see
for instance [1]–[3]). It has been suggested that chronic
renal disease progression may be slower when anemia is
reversed, emphasizing the benefits of early correction of
the anemia with erythropoietin stimulating agents (ESA).
ESAs stimulate the bone marrow to produce red blood
cells, exerting a similar effect than the endogenous hormone
erythropoietin (EPO) which is released by the kidneys and
which is insufficiently produced in CKD patients.

Erythropoiesis – the production of new red blood cells –
is a very complex process. Stem cells in the bone marrow
commit to the erythroid lineage and start to develop into red
blood cells, so called erythrocytes. This process takes about
two weeks. During this time the cells divide, differentiate
and some of them eventually die. The development from
stem cells into erythrocytes involves a number of different
cell stages which exert diverse characteristic patterns with
regard to the rate of proliferation, the rate of apoptosis,
the maturation velocity and the need for EPO and other
substances (for details see e.g. [4]). Therefore a model for
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erythropoiesis has to include submodels for various cell pop-
ulations. A rather comprehensive model for erythropoiesis
was developed in [5] (see also [6]). The model presented
in [5] consists of five structured population equations with
cell age being the structuring attribute, two ordinary differ-
ential equations describing the development of endogenous
and administered EPO over time plus a number of auxiliary
equations describing the influence of EPO on maturation
and mortality rates and the control of EPO secretion by
the kidneys based on the oxygen carrying capacity of blood
which is proportional to the erythrocyte population.

In comparison to healthy persons CKD patients have a
very high inter-individual variability in red blood cell (RBC)
lifespan, bone marrow response to EPO, endogenous EPO
production and half-life of the administered EPO compound.
Routine measurements of these quantities are not practicable
in a clinical environment or are simply impossible. Therefore
prediction of the individual response to EPO administration
schemes is extremely difficult and is further aggravated
by the fact that there is a long delay in reaction of the
RBC population to EPO levels. The dose and frequency of
administration of an ESA treatment regimen are most often
determined based on prior experience of the physician and
on established guidelines. This approach bears some severe
limitations so that hemoglobin levels in CKD patients tend
to fluctuate widely and cycling phenomena are frequently
observed, [7], [8].

Since the mathematical model developed in [5] is based
on the physiological mechanisms governing erythropoiesis
it can be used – as we shall show – to guide and to
individualize the ESA treatment regimen for CKD patients.
This requires in particular to adapt to the specific patient
those model parameters which correspond to physiological
quantities which are known to have a high inter-individual
variability.

In the next sections we shall show how to find numerical
solutions for the erythropoiesis model and identify parame-
ters. The construction makes use of semigroup theory and
is based on approximation of age distributions by Legendre
polynomials. A standard nonlinear least-squares formulation
for the cost functional is used and minimized using a
downhill simplex method. Thus, avoiding the need to provide
derivatives for the relatively complicated PDE-ODE system.
The numerical approximation scheme presented in Section II
are used for parameter identification and we present results
which show that a low approximation dimensionN suffices
to get accurate estimates for the parameter values. Further,
the results indicate that the “optimal” parameters of the
approximations converge for increasingN .
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II. GENERAL POPULATION EQUATION AND NUMERICAL

APPROXIMATION

As already mentioned in the introduction the core of the
model developed in [5] consists of a coupled system of five
structured population equations which are of the following
type:

∂

∂t
u(t, x) + v(E(t))

∂

∂x
u(t, x)

= (β − α (E(t), x))u(t, x),

t ≥ 0, x ∈ Ω = [xmin, xmax],

u(0, x) = φ(x), x ∈ Ω,

v(E(t))u(t, xmin) = f(t), t ≥ 0,

(1)

whereu(t, x) is the population density at timet and cell
agex. Furtherv(E(t)) denotes the maturation velocity of
cells according to the erythropoietin levelE(t) at time t, β
is the proliferation rate,α(E(t), x) the rate of apoptosis de-
pending on the erythropoietin levelE(t) at timet and the cell
agex. The initial population density is denoted byφ(x) and
f(t) is the influx of cells from the precedent population class
at timet. The general population equation presented here, is a
linear hyperbolic partial differential equation (PDE). Hyper-
bolic PDEs are in general more difficult to approximate then
elliptic or parabolic ones, because approximations tend to
express spurious, numerically induced, oscillatory behavior.

Our approach for solving the model equations numerically
is based on semigroup theory respectively on the theory of
abstract Cauchy problems (see e.g. [9], [10]) and makes use
of Trotter-Kato type approximation results for such problems.
The idea is to formulate problem (1) as an abstract Cauchy
problem in the state spaceX = L2(Ω,R),

u̇(t) =A(t)u(t) + f̃(t), t ≥ 0

u(0) =φ,

where the operatorA(t) is given by (κ(t, x) = β −
α(E(t), x)),

domA(t) =
{

φ ∈ X
∣

∣φ absolutely continuous onΩ,

φ(xmin) = 0, v(E(t))φ′ − κ(t, ·)φ ∈ X
}

,

A(t)φ = −v(E(t))φ′ + κ(t, ·)φ, φ ∈ domA(t).

The term f̃(t) reflects the boundary condition in (1) and
is given by δ0f(t), where δ0 is the delta impulse defined
by 〈δ0, φ〉X = φ(0) for continuousφ. It is convenient to
transform the abstract Cauchy problems for each population
equation to an abstract Cauchy problem on the weighted L2-
spaceXw = L2

w(0, 1;R) with the constant weightw =
xmax − xmin. The transformation is given byφ → φ ◦ h,
φ ∈ X , whereh(τ) = xmin + τ(xmax − xmin), 0 ≤ τ ≤ 1.
The weightw is introduced in order to makeX and Xw

isometric under this transformation, i.e.,
‖φ‖X = ‖φ ◦ h‖Xw

. In order to to get approxima-
tions to the solutions of (1) respectively of the Cauchy
problem onXw we choose finite dimensional subspaces
XN = span(e0, . . . , eN) ⊂ Xw, N = 1, 2, . . . , where
ej(τ) = w−1/2Lj(−1 + 2τ), 0 ≤ τ ≤ 1, j = 1, 2, . . . .
Here,Lj denotes thej-th Legendre polynomial. Following
the approach taken in [11] we define the approximating
operatorsAN on XN asANφ = ΠNAwφ, φ ∈ XN , where
ΠN is the orthogonal projectionXw → XN and Awφ is

obtained by formally applyingAw to φ. In generalφ is not
in domAw, becauseφ is differentiable on[0, 1] butφ(0) 6= 0
in general. Formally applyingAw to φ meansAwφ =
−w−1v(E(t))φ′ + (κ ◦ h)φ + δ0φ(0). Then AN is given
by ANφ = −w−1v(E(t))ΠNφ′ + ΠN (κ ◦ h)φ + δN0 φ(0),
φ ∈ XN . The ‘approximating’ delta impulseδN0 ∈ XN is
defined by〈δN0 , φ〉Xw

= φ(0) for φ ∈ XN .
Whereas one could argue that there are probably easier

ways to create an approximation for a hyperbolic PDE, than
this specific approach, the semigroup approach possesses
critical advantages over other methods, like for instance a
finite-element method. One is, this method allows for a very
low approximation dimension in our case. Numerical results
indicate that forN about 10 we get accurate numerical ap-
proximations of the total population. Hence, we need to solve
only a system of 11 ODEs which amounts to a relatively
low computational cost. Whereas this might not be of utterly
importance when it comes to run one simulation, this plays
a more critical role when you do parameter identification. A
process where, in general, the model has to be solved several
hundred times.

Another minor advantage over most other schemes is, that
our approach allows us to get the total populationP (t) of a
cell class at timet, which is defined by

P (t) =

∫

Ω

u(t, x) dx,

whereu(t, x) is the solution of (1), without actual integrating
the population density over all cell ages. It can be easily
shown (see [6]) that the approximating total population
PN (t) can simply be read from the numerical approximation,
more precisely,

PN (t) =
√
xmax − xminw

N
0 (t),

wherewN
0 (t) is the coefficient ofe0 in the representation

of the approximating solution as linear combination of the
basis elementsej , j = 0, . . . , N .

Further, certain characteristics of the original system are
transferred to the approximation, because we are approxi-
mating a dynamical system using again a dynamical system.
The preservation of characteristics of the original system
plays an increasingly important role when you are dealing
with parameter identification or, for instance, optimal control.
Both, are situations, where we try to make qualitative and
quantitative statements of the behavior of the original system
by, in general, only looking at the numerical approximations.
These raises questions like, do the parameters we identify,
when using a specific numerical scheme, really converge to
the ’optimal’ parameter of the original system? Is the optimal
control we define for the approximating system indeed an
optimal control for the original problem? The answer is: not
necessarily. Hence, preserving characteristics of the original
system in the numerical scheme is an important objective in
these situations.

III. PARAMETER IDENTIFICATION

We are using the following nonlinear least-squares formu-
lation for the cost functional

J(p) =
N
∑

j=1

(yj − g (tj , p))
2
, (2)
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wherep is the set of parameters to be estimated. Furthermore,
yj are post-dialytic hemoglobin measurements andg(tj , p) is
the corresponding ’model output’. The sampling timestj are
the days at which the dialysis treatment takes place (usually
on Monday, Wednesday and Friday every week).

The datayj is obtained using a Crit-Line Monitor. The
Crit-Line device provides readings of the hemoglobin con-
centration and the oxygen saturation during hemodialysis.
It is a non-invasive method based on an optical sensor
technique. The sensor is attached to a blood chamber and
is placed in-line between the arterial blood tubing set and
the dialyzer. The measurements are based on both the
absorption properties of the hemoglobin molecule and the
scattering properties of RBCs. We use these readings for
the hemoglobin concentration (g/dl), which is the amount
of hemoglobin all RBCs carry divided by the total blood
volume, to identify the parameters. Note, the functiong(t, p),
which is the hemoglobin concentration predicted by the
model, is not a state variable of the model. Therefore we
need to expressg(t, p in terms of the state variables of the
system such that it corresponds indeed to the hemoglobin
concentration in the patients blood. In order to obtain this
submodel we need to make some assumptions about the
system:

1) We assume that on average the mean corpuscular
hemoglobin of the RBCs of the dialysis patient is 29
pg.

2) We estimate the post-dialytic blood volume using an
empirical formula (see [12]) and assume it to be
constant over time.

The second assumption might not be correct. The post-
dialytic blood volume probably varies from treatment to
treatment. At the moment there is no way to measure absolute
blood volume in dialysis patient on a regular basis. Therefore,
although the assumption may not be physiologically accurate,
it needs to be made, to be able to determine the hemoglobin
concentration from the model output. Altogether we have

g(t, p) =
M(t, p) ·MCH

TBV
· c,

whereM(t, p) is the total RBC population,MCH is the
mean corpuscular hemoglobin in pg,TBV denotes the post-
dialytic blood volume in ml andc = 106 is the factor
with which one has to multiply to get the hemoglobin
concentration in the unit g/dl.

We use a Nelder-Mead algorithm, i.e., a simplex method
(for details see, for instance, [13], [14]), to find minima of
the cost functionalJ(p) given by equation (2). We choose a
direct search method, because they only use function values
and no derivative information, neither explicit nor implicit,
for the optimization procedure. The fact, that we do not need
to provide the derivatives (and do not need to define an
appropriate approximation scheme for them) for the compli-
cated PDE-ODE model describing erythropoiesis, is a huge
advantage. Nevertheless, one should keep in mind that there
are some drawbacks to direct search methods in general, and
the Nelder-Mead algorithm in specific. Direct search methods
tend to require a lot of evaluations of the cost functional
J(p), i.e., if solving the model is computationally expensive,
they might be computationally too costly. Further, there
is practically no convergence theory for the Nelder-Mead
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Fig. 1. The upper panel shows the model output for the initial parameter
value sets that were used and model output for the ’optimal’ parameter.
Stars denote measured data. The lower panel shows the administered EPO
doses.

algorithm. In fact, in [15] a counterexample is presented
for a family of strictly convex functions in two dimensions.
Despite, these unsatisfying theoretical results, Nelder-Mead
seems to do quite well in practice and is a widely used
optimization method. One just has to be careful to make
sure that the algorithm does not get stuck at a non-optimal
point. Hence, you may want to restart the algorithm with
slightly modified parameter values to alleviate this problem.

IV. N UMERICAL RESULTS

The numerical approximation scheme described in Sec-
tion III was implemented in Python, see [16]. Further, we
use the Nelder-Mead simplex method implemented in the
SciPy package (see [17]) for Python to minimize the cost-
functional given in equation (2).

The model is adapted to an individual CKD patient by
adjusting the following parameters: the total blood volume,
number of stem cells committing to the erythroid lineage
per day, the bone marrow response to EPO, half-life of the
administered EPO compound, RBC lifespan and endogenous
EPO level. Some of those parameters are estimated using
empirical formulae using information on gender, height and
weight and the remaining parameters are determined using
the method described in Section III. For further details see
Appendix. The question how well a certain set of parameters
is identifiable for a given set of data, i.e. for a certain model
output, is not a trivial one. Some sets of parameters are
better identifiable than others; and certain parameters might
be almost impossible to identify using a specific set of data.
The problem is, the data may not contain a lot of information
on a specific parameter and some parameters are simply
not identifiable simultaneously1 For a good overview on
sensitivity analysis and a discussion for different approaches
to subset selection see e.g. [18]–[20]. Hence, for the sake of
simplicity and to avoid to select a subset of parameters which

1A trivial example isẏ = (p1/p2)y. Whereask = p1/p2 is obviously
identifiable (growth/decay-rate of an exponential process) we have no means
to identify the parametersp1 andp2 simultaneously, due to the ambiguity
k = p1/p2=αp1/αp2 for any real numberα 6= 0.
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initSet1 initSet2

N p1 p2 p1 p2

8 71.3589 15.0967 71.3599 15.0956

10 63.1753 20.997 63.1755 20.9969

14 63.0866 21.0543 63.0867 21.0544

20 63.0237 21.1054 63.0238 21.1054

30 63.0314 21.0979 63.0313 21.0979

40 63.0263 21.0995 63.0263 21.0994

50 63.0112 21.1092 63.0112 21.1092

60 63.0532 21.081 63.0531 21.081

TABLE I
PARAMETER ESTIMATES OBTAINED USING TWO SETS OF STARTING

VALUES FOR THE OPTIMIZATION ALGORITHM.

is difficult to estimate, we focus in this paper on identifying
two parameters simultaneously, using the Hgb measurements
from the Crit-Line device: RBC lifespan and endogenous
EPO level.

The ’optimal’ parameters for the RBC lifespanp1 and
endogenous EPO levelp2 were estimated to be:p1 =
63.05 and p2 = 21.08. Thus, our optimal parameter set is
optSet = (63.05, 21.08). We define two sets of initial values:
initSet1 = (56, 18.75) andinitSet2 = (70, 23.125), which
corresponds to a perturbation of the parameters of about
±10%. Further, we start parameter identification runs for
both sets of initial parameters for an increasing approxi-
mation dimensionN . Ideally, the parameter identifications
would give the same results, regardless of the set of initial
values which is used. Moreover, one would hope that with
increasingN the estimated parameter values would express a
convergent behavior. In Figure 1 we present the model output
for both initial parameter setsinitSet1 andinitSet2, as well
as the model output for the optimal parameter set and the
data measured. All three model simulations were determined
using an approximation dimension ofN = 60.

In Table I the results of the parameter identification runs
for N = 8, 10, 14, 20, 30, 40, 50, 60 for the initial parameter
sets initSet1 = (56, 18.75) and initSet2 = (70, 23.125)
are shown. It can be observed that the estimated parameters
for initSet1 and initSet2 are close to each other for all
N . These findings confirm that the estimated parameter sets
indeed are minimizers of the cost-functionalJ(p1, p2) given
in equation 2 and that the Nelder-Mead simplex algorithm
does not get stuck in a non-optimal point. Further, the
fact that a perturbation of the optimal parameter values of
±10% provides the same estimates when minimizing the
cost-functionalJ(p1, p2) and is – for at leastN ≥ 10 – very
close to the original value, implies that the parameter subset
chosen is (locally) well identifiable. Moreover, from Table I
one can see that, the parameter estimates for increasing
approximation dimensionsN show a convergent behavior.
Whereas forN = 8 the estimates forp1 and p2 differ
distinctly from optSet = (63.05, 21.08), for N = 10 the
estimated parameter set is already very close,(p1, p2) =
(63.1753, 20.997). A further increase of the approximation
dimension, results only in minor changes of the estimated
parameter values.

In Figure 2 we compare the model outputs forN = 10
(solid line) andN = 60 (dashed line) and the corresponding
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Fig. 2. Model output for N=10 (solid line) and N=60 (dashed line). Stars
denote measured data.

parameter estimations, i.e.(p1, p2) = (63.1753, 20.997) and
(p1, p2) = (63.0532, 21.081), respectively. The difference
between the two simulations is barely recognizable. Looking
closely at the graphs one can observe a very small discrep-
ancy around day 50 – 90.

V. CONCLUSION

Our findings suggest that the parameter subset – RBC
lifespan and endogenous EPO level – is (locally) well
identifiable using frequent measurements (3 times per week)
for hemoglobin concentration. Further, the solutions of the
minimization process of the cost-functional for different
approximation dimensions seem to converge. Moreover, it
seems that an approximation dimension ofN = 10 suffices
to get a sufficient accurate estimate for the parameter subset
and that the numerical solution does not express (distinct)
oscillatory behavior.

APPENDIX

The erythropoiesis model presented in [5] is adapted
to an individual CKD patient by adjusting the following
parameters: the total blood volumeTBV , number of stem
cells S0 committing to the erythroid lineage per day, the
bone marrow response to EPO2, half-life cex

deg of the drug
EPO , RBC lifespanµm

max and endogenous EPO levelEend.
Note, the notation of the parameters used here is conform
with the notation used in [5]. For a list of the values for
the adapted parameters see Table II. TBV and stem cells
committing to the erythroid lineage were estimated using
an empirical formula (see [12]). The remaining parameters
were estimated using the parameter identification scheme
presented in Section II. Further, we have to mention that in
a healthy person the endogenous EPO levelEend is modeled
using a compartment equation considering the amount of
EPO released by the kidneys (varies over time) and the
degradation rate (constant over time). In general, the kidneys
react to a change in red blood cell mass by adapting the

2We adapt the slope of the sigmoidal functions which describe how
the death rate of the CFU-E cellsk1 and the maturation velocity of the
reticulocytesk2 change according to the EPO level.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013



Parameter Meaning Value Unit

TBV total blood volume 4000 ml

S0 rate at which cells are
committing to the
erythroid lineage

6.64 · 106 1/d

k1 constant for the sigmoid
apoptosis rate for CFU-E

cells

0.006788 ml/mU

k2 constant for the sigmoid
maturation velocity for

reticulocytes

0.18888 ml/mU

cex
deg degradation rate of

administered EPO
4.4/24 1/d

µmax maximal life span for
erythrocytes

63.05 d

Eend endogenous EPO level 21.08 mU/ml

TABLE II
VALUES OF THE ADJUSTED PARAMETERS FOR THE DIALYSIS PATIENT

SHOWN IN FIGURE 1 AND 2.

amount of EPO segregated. In the special setting of CKD it
is reasonable to assume that there is a low constant baseline
production of EPO by the kidneys. Thus, we adjust for those
patients the (constant) endogenous EPO level instead of the
change in productivity of the kidneys.

REFERENCES

[1] A. Besarab, W. Bolton, J. Browne, J. Egrie, A. Nissenson, D. Okamoto,
S. Schwab, and D. Goodkin, “The effects of normal as compared
with low hematocrit values in patients with cardiac disease who are
receiving hemodialysis and epoetin,”The New England Journal of
Medicine, vol. 339, pp. 584–590, 1998.

[2] A. Go, G. Chertow, D. Fan, C. McCulloch, and C. Hsu, “Chronic
kidney disease and the risks of death, cardiovascular events, and
hospitalization,”The New England Journal of Medicine, vol. 351, pp.
1296–1305, 2004.

[3] G. Strippoli, J. Craig, C. Manno, and F. Schena, “Hemoglobin targets
for the anemia of chronic kidney disease: A meta-analysis of random-
ized, controlled trials,”Journal of American Society of Nephrology,
vol. 15, pp. 3154–3165, 2004.

[4] M. Lichtman, E. Beutler, T. Kipps, U. Seligsohn, K. Kaushansky, and
J. Prchal, Eds.,Williams Hematology, 7th ed. McGraw-Hill, 2005.

[5] D. Fuertinger, F. Kappel, S. Thijssen, N. Levin, and P. Kotanko, “A
model of erythropoiesis in adults with sufficient iron availability,”
Journal of Mathematical Biology, vol. 66, no. 6, pp. 1209–1240, 2013,
DOI: 10.1007/s00285-012-0530-0.

[6] D. Fuertinger, “A model for erythropoiesis,” Ph.D. dissertation, Uni-
versity of Graz, Austria, 2012.

[7] A. Collins, R. Brenner, J. Ofman, E. Chi, N. Stuccio-White, M. Kr-
ishnan, C. Solid, N. Ofsthun, and J. Lazarus, “Epoetin alfa use in
patients with ESRD: an analysis of recent US prescribing patterns and
hemoglobin outcomes.”American Journal of Kidney Diseases, vol. 46,
pp. 481–488, 2005.

[8] S. Fishbane and J. Berns, “Hemoglobin cycling in hemodialysis
patients treated with recombinant human erythropoietin,”Kidney In-
ternational, vol. 68, pp. 1337–1343, 2005.

[9] K.-J. Engel and R. Nagel,One Parameter-Semigroups for Linear
Evolution Equations. Springer, 2000.

[10] K. Ito and F. Kappel,Evolution Equations and Approximations. World
Scientific, 2002.

[11] F. Kappel and K. Zhang, “Approximation of linear age-structured pop-
ulation model using Legendre polynomials,”Journal of Mathematical
Analysis and Applications, vol. 180, pp. 518–549, 1993.

[12] S. Nadler, J. Hidalgo, and T. Bloch, “Prediction of blood volume in
normal human adults,”Surgery, vol. 51, pp. 224–232, 1962.

[13] J. Nelder and R. Mead, “A simplex method for function minimization,”
Computer Journal, vol. 7, pp. 308–313, 1965.

[14] J. Nocedal and S. Wright,Numerical Approximation, 2nd ed., ser.
Operations Research and Financial Engineering. Springer, 2006.

[15] K. McKinnon, “Convergence of the Nelder-Mead simplex method to a
nonstationary point,”SIAM Journal on Optimization, vol. 9, pp. 431–
441, 1996.

[16] G. van Rossum and F. L. Drake, Eds.,Python Reference Manual.
http://docs.python.org/ref/ref.html: Python Software
Foundation, 2012.

[17] E. Jones, T. Oliphant, P. Petersonet al., “SciPy: Open source scientific
tools for Python,” http://www.scipy.org/, 2001–.

[18] H. Miao, X. Xia, A. S. Perelson, and H. Wu, “On identifiability of
nonlinear ODE models and applications in viral dynamics,”SIAM Rev.,
vol. 53, pp. 3 – 39, 2011.

[19] E. Walter and L. Pronzato, “Qualitative and quantitative experiment de-
sign for phenomenological models — A survey,”Automatica, vol. 26,
no. 2, pp. 195 – 213, 1990.

[20] M. S. Olufsen and J. T. Ottesen, “A practical approach to parameter
estimation applied to model predicting heart rate regulation,”J. Math.
Biol., vol. 67, pp. 39 – 68, 2013, DOI 10.1007/s00285-012-0535-8.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II 
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19253-1-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013




