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Abstract—In this paper, we develop a method to design the
input control to track the output of a nonminimum-phase
nonlinear systems asymptotically. The design of the control
inputs is based on an exact linearization. To perform the exact
linearization, the other output should be selected such that
its relative degree is equal to the dimension of the system.
Furthermore, the desired output of the output which has
been selected will be set based on the desired output of the
original system. In applying the input control which is obtained
via output-input linearization sometimes led to singularity.
To overcome this singularity problem, polynomial control is
developed around the point of singularity.

Index Terms—exact linearization; internal stability; non-
minimum phase; polynomial control.

I. INTRODUCTION

ASYSTEM is called non-minimum phase if a nonlinear
state feedback can hold the system output identically

zero while the internal dynamics becomes unstable [6]. Re-
cently, output tracking problems on nonlinear non-minimum
phase systems have been investigated intensively. The stable
inversion proposed in [2], [3] is an iterative solution to the
tracking problem with unstable zero dynamics. This method
requires the system to have well defined relative degree and
hyperbolic zero dynamics, i.e. no eigenvalues on imaginary
axis. In the absence of imaginary eigenvalues, the zero
dynamics manifold can be split into a stable and unstable
manifold. This method tries to find a stable solution for the
full state space trajectory by steering from the unstable zero
dynamics manifold to the stable zero dynamics manifold.
In [10], a new approach based on the notion of convergent
systems is developed to solve the problem of stable inversion
of nonlinear nonminimum phase systems. In [4], a min-
imum phase approximation to a single-input-single-output
(SISO) nonlinear non-minimum phase system is derived.
An input-output linearizing controller is designed for this
approximation and then applied to the non-minimum phase
plant. This leads to a system that internally stable. In [5]
a controller is designed based upon an internal equilibrium
manifold where this controller pushes the state of a nonlinear
non-minimum phase system toward that manifold. This has
afforded approximate output tracking for nonlinear non-
minimum phase systems while maintaining internal stability.
In [11], the asymptotic output tracking which is a class
of causal nonminimum phase uncertain nonlinear systems
is achieved by using higher order sliding modes (HOSM)
without reduction of the input-output dynamics order. In [1],
a new nonlinear dynamic controller is described based on the
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gradient descent control. Performance index is generated by
error of output system from output desired value and internal
state of the system. Adding of an internal state to generate
performance index is mentioned to maintain the stability of
internal dynamic of the system.

In this paper we used the ”old method”, i.e. input-
output linearization method [6] to design input control which
assures that the nonlinear system is stable asymptotically.
Before this method is applied, the other output should be
selected such that its relative degree is equal to the dimension
of the system. Then, we transform the coordinate to get the
normal form, exact linearization. Furthermore, the desired
output of the output which has been selected will be set based
on the desired output of the original system. In applying the
input control which is obtained via output-input linearization
sometimes led to singularity. To overcome this singularity
problem, polynomial controls are developed around the point
of singularity.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Consider the following SISO affine nonlinear control sys-
tem

ẋ = f(x) + g(x)u, (1)
y = h(x) (2)

where x ∈ Rn is the state vector, u ∈ R is the control input
and y ∈ R is the measured output. f : Rn → Rn is a smooth
function with f(0) = 0, g : Rn → Rn and h : Rn → R
are smooth functions. Assume also that h(0) = 0. If the
nonlinear system (1)-(2) has relative degree r, (r < n) at x◦,
the system (1)-(2) can be transformed to

S =


∑
ext :

{
ξ̇k = ξk+1, k = 1, · · · , r − 1

ξ̇r = a(ξ, η) + b(ξ, η)u∑
int : η̇ = q(ξ, η)

y = ξ1,
(3)

with the internal dynamics∑
int

: η̇ = q(ξ, η). (4)

The stability of the internal state η is required to guarantee
the output system y(t) tracks the desired output yd(t). Our
objective is to make the output y(t) tracks the desired
output yd(t) while keeping the state bounded. To keep the
state bounded is difficult for non-minimum phase system.
In this paper we design a controller such that external state
y(t) tracks the desired output yd(t) while keeping the state
bounded via exact linearization.

Thus, in this paper we assume that
Assumption 1: System (1) is exact linearizable.
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The nonlinear system (1) is exact linearizable if it satisfies
the theorem below.

Theorem 1 ([6]): Suppose a nonlinear system (1) is given.
The State Space Exact Linearization Problem is solvable near
a point x0(i.e. there exists an ”output function λ(x) for which
the system has relative degree n at x0) if and only if the
following conditions are satisfied

1) the matrix
(

[g(x0)adfg(x0) · · · adn−2f g(x0)adn−1f g(x0)]
)

has rank n,
2) the distribution D = span{g, adfg, · · · , adn−2f g} is

involutive near x0.
According to the above Theorem, if the nonlinear systems

(1) can be linearized exactly, there is an output function λ(x)
such that the nonlinear system

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R (5)
y = λ(x), y ∈ R (6)

can be transformed to

żk = zk+1, k = 1, · · · , n− 1
żn = a(z) + b(z)u
y = z1 = λ(x).

(7)

If b(z(t)) 6= 0,∀t, the tracking output problem can be solved
by input-output linearization technique.

The input control which is obtained can be written as a
static control law [6]

ur =
1

b(z)
(−a(z) + v) , (8)

where v = c0z1 + c1ż2 + ·+ cnz
(n)
1 and the value of ci; i =

0, · · ·n is chosen such that the real part of the eigen values
of polynomial p(s)

p(s) = cns
n + cn−1s

r−1 + ...+ c1s
1 + co

are negative.
Furthermore, for handling the case b(z(ts)) = 0 for a

t = ts, in this paper, we design u in the neighborhood of the
z(ts) by polynomial control.

III. POLYNOMIAL BRIDGE SINGULARITY

Consider the equation (8). If b(z(t)) 6= 0,∀t it is said that
the relative degree of the system is well defined. Otherwise
if there is t = ts such that b(z(ts)) = 0, it is said that the
relative degree of the system is not well defined. The control
law (8) is no more valid. In this case z(ts) is called a singular
point for asymptotic output tracking [7], [8] .

Define the set of singularity as

Ms = {z ∈ Rn | b(z) = 0}.

For simplicity, we consider that Ms has one point, i.e Ms =
{zs}. Afterwards, we develop the control law us(t) as a
formal power series in the interval [ts−ε, ts+ε] = Ts, where
ε > 0 (the neighborhood of singular point). This control law
is called formal control.

Definition 1 ([9]): Given a singular point zs and a suffi-
ciently smooth trajectory yd, let r(zs, yd) ≥ 0 be the largest
integer such that there exists

v̄r = (vo, v1, · · · , vr−1) ∈ Rr

satisfying:

y
(k)
d (ts) = y(k)(ts) = ak(zs, vo, v1, · · · , vk−α−1)

with α ≤ k ≤ α+ r and vi = u(i)(ts).
r(zs, yd) is called rank of singularity.

Proposition 1 ([9]): If for a trajectory yd ∈ C∞(R) and a
singular point zs, the rank of singularity r(zs, yd) is infinite,
then there exists a formal control insuring the tracking of yd
at the singular point zs.
Proof. Suppose that the rank of singularity is infinite. It
follows from its definition that :

∃(v0, v1, · · · , vk, · · ·) ∈ R∞

solution of the following system of algebraic equations :

y
(k)
d (ts) = ak(zs, v0, v1, · · · , vk−α−1), ∀k ≥ 0

where ak(·, ·) represents the Lie derivatives of order k, of the
output function y evaluated at the singular point zs.Using v′is
we can construct the control law (formal control):

us(t) =
∞∑
i=0

βi(t− ts)i, βi =
vi
i!
, t ∈ Ts (9)

With this control law, we obtain :

y
(k)
d (ts) = ak(zs, us(ts), u̇s(ts), · · · , u(k−α−1)s (ts))

= y(k)(ts), ∀k ≥ 0.

Proposition 2 ([9]): If the control law is analytic, the out-
put of the system (1)-(2) follows the trajectory yd ∈ C∞(R)
in a neighborhood of the singular point.

Consider (1)-(2) and the derivatives of its output function
:

y(j) = Ljfh(z) = aj(z),

y(r) = Lrfh(z) + LgL
r−1
f h(z)u = ar(z) + b(z)u

y(r+k) = ar+k(z, u, u̇, · · · , u(k−1)) + b(z)u(k), k ≥ 1.

The value of vk = u(k)(ts), in equation (9) for k =
0, 1, 2, · · ·, is a solution of (linear/nonlinear) equation sys-
tems

y
(r+k)
d (ts) = ar+k(z(ts), u(ts), u̇(ts), · · · , u(k−1)(ts)), k ≥ 1,

(10)
where y(r+k)d (ts), k ≥ 1 and z(ts) are known.(yd(t) is the
desired output).

Polynomial control is obtained by truncating the formal
power series (formal control), (9). Let z(ts) be a singular
point, then substitute z(ts) into the equation (16) to obtain:

y
(r+1)
d (ts) = ar+1(z(ts), u(ts))

... =
... (11)

y
(r+m)
d (ts) = ar+m(z(ts), u(ts), u̇(ts), · · · , u(m−1)(ts))

Solve equation (11), to find the value of u(i)(ts), i =
0, 1, 2, · · · ,m− 1. Then we have

us(t) =

m−1∑
i=0

u(i)(ts)

i!
(t− ts)i, t ∈ Ts. (12)

This polynomial control is used as a bridge which crossing
the neighborhood of singular point.
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Thus, for nonlinear system (SISO), (1)-(2), to achieve
the tracking of the desired output yd(t), we propose the
following control law

u(t) =

{
ur(t) ; t ∈ [0, ts − ε] ∪ [ts + ε,∞)
us(t) ; t ∈ Ts

(13)

Before applying the control law (13), we have to set up the
output desired for λ(x), i.e. λd(t). In this paper we consider
the systems which satisfies the following assumptions.

Assumption 2: h(x) = xl for l ∈ {1, 2, · · · , n}.
Assumption 3: If λ(x) = xk then ẋk = fk(xl, xk) can be

solved by substituting xl = yd(t).
Thus, λd(t) = xk(t).

IV. Example
Example 1. Consider the following SISO affine nonlinear
control system

ẋ1 = x2 + 2x21

ẋ2 = x3 + u (14)
ẋ3 = x1 + x3

y = x1; yd(t) = sin t. (15)

This system satisfies Theorem 1. Thus, using the output
λ(x) = x3, the nonlinear system (14) can be linearized
exactly.

ż1 = z2

ż2 = z3 (16)
ż3 = a(z) + u,

where a(z) = z1 + z2 + (2(z2 − z1) + 1)(z3 − z2 − 2(z2 −
z1)2 + 2(z2 − z1)2). By input-output linearization technique
we get

u = −a(z) + v. (17)

Let yd(t) = sin(t) = x1d(t). Next, we choose z1d(t) such
that if z1(t) tracks z1d(t) then y(t) tracks the desired output
yd(t). Consider the equation : ẋ3 = x1 + x3. By replacing
x1 with x1d(t) = sin(t), we have a differential equation
ẋ3 − x3 = sin(t). Then, we solve the differential equation
to obtain x3 = 1/2(−sin(t) − cos(t)). This solution we
state as x3d(t) = 1/2(−sin(t) − cos(t)). Thus, for the
output tracking problem we have

v =
1

a3
ż3d −

3∑
i=1

ai−1(zi − zid). (18)

The simulation results are shown in Fig.1 and Fig.2.
Example 2. Consider the following nonlinear system equa-
tion (SISO)

ẋ1 = −x1 + x2x3
ẋ2 = x3 + u
ẋ3 = x1 + x3
y = x1; yd(t) = sin t.

(19)

The nonlinear systems (19) has relative degree 2 at any
point z0 (well defined). In normal form, the nonlinear system
(19) becomes

ξ̇1 = ξ2

ξ̇2 =
ξ1
η

(ξ1 + ξ2 + η) + η2 + ηu

η̇ = ξ1 + η

Fig. 1. Output Tracking (exact linearization), λ to λd

Fig. 2. Output Tracking (original system) y to yd

Because the stability of zero dynamics is unstable, the
nonlinear system (19) is nonminimum phase. But the system
in equation (19) satisfies Theorem 1.

By choosing y = λ(x) = x3, the nonlinear system (19)
can be linearized exactly.

ż1 = z2

ż2 = z3 (20)
ż3 = a(z) + b(z)u,

where a(z) = x23 + x1 + x3 + x1x2 + x2x3, b(z) = x3.
The input-output linearization technique can not be applied
to this systems because the value of b(z) = x3 can be zero
for some z.

Let yd(t) = x1d(t) = sin(t). Next, we choose z1d(t) such
that if z1(t) tracks z1d(t) then y(t) tracks the desired output
yd(t).

Consider the equation : ẋ3 = x1 + x3. By replacing
x1 with x1d(t) = sin(t) we have a differential equation
ẋ3 − x3 = sin(t). Then, we solve the differential equation
to get x3 = 1/2(−sin(t)− cos(t)). This solution we state
as x3d(t) = 1/2(−sin(t) − cos(t)). Thus, for the output
tracking problem we have

ur(t)

= (1/x3(t))[y
(3)
d (t)− (a0(z1(t)− yd(t))

+a1(z2(t)− ẏd(t)) + a2(z3(t)− ÿd(t))
+a2(z3(t)− ÿd(t))− (x3(t)2 + x1(t))
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+x3(t) + x1(t)x2(t) + x2(t)x3(t)). (21)

The control law u(t) (23) is valid only if x3(t) 6= 0,∀t.
Let x(ts) be a singular point, then substitute x(ts) into the
equation (16) (take m = 3), to obtain

y
(4)
d (ts)

= x3(ts) + 3x1(ts)x3(ts) + 2x2(ts)x3(ts)

+3x23(ts) + x22(ts)x3(ts) + 2x1(ts)u(ts)

+2x3(ts)u(ts) + x3(ts)u̇(ts) (22)

y
(5)
d (ts)

= x1(ts) + x3(ts) + 3x21(ts) + 9x1(ts)x3(ts)

+2x1(ts)x2(ts) + 2x2(ts)x3(ts) + 8x23(ts)

+5x2(ts)x
2
3(ts) + x1(ts)x

2
2(ts)

+x3(ts)x
2
2(ts) + 4x3(ts)u(ts) + 4x2(ts)x3(ts)u(ts)

+3x1(ts)u̇(ts) + 3x3(ts)u̇(ts) + x3(ts)ü(ts) (23)

y
(6)
d (ts)

= x3(ts) + 11x1x3(ts) + 3x2(ts)x3(ts)

+3x22(ts)x3(ts) + x32(ts)x3(ts)

+8x1(ts)x2(ts)x3(ts) + 9ẋ1(ts)x3(ts)

+2ẋ2(ts)x3(ts) + 16ẋ3(ts)x3(ts)

+5ẋ2(ts)x
2
3(ts) + 10x2(ts)x3(ts)ẋ3(ts)

+2x2(ts)x3(ts)ẋ2(ts) + 3x21(ts)

+6x1(ts)u(ts) + 6x1(ts)x2(ts)u(ts) + 4x3(ts)(u̇(ts)

+u(ts)) + 7x2(ts)x3(ts)u̇(ts) + 4x3(ts)u(ts)ẋ2(ts)

+4x2(ts)x3(ts)u(ts) + 4x1(ts)ü(ts)

+3x3(ts)u̇(ts) + 4x3(ts)ü(ts) + x3(ts)u(ts) (24)

Solve the equation (22)-(24), to find the value of
u(i)(ts), i = 0, 1, 2. Finally, we have

ups(t) =
2∑
i=0

u(i)(ts)

i!
(t− ts)i, t ∈ Ts. (25)

The simulation results are shown in Fig.3 and Fig.4.

V. Conclusions
We have developed a method to design the input control to

track the output of a nonminimum-phase nonlinear systems
asymptotically. The design of the control inputs is based on
the exact linearization. To perform an exact linearization,
the other output should be selected such that its relative
degree is equal to the dimension of the system. Furthermore,
the desired output of the output which has been selected
will be set based on the desired output of the original
system. Applying the input control which is obtained via
output-input linearization sometimes leads to singularity. To
overcome this singularity problem, polynomial controls are
developed around the point of singularity. The application
of this method is still limited to a particular system. From
simulation, we obtained some significant results. In future
work, we try to develop this method for a more general
system.
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