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Abstract—Employing the Pseudoanalytic Function Theory,
and based upon the inverse Dirichlet boundary value problem
for the two-dimensional Electrical Impedance Equation, an
open problem also known as Electrical Impedance Tomography,
we propose a new cryptographic method whose main charac-
teristics are the Confidentiality and the Data Integrity.

Index Terms—Cryptography, Electrical Impedance Tomog-
raphy, Pseudoanalytic Functions, Vekua Equation.

I. INTRODUCTION

THE study of techniques for secure communication is
the main goal of Cryptography [6]. That is why this

discipline is strongly related with other branches of Science,
as Applied Mathematics and Computation. There are many
other disciplines on which the Cryptography can be based
on. Yet, the paragraphs shown further will show that, in this
particular proposal, both Mathematics and Computes Sci-
ences will provide enough material to ensure the successful
performance of the novel method. Therefor, the Figure 1 shall
be adequate to appoint the basic execution of a ciphering
method.

Fig. 1: A general description of a cryptographic method.

This work pays particular attention to the Pseudoanalytic
Function Theory [3], that has recently proved to be an
important tool in Theoretical Physics, and Applied Mathe-
matics (see e.g. [4], [11], and [15]). More precisely, since the
pseudoanalytic functions have been employed for analyzing
the Electrical Impedance Tomography [18] (a mathematical
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problem that remains open), it is possible to propose a new
cryptographic method that will positively posses characteris-
tics as Confidentiality and Data Integrity.

From the scope of these pages, a cryptographic algorithm
will be considered a mathematical method whose main pur-
pose is to convert information into encrypted data, such that
the decryption is available only for those that posses the key.
For that, the cryptographic algorithm will arise employing
numerical techniques that allowed the approaching of the
so-called Taylor Series in Formal Powers.

Starting with a brief study of the Pseudoanalytic Function
Theory, and its relation with the two-dimensional Electrical
Impedance Equation, we expose the details of the method-
ology for constructing a cryptographic method.

Based upon the material previously posed in a variety of
works, fully dedicated to the forward Dirichlet boundary
value problem for the Electrical Impedance Equation, we
explain that this method is effective for ciphering numerical
data whose values are significantly bigger than 10−12. Thus,
the variety of data classes on which this method could
be useful, can be considered wide enough for engineering
applications.

II. THE CRYPTOGRAPHIC PROPOSAL.

The idea of proposing a new cryptographic algorithm
arises from the study of the Electrical Impedance Tomog-
raphy problem, employing modern elements of the Pseudo-
analytic Functions [11]. Nevertheless, we shall appoint that
these numerical techniques do not provide yet an adequate
solution for the problem.

As a matter of fact, most works (see e.g. [4] and [13])
mainly analyze the forward Dirichlet boundary value prob-
lem for the Electrical Impedance Equation (the Electrical
Impedance Tomography constitutes the inverse problem,
correctly posed in mathematical form by A.P. Calderon in
[5]). Thus, even the new techniques do provide additional
information for better understanding the field, it is impossible
to assert that the Electrical Impedance Tomography problem
could be solved for arbitrary cases.

Taking into account the last statement, we shall propose
the employment of the Pseudoanalytic Function Theory for
constructing a cryptographic method, because any attempt
to unlock the encrypted information would be equivalent
to fully solve an arbitrary case of the Electrical Impedance
Tomography problem.
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III. ELEMENTS OF PSEUDOANALYTIC FUNCTION
THEORY AND THEIR RELATION WITH THE ELECTRICAL

IMPEDANCE EQUATION.
Let us consider the two-dimensional case of the Electrical

Impedance Equation:

∇ · (σ∇u) = 0, (1)

where u is the electric potential and σ is a separable-variables
non-vanishing function within a bounded domain Ω, with
boundary Γ, such that:

σ = σ1(x)σ2(y). (2)

By introducing the notations:

W =
√
σ∂xu− i

√
σ∂yu, p =

√
σ2(y)

σ1(x)
, (3)

where i2 = −1, ∂x = ∂
∂x and ∂y = ∂

∂y ; the equation (1) can
be rewritten into a Vekua equation [17] of the form:

∂zW −
∂zp

p
W = 0, (4)

where ∂z = ∂x + i∂y , and W represents the complex
conjugation of W : W = ReW − i ImW .

The general solution of this equation can be expressed by
means of the Taylor series in formal powers [3]:

W =
∞∑

n=0

Z(n) (an, z0; z) . (5)

This is, indeed, a generalization of the classical postulates
of Complex Analysis, that was mainly developed by L.
Bers [3]. The following paragraphs contain a condensed
description of the material that will be needed for our further
discussions. The reader can find a complete and detailed
explanation of these postulates in [3] and [11].

A. Formal Powers.

The formal power Z(0)
0 (a0, z0; z) with complex constant

coefficient a0, center at z0, depending upon z, formal expo-
nent 0, and corresponding to the generating pair (F0, G0); is
expressed as:

Z
(0)
0 (a0, z0; z) = λ0F0 + µ0G0;

where λ0 and µ0 are real constants such that

λ0F0(z0) + µ0G0(z0) = a0;

and
F0 = p, G0 =

i

p
.

where p possesses the form (3).
The formal powers with higher formal exponents n, are

defined by the recursive integral expressions:

Z
(n)
j0

(an, z0; z) = n

∫ z

z0

Z
(n−1)
j1

(a0, z0; z)d(Fj0 ,Gj0 )z. (6)

where j0 = 0, 1 and j1 = 1, 0. This is, if j0 = 0 then
j1 = 1, and if j0 = 1 then j1 = 0. The integral expressions
in the right-hand side of (6) are what can be considered
antiderivartives in the sense of Bers [3]:∫ z

z0

Z
(n−1)
j1

(a0, z0; z)d(Fj0 ,Gj0 )z =

= Gj0Re
∫

Λ

F ∗j0Z
(n−1)
j1

(a0, z0; z)dz+

+Fj0Re
∫

Λ

G∗j0Z
(n−1)
j1

(a0, z0; z)dz.

Here, Λ is a rectifiable curve going from z0 upto z, and:

F1 =
√
σ, G1 =

i√
σ
.

whereas
F ∗j0 = −iFj0 , G∗j0 = −iGj0 ,

as well
F ∗j1 = −iFj1 , G∗j1 = −iGj1 .

Once more, the detailed description of the construction and
characteristics of the formal powers can be found in [3] and
[11]. Here we will only enhance two fundamental properties
for our discussions.

1)
lim
z→z0

Z(n)(an, z0; z) = an(z − z0)n. (7)

2) Let an = a′n + ia′′n, where a′n and a′′n are both real
constants. Thus

Z(n)(an, z0; z) =

= a′nZ
(n)(1, z0; z) + a′′nZ

(n)(i, z0; z). (8)

The absence of the subindex j0 and j1 indicates that the
properties are valid for all formal powers.

Notice the last statement establishes that any formal power
Z(n)(an, z0; z) can be approached by the linear combination
of Z(n)(1, z0; z) and Z(n)(i, z0; z), thus the numerical cal-
culations shall be exclusively performed to approach these
two classes of formal powers.

Moreover, in [8] was provided the proof about the com-
pleteness of the set:{

Re Z(n)(1, z0; z)|Γ,Re Z(n)(i, z0; z)|Γ
}∞
n=0

, (9)

for approaching solutions of the forward Dirichlet boundary
value problem corresponding to the equation (1).

This is, given a non-vanishing function σ within a bounded
domain Ω, with boundary Γ, any boundary condition u|Γ can
be approached by the linear combination of the elements
belonging to (9), that are the real parts of the formal powers
with coefficients 1 and i, valued at the points belonging to
the boundary Γ:

u|Γ =
∞∑

n=0

c(1)
n Re Z(n)(1, z0; z)|Γ+

+
∞∑

n=0

c(i)n Re Z(n)(i, z0; z)|Γ, (10)

where c(1)
n and c(i)n are all real constant coefficients.

A final statement is in place before studying the numerical
method for approaching the elements of (9).

It is a conjecture posed first in [15], and employed to
analyze a wider class of conductivity functions and domains
in [14]. It establishes that any function σ, fully defined within
a domain Ω, can be considered at every single point, a special
separable-variables function for which j0 = j1, thus it can be
employed for numerically approaching the elements of (9).
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B. Numerical approaching of the formal powers.

This Section is dedicated to briefly explain the numerical
method for approaching integral expressions corresponding
to (6). We will only expose the procedure for calculating the
formal powers with coefficient 1, since there are not relevant
logical variations when taking into account the coefficient i.

Since the integral expressions of (6) are path-independent,
as proved in [3], let us consider a collection of Q = Q+ 1
points:

{x[q], y[q]}Qq=0 ;

located in the closed interval [0, 1]; corresponding to a
parametric radius of magnitude R, traced into a circle with
center at z0 = 0, and with some angle θ, such that:

x[q] = r[q] cos θ, y[q] = r[q] sin θ, (11)

where r[q] are points located upon the radius R, traced
equidistantly among each other.

Then, the elements of the array Z(0)[q], corresponding to
the numerical approach of the formal power Z(0) (1, 0; z),
will be defined as follows:

Z(0)[q] =
√
σ(x[q], y[q]). (12)

Notice that according to (7), for k = 0 and every n > 0, we
will have that:

Z(n)[0] = 0.

The subsequent elements q of the arrays Z(n)[q] will be ap-
proached according to the following variation of the classical
trapezoidal integration method:

Z(n)[q] = F [q]·

·Re
q∑

h=0

(
G∗[h]Z(n−1)[h] +G∗[h+ 1]Z(n−1)[h+ 1]

)
·

· (x[h+ 1]− x[h] + i (y[h+ 1]− y[h])) +

+G[q]·

·Re
q∑

h=0

(
F ∗[h]Z(n−1)[h] + F ∗[h+ 1]Z(n−1)[h+ 1]

)
·

· (x[h+ 1]− x[h] + i (y[h+ 1]− y[h])) . (13)

On behalf of briefness, we will denote these calculations
in operational form:

Z(n) [q] = B
[
Z(n−1) [q]

]
. (14)

where n = 1, 2, ..., N .
This process will be performed for every angle θ on which

the close interval [0, 2π) is subdivided. Particularly, we will
consider an array of S angles, such that:{

θ[s] =
2πs

S

}S

s=0

. (15)

In other terms, we will consider S angle intervals, over
which N formal powers will be numerically approached,
considering Q equidistant points on every radius.

After obtaining N formal powers for the coefficient 1, and
N formal powers for the coefficient i, each one composed
by S arrays of Q elements, we shall collect the real values
of Z(n) [Q; s], s = 0, 1, 2, ...,S; as posed in the equation (9).

Thus, we will obtain a linear independent system of N =
2N + 1 vectors, each one with S elements.

Moreover, we can apply a standard Gram-Schmidt or-
thonormalization process to the set:{

Z(n) [K; s]
}N,S

n=0,s=0
,

from which it will upraise a matrix:

U[N,S]; (16)

whose lines will constitute a set orthonormal vectors. This
is:

〈Un1 , Un2〉 =
S∑

s=0

Un1 [s]Un2 [s] =

{
0; n1 6= n2,
1; n1 = n2;

where Un represents a vector of S elements, containing all
numbers of the n-line corresponding to the matrix U[N,S];
whereas Un[s], s = 0, 1, 2, ...,S; represent each element of
the vector Un.

IV. CONSTRUCTION OF THE CRYPTOGRAPHIC
ALGORITHM.

We propose a Private Key Algorithm, because the encryp-
tion key is not publicly known. In other words, not any
person can employ the encryption key to cipher a message,
and only who has the corresponding decryption key will be
able to decipher the information. In these kind of algorithms,
the cipher key and the decryption key compose the Private
Key.

Thus, let us consider a random matrix A[Q,S], whose
elements will be suppose to be the collected values of the
function σ, introduced in (2), such that every line q =
0, 1, 2, ..., Q; contains the conductivity values corresponding
to every radius s = 0, 1, 2, ...,S (notice every value must
be positive and bigger than zero). We shall denote the total
number of lines as Q = Q+ 1.

Thus, by applying the full procedure described in the
Section III, we can obtain the matrix U[N,S] posed in (16).

Suppose there is as set of M×N values to be encrypted,
where M = M + 1. They can be always organized into
a matrix B[M,N], thus every element bm,n ∈ B[M,N] will
represent a number to encrypt. Here n = 0, 1, 2, ...,N − 1;
and m = 0, 1, 2, ...,M .

The encryption idea arises as follows. Let us consider the
vector Cm, composed by S elements, upcoming from the
linear combination:

Cm =
N∑

n=0

bm,nU
n. (17)

If this operation is performed considering m = 0, 1, 2, ...,M ;
we will obtain a set of M vectors with form (17), each one
containing S elements.

Thus we can introduce a matrix:

C[M,S] =
[
C0;C1;C2; . . . ;CM

]
, (18)

that, as a matter of fact, is the encryption of the data
contained into the matrix B[M,N].

From this point of view, the decryption process is simple.
Since all lines of the matrix U[N,S], introduced in (16),
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Fig. 2: Simplified illustration of the encryption process, employing
the algorithm based on pseudanalytic approach.

are orthonormal vectors, the encrypted data bm,n can be
recovered by simply considering the inner products:

bm,n = 〈Cm, Un〉 =
S∑

s=0

Cm[s]Un[s]; (19)

where Cm[s], s = 0, 1, 2, ...,S; represent each element of
the vector Cm.

On the light of the previous paragraphs, we can propose
the elements of the Private and the Public Keys.
Private Key
• A random matrix A[Q,S].
• A maximum number N of formal powers.
• A set of M ×N values to be encrypted; all contained

into a matrix B[M,N].
Public Key
• A matrix C[M,S].

A. Encryption Process.

We shall now summarize the encryption and decryption
processes. First, in order to perform the encryption process,
we follow the next steps:

1) Construct the random matrix A[Q,S], that will be part
of the Private Key.

2) Employing the A[Q,S] matrix, and using the number
N (the second part of the Private Key), approach
N formal powers, employing the procedure described
in the Section III, taking also into consideration the
postulates of the Section IV.

3) Applying a Gram-Schmidt process, obtain an orthonor-
mal system U[N,S], as posed in (16).

4) Introduce a matrix B[M,N], containing the data bm,n

to be encrypted.
5) Construct a matrix C[M,N], containing the encrypted

data, according to ideas exposed in the Section IV.
This matrix will be the Public Key.

B. Decryption Process.

1) Employing the matrix A[Q,S], employed in the Encryp-
tion Process, construct N formal powers.

2) Approach the orthonormal system U[N,S].
3) Finally, for recovering the encrypted data, calculate the

inner products between the vectors Cm belonging to
C[M,N] in (18), and Un belonging to U[N,S] in (16):

bm,n = 〈Cm, Un〉 .

A brief illustration of the encrypting process is plotted
in Figure 2, whereas the Figure 3 illustrates the decoding
procedure.

On behalf of clarity, it is also useful to expose the full
procedure in the Algorithm 1. We shall remark that the
numerical values appearing on it, are purely illustrative.

Fig. 3: Brief illustration of the decryption process.

Algorithm 1 Cryptographic Algorithm
function FORMAL POWER APPROACHER
S← 501; (Maximum number of radii)
Q← 101; (Maximum number of points per radius)
N ← 250; (Maximum number of Formal Powers)
while n = 0→ N do

while s = 0→ S do
while q = 0→ Q do
Z(n)[q] = B

[
Z(n−1)[q]

]
; (see equation (14))

end while
end while

end while
function ORTHONORMALIZATION(

Gram-Schmidt process reaching U[N,S]

)
end function ORTHONORMALIZATION
end function FORMAL POWER APPROACHER
function ENCRYPTION PROCESS
M ← 501;
while m = 0→M do

Cm =
∑2N

n=0 bm,nU
n;

end while
end function ENCRYPTION PROCESS
function DECRYPTION PROCESS
while m = 0→M do

while n = 0→ 2N do
bm,n = 〈Cm, Un〉;

end while
end while
end function DECRYPTION PROCESS

V. CONCLUSIONS: ADVANTAGES OF THE PROPOSED
METHOD.

In general, it is required that the cryptographic algo-
rithms preserve the security of the encrypted information
from several points of view. Among those, we shall remark
the Confidentiality and the Data Integrity. Taking this into
account, we will describe the performance of this ciphering
method.

About Confidentiality, we might appoint that to decipher
the encrypted data bm,n, employing any different method to
the posed in (19), would be totally equivalent to solve the
Electrical Impedance Tomography problem, posed in [5].

It is true that most of the material analyzed in the Section
III is part of a new theory dedicated to study, and eventually
to solve this problem. Nevertheless this achievement is far to
be complete, when considering arbitrary cases. Moreover, the
existing computational tools (see e.g. [10] and [18]) provide
very low image resolution, when this technique is applied
for medical purposes.

Then, if the decryption process of the matrix C[M,N] was
attempted through novel or current algorithms for solving
the Electrical Impedance Tomography problem, the random
matrix A[Q,S] would play the role of the conductivity σ,
and since it is randomly introduced, its complexity would
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be so high, that the probability of recovering the encrypted
values from one single line Cm of the matrix C[M,N], would
numerically vanish.

Beside, the procedure for solving the Electrical Impedance
Tomography problem would have to be performed for each
vector Cm, thus the necessary computational resources
would provoke any attempt to become profitless.

The reader can verify the veracity of this statements,
examining the modern literature dedicated to the Electrical
Impedance Tomography problem, contained in e.g. [9] and
[16].

Related to the Data Integrity, it is convenient to remark
that the numerical tools employed for the construction of the
new cryptography method, are a variation of the methods
employed in [13] and [14], which have proved to be efficient
for solving the forward Dirichlet boundary value problem
of (1). Yet, for ciphering purposes, additional considerations
may be taken into account when performing the numerical
calculations.

Specifically, since the orthonormal vectors Un, belonging
to the matrix U[N,S], are expected to be high-dimensional,
in order to warrant the Confidentiality, a standard Gram-
Schmidt orthonormalization method could not be enough to
ensure the Data Integrity.

For instance, if performing the full procedure described in
the Algorithm 1, considering a random matrix A[Q,S] whose
values are located in the closed interval [1, 100], with Q =
101 and S = 501, and approaching N = 501 base functions,
when examining the set of inner products:{〈

UN, U0
〉
,
〈
UN, U1

〉
,
〈
UN, U2

〉
, ...,

〈
UN, UN

〉}
; (20)

we will find that:〈
UN, U0

〉
∼ 6.878× 10−15.

Nevertheless for n > 90, we obtain〈
UN, Un

〉
∼ 1;

which is unacceptable to warrant the Data Integrity. An
illustration of the random matrix A[Q,S] is provided in the
Figure 4.

Fig. 4: Example of a random matrix A[Q,S].

Still, this numerical inconvenience, emerging when em-
ploying basic Gram-Schmidt orthonormalization processes,
can be easily overpass by using a variety of well known
improved techniques (see e.g. [2]), whose computational
requirements do not significantly increase the total cost of
applying the ciphering method.

On the other hand, if the values aq,s of the matrix A[Q,S]

are produced according to the exact expressions:

aq,s =

(
q

Q
cos

2π

S
s+ 0.5

)−1(
q

Q
sin

2π

S
s+ 0.5

)−1

,

(21)
we will find that the elements of the set (20) are all smaller
than 1 × 10−16, when employing the same Gram-Schmidt
method of the previous example. It is clear that the values
produced with the formulas shown above are not random.
Nonetheless the reader can verify in, e.g. [9], that even for
this exact case, the Electrical Impedance Tomography prob-
lem has not been adequately solved, thus the Confidentiality
and the Data Integrity are assured. The Figure 5 plots an
example of A[Q,S] generated by the formula (21).

Fig. 5: Example of a matrix A[Q,S] constructed according to the
expression 21.

As a final remark, related to the time-viability of the
method, taking into account the explanations posed in the
Section III-B, it is possible to verify that the calculation
of the formal powers can be performed employing parallel
computing tools. This would immediately allow a reduction
of the computational time required for the construction the
matrix U[N,S].

Moreover, the matrix U[N,S] not necessarily shall be
approached every time we desire to encrypt different data
sets, contained into the matrix B[M,N].

Since U[N,S] is part of the Private Key, as explained in
the Section IV, and given the Confidentiality provided by the
method, subsequent encryption processes could well employ
the same matrix U[N,S], without compromising the security
of the ciphering algorithm. In this sense, the computational
cost would be reduced considerably.

It is clear that many other parameters could be introduced
for increasing the confidentiality of the method. Nonetheless,
the information provided in the paragraphs above might be
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enough to clearly illustrate the effectiveness of the new
encryption method.

Disclosure: As it was appointed in [14] and [15], the numer-
ical methods used for approaching the formal powers in Section
III-B, were fully developed in GNU C/C++ Compiler, employing
a CPU64B@2.4GHz, on SLACKWARE 13.37 LINUX operating
system. The experimental procedures showed that the numerical
results can vary when using different platforms, based on 32 B and
64 B processor architecture, or compilers between other operating
systems, including different LINUX distributions or Registered
Trade Mark operating systems. If the reader wishes to perform
his own numerical trials, please contact the authors to obtain the
resource codes.
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