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Transreal Arithmetic as a Consistent Basis
For Paraconsistent Logics

James A.D.W. Anderson and Walter Gomide

Abstract—Paraconsistent logics are non-classical logics which
allow non-trivial and consistent reasoning about inconsistent
axioms. They have been proposed as a formal basis for handling
inconsistent data, as commonly arise in human enterprises, and
as methods for fuzzy reasoning, with applications in Artificial
Intelligence and the control of complex systems.

Formalisations of paraconsistent logics usunally require heroic
mathematical efforts to provide a consistent axiomatisation of
an inconsistent system. Here we use transreal arithmetic, which
is known to be consistent, to arithmetise a paraconsistent logic.
This is theoretically simple and should lead to efficient computer
implementations.

We introduce the metalogical principle of monotonicity which
is a very simple way of making logics paraconsistent.

Our logic has dialetheaic truth values which are both False
and True. It allows contradictory propositions, allows variable
contradictions, but blocks literal contradictions. Thus literal
reasoning, in this logic, forms an on-the-fly, syntactic partition
of the propositions into internally consistent sets. We show how
the set of all paraconsistent, possible worlds can be represented
in a transreal space. During the development of our logic we
discuss how other paraconsistent logics could be arithmetised
in transreal arithmetic.

Index Terms—transreal arithmetic, paraconsistent logic.

I. INTRODUCTION

ARACONSISTENT logics were explicitly introduced

in the second half of the twentieth century as non-
classical logics that can reason about inconsistent axioms
[26][13]. In a classical logic, inconsistent axioms explode,
allowing any theorem to be proved in a trivial way [11].
By contrast paraconsistent logics do not explode, they allow
only limited conclusions to be drawn from inconsistent
axioms. Some paraconsistent logics admit dialetheias, that
is propositions which are both False and True [24], and
some admit Gap values with no component of falsity or
truthfulness [29]. Gap values are usually treated absorptively
so that any logical combination with a Gap produces a Gap
as result. This behaviour is consistent with one reading [20]
of Frege's principle of compositionallity so that a compound
proposition lacks reference if any component of it lacks
reference. It should be added that paraconsistent logics are
also capable of classical reasoning so thev provide a robust
generalisation of classical logic. This makes them interesting
both from a theoretical and a practical perspective.

It has been proposed that paraconsistent logics are suitable
for implementing fuzzy logical systems, including the control
of complex systems [34][10], for practical reasoning about
inconsistent data, such as the data typically provided by
humans, for use in Artificial Intelligence programs, for
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human use in developing scientific theories that contain
contradictory elements, and more [26].

Paraconsistent logics are usually formalised in terms of
advanced mathematics. Shramko [29] reviews some logics
using small, discrete, ordered sets of truth values; these are
mathematically simple, though one of the logics uses two
orderings. Logics with more than two orderings are discussed
in [30]. Some paraconsistent logics partition propositions into
a hierarchy of internally consistent partitions.

Here we take the simpler approach of expressing a para-
consistent logic arithmetically. We use transreal arithmetic,
which is a generalisation of real arithmetic. Transreal arith-
metic was originally developed [2][3] from a subset of the
algorithms used in the arithmetic of fractions. It has been
axiomatised and a machine proof of consistency has been
given [8]. Two human proofs of consistency are known
but neither has been published to date. The algorithms of
transreal arithmetic are explained, particularly clearly, in a
recent treatment, in which transcomplex numbers are also
introduced [3].

We develop a paraconsistent logic by expressing the
Sheffer Stroke [9] as an operation in transreal arithmetic.
The Sheffer Stroke can be used to develop all classical,
truth functional logics [9] (See entry “Sheffer Stroke™), [28]
{p. 29) so our paraconsistent logic is just one example
from an entire class of paraconsistent generalisations of
classical logic. During the development of our logic we
explain the motivation for each of the design decisions and
consider alternatives so as to assist readers in developing
their own paraconsistent logics that use transreal arithmetic
as a consistent basis.

The Sheffer Stroke is better known, in Electronic Engi-
neering, as the Not-And operation, NAND [28]. It can be
used to develop all of the logic circuits in digital computers.
By generalising the NAND gate to paraconsistent form, we
create the possibility of fabricating paraconsistent processors
in hardware. We briefly consider features of high-level, com-
puter languages that implement paraconsistent logies. This
may be of interest to practitioners of Artificial Intelligence
and Cybernetics (control theory).

II. PARACONSISTENT LOGIC
A. Truth Values

The transreal numbers are just the real numbers augmented
with three non-finite numbers: negative infinity {—oo), pos-
itive infinity (co) and nullity (®). Nullity is absorptive over
the elementary arithmetical operations so that when it is
involved in a sum, difference, product or quotient, the result
is nullity. However nullity is not universally absorptive, it
may be an element of arbitrary mappings. Nullity is the only
unordered number in transreal arithmetic [8][7].
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Nullity’s absorptive properties make it a good candidate
for a Gap value that has no degree of falsity or truthfulness.

The utility of a Gap value can be illustrated with the
well known fairy story of Goldilocks and the Three Bears.
Goldilocks is interested in predicates concerning porridge.
She wants to know the truth values of too_cold(porridge),
too_hot{porridge), just_right{porridge}. But suppose
Goldilocks’ reasoning system is presented with the logical
argument porridge, devoid of a predicate. What is she to
do? The argument porridge is a signifier for boiled oats
that lie in a bowl in front of her. Neither the signifier nor
the actual boiled oats are in the class of things that can
be assigned degrees of falsity or truthfulness. Reflecting on
her difficulty, Goldilocks may decide to assign a Gap value,
that is a value with no degree of falsity or truthfulness,
to the signifier porridge. Going further she may decide to
apply Gap values to all badly formed formulas of logic and
to everything that cannot be assigned a degree of falsity
or truthfulness, such as actual boiled oats. This makes
Goldilocks’ reasoning system total. She can assign a logical
value to every possible sentence, including meta sentences
that consider the properties of actual objects, such as boiled
oats, being presented directly to her reasoning system. Notice
that we must say “sentence” here, not “predicate,” if we are
to admit badly formed formulae. We hope we have done
enough to convey the utility of a Gap value to the reader.

We define that negative infinity is classical False and
positive infinity is classical True. This has the merit that we
have now used up all of the non-finite, transreal numbers,
leaving all of the real numbers to convey dialetheaic degrees
of falsity and truthfulness.

In the next subsection we use arithmetical negation (unary
subtraction) to model logical negation, thereby exploiting
the following idempotence of transreal arithmetic: —(o0) =
—co, —(—o0) = co. Many, perhaps most, paraconsistent
logics will use some kind of idempotent negation but, per-
haps, one that cycles through many truth values, not just
two. But not all logics have an idempotent negation. For
example many computer languages use zero for False and
any non-zero value for True. This is exploited in cases, such
as memory management, where an applications programmer
instructs the assignment of memory and is retumed a single
value by the operating system. If the returned value is
non-zero, it is True that the operating system has assigned
memory and the returned value is the base address of that
memory but if the returned value is zero then it is False that
the operating system has assigned memory. In such languages
the negation of any True value is the unique False value
but the negation of the unique False value is exactly one,
fixed one, of the True values. In this case negation is not
idempotent on the truth values but it is idempotent on the
classes from which the specific truth values are drawn. One
might even want continuous forms of negation implemented,
say, as rotations in the complex plane, or one might want
continuous blends of negation with other operators [4]. Yet
other kinds of negation might be wanted.

If we were to model logical negation with the arithmetical
reciprocal then we might chose to model False with zero and
True with infinity so that negation is supplied by the transreal
idempotence 1/0 = co,1/ee = 0. This approach is taken by
Gomide [18]; while logically sufficient, the operators are not
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total functions of the transreal numbers, which complicates
the application of advanced mathematics to such a system.
The computation of reciprocals also has more numerical error
or higher computational cost than the arithmetisation used
here. Of course logical negation can be modelled in many
other arithmetical ways, including by arbitrary mappings.

If a fuzzy or statistical system is wanted then we work
with probabilities, in which case transreal numbers outside
the range from zero to one, inclusive, arise only in the under-
lying frequencies. Recall [17][15] that a statistical frequency,
f = o/e is the ratio of the number of target outcomes,
0, to the number of experiments, e. This admits all non-
negative, rational frequencies. The non-negative, irrational
frequencies are admitted via probability density functions.
The non-negative, non-finite, transreal numbers are also valid
frequencies. Nullity, ¢ = 0/0, is the frequency where no
target outcomes have occurred in no experiments, say where
a coin is held on its edge, between two leaves of a table,
before it is tossed, in an experiment to determine whether
heads lie face-up on the coin when it comes to rest. Infinity,
k/0 = 1/0, for all positive k, is the frequency
where a positive number of outcomes, say one, occurs in
no experiments, say where the frequency of heads is wanted
in a coin tossing experiment, where the coin lies heads-up
on a table before it is tossed for the first time.

These examples might strike the reader as artificial but
they are needed to make statistics total. The reader might
be more satisfied by an example that commonly occurs in
statistical packages: what is the arithmetical mean of a list of
no numbers? Suppose the number of elements, in the list, is
accumulated in the variable n and the sum is accumulated in
the variable s then the mean is computed as s/r. We program
defensively by setting the accumulators to an initial value of
zero: nn = s = (). When the program handles an empty list, n
and s are not incremented, which correctly records that there
are no, that is zero, elements in the list and that they have
no, that is zero, sum. The program then computes the mean
as n/s = 0/0 = $. No special handling of the empty list
is required, no matter what complexity of statistical compu-
tation follows. Thus transreal arithmetic simplifies computer
code, removes all arithmetical exceptions from syntactically
correct, transarithmetical sentences and provides a consistent
basis for fuzzy and statistical, paraconsistent logics.

Returning now to our paraconsistent logic, we define
that the real numbers encode degrees of both falsity and
truthfulness. The negative real numbers are more False than
True, the positive, real numbers are more True than False,
zero is equally False and True. We relate the degree of falsity
and truthfulness monotonically to the number modelling the
truth value so that negative infinity is entirely False, that is
classically False, and positive infinity is entirely True, that is
classically True. The reader might want to impose specific
monotonic functions so as to obtain particular metrics. In
this regard the transreal arctangent function [7] might be
helpful because it maps a linear, transreal angle onto nullity
and the whole range of transreal numbers from negative
infinity to positive infinity. Nullity is the unique Gap value.
Thus all transreal numbers are used in our paraconsistent
logic, making it both total and consistent. (The reader, being
educated in logical terminology, will not confuse roral and
consistent with complete and consistent.)

o0 =
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B. Metalogical Principle of Monotonicity

We have a metalogical intuition that a conclusion can
depart no more from being equally False and True than the
most divergent of its premises. No matter how an inference is
constructed, this is sufficient to cut off all those conclusions
that are more divergent so the inference is generally non-
explosive.

In our model the absolute value of the conclusion can be
no greater than the greatest absolute value of its premises.
We operate on absolute values, not signed values, to allow
the possibility of a conclusion being the negation of some
one or more of its premises. Indeed we are forced into this
strategy by implementing our paraconsistent logic in terms
of the Sheffer Stroke which involves a negation.

Enforcing metalogical monotonicity on all logical opera-
tors is a very simple way to make a logic paraconsistent.

C. Sheffer Stroke

It is known that the truth functional (Boolean) operators
for logical negation (not, =), logical conjunction (and, &),
and logical disjunction (or, V) are functionally complete [9]
{See entry “Sheffer Stroke” ), [28] (p. 29) so that any truth
functional operators can be derived from these three. In
fact it is known that the sets {—,&} and {—, v} are each
functionally complete but it serves our purpose better to
consider the wider set of operators {—, &, Vv }.

We begin by introducing the transreal minimum and max-
imum functions, which we use to define paraconsistent ver-
sions of the classical negation, conjunction and disjunction
operators. We use negative infinity (—oo) to model classical
False (F) and positive infinity (o) to model classical True
{T). We use nullity ($) to model the logical Gap value
{G). Note that only the real numbers model dialetheaic truth
values. The three non-finite numbers each model a single
truth value: —oc models classical False, co models classical
True, & models Gap. We then prove that the paraconsistent
operators contain the classical ones. With a little extra
work we prove that the paraconsistent operators are well
defined for all transreal arguments when we assume that the
finite, truth values are arranged monotonically with the real
numbers that model them. We then define a paraconsistent
version of the Sheffer Stroke (). There are three, well known,
identities that relate the classical Sheffer Stroke to classical
negation, conjunction and disjunction. We show that these
identities hold when we substitute the paraconsistent Sheffer
Stroke and the paraconsistent negation, conjunction and
disjunction. Thus we prove that the paraconsistent operators
are defined everywhere and are consistent with their classical
counterparts.

We begin by defining the binary, transreal, minimum and
maximum functions so that the minimum of two transreal
numbers is the least, ordered one of them or else is nullity.
Similarly the maximum of two transreal numbers is the
greatest, ordered one of them or else is nullity. These defini-
tions rely on the three transreal relations less-than, equal-to,
greater-than as axiomatised in [8] and explicated in [6]. It is
sufficient for the reader to know that: nullity is the uniquely
unordered, transreal number so it is the only transreal number
that compares not-less-than, not-equal-to and not-greater than
any other distinet number; negative infinity is the least,
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ordered, transreal number; positive infinity is the greatest,
ordered, transreal number.
Definifion 1: Transreal minimum,

a a<b
a a="5
min(e,b) =< a b=®
b b<a
b a="=%®
Definifion 2: Transreal maximurm,
a a>b
a a==5
max(a,b) =< a b=&
b b>a
b a==a&

The minimum and maximum functions, just defined, treat
nullity non-absorptively but we chose to treat the logical Gap
value absorptively.

Definifion 3: Paraconsistent conjunction,

L b P a=®orbh=2o
& "] min(a,b) otherwise
Definition 4: Paraconsistent disjunction,
Vb P a=Porb=2=>
¢ | max(a,b) otherwise

We now define the paraconsistent, logical negation as
transarithmetical negation.

Definifion 5: Paraconsistent negation, —a = —a.

Transreal arithmetic has —0 = 0, —® = & and in all other
cases, the negation is distinct so that —a #£ a.

The Sheffer Stroke (|) may be defined as an infix operator
but we follow the more modern practice of taking it as a
post-fix operator so that no bracketing is needed. This leads
to shorter and clearer formulae.

Definition 6: Paraconsistent Sheffer Stroke, ab] =
—(a & b), with all symbols read paraconsistently.

We now prove that the paraconsistent negation, conjunc-
tion and disjunction contain their classical counterparts and
that the paraconsistent operators are well defined for all
transreal arguments.

Theorem 7: Paraconsistent negation contains classical
negation.

Proof: Classical negation has -F = T and -T =
F. Equivalently paraconsistent negation has —(—co) =
—(—o0) = oo and —co = —co. |

Theorem 8: Paraconsistent conjunction contains classical
conjunction.

Proof: Classical conjunctionhas F& F=F,; F & T =
Fi T& F =F, T & T = T. Equivalently paraconsistent

conjunction has —oo & — oo = min(—oo,—x) = —oo;
—co & oo = min(—co,00) = —o0; co & — o0 =
min(co, —co) = —c0; 0o & co = min(co, c0) = co. |

Theorem 9: Paraconsistent disjunction contains classical
disjunction.

Proof: Classical disjunctionhas F v F=F, F v T =
T v F=T;T v T="T. Equivalently paraconsistent

disjunction has —co vV —o0o = max(—co,—c0) = —oo;

—c0 Vo ooo = max(—co,00) = o0 0 ¥V —00 =

max(co, —oo) = co; co V oo = max(co,00) = co. ]
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Theorem 10: Paraconsistent negation, conjunction, and
disjunction are well defined for all transreal arguments.
Proof: Paraconsistent negation, conjunction, and dis-
junction are defined for all transreal arguments. It remains
only to show that these operators are monotonic. Firstly
nullity is absorptive in these operators so that if any argument
is nullity the result is nullity. Nullity is disjoint from all
other transreal numbers because it is the uniquely isolated
point of transreal space [7], therefore nullity results are
disjoint from all other transreal results and cannot contradict
them. Secondly the preceding three theorems show that the
paraconsistent operators are well defined at the boundaries
—oo and co but, by definition, the non-nullity, paraconsistent,
truth values are monotonic so the operators just defined are
monotonic for all transreal ¢ in the range —o0 < ¢t < o0.
This completes the proof for all transreal arguments. |
We now derive the paraconsistent negation, conjunction
and disjunction from formulae involving the paraconsistent
Sheffer Stroke. This proves that the paraconsistent Sheffer
Stroke is functionally complete both for classical truth values
and for the paraconsistent truth values defined here.
Theorem 11: pp| = —p for all transreal p.
Proof: pp| = —(p & p) = —p, with all symbols read
paraconsistently. |
Theorem 12: pglpg|| = p & ¢ for all transreal p, g.
Proof: palpgll = (~p & a)(-lp & )] =
—(=(p & q)) = p & g, with all symbols read paraconsistently.
|
Theorem 13: pplgg|| =p V g for all transreal p, g.
Proof: pplaq|| = (=p) (7g) | = ~((-p) & (—q)) = pVg
by the classical de Morgan's Law, generalised to all transreal
numbers by monotonicity and the absorptiveness of nullity,
with all symbols read paraconsistently. ]

D. Logical Space

Fig. 1. 'Two Bands of the Possible Worlds Rainbow

Wittgenstein discusses the concept of a logical space [16].
We now construct a transreal space of all paraconsistent,
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possible worlds whose predicates take on transreal truth
values, including subsets such as real and Boolean truth
values.

Firstly we note that the set of transreal numbers {¢
—co = t < oo, t = $} can be mapped onto, ¥, a line
segment, with a length of one half of a unit, augmented by
the point at nullity, using the transreal arctangent [7] as ¢/ =
arctan(t)/2r. Thus all of the transreal, truth values for a
single predicate can be mapped onto a half-unit line-segment,
augmented with the point at nullity.

Secondly we list the countable infinitude of predicates,
p;, in some fixed order, with ¢ running over the strictly
positive integers. We then lay off the truth values of the ith
predicate in a half-unit segment from 7 to 7 + 1/2, with the
point at nullity at 7+ 3/4. A possible world has exactly one
transreal, truth value or, equivalently, exactly one geometrical
point, in the <th vnion of the ¢th line segment and <th point
at nullity. Thus points on a half-infinite line encodes one
possible world.

Thirdly we rotate the half-infinite line by a full rotation and
index each radius by a real angle, 4, in the range 0 < & < 2.
As each distinct radius is a distinct possible world, we have
constructed a continuum of possible worlds whose cardinality
is just sufficient to model the set of all possible worlds. To
see the sufficiency of the cardinality note that we may select
the truth values in one line segment with the cardinality of
the continuum but the selections in the other line segments
do not increase the cardinality [32].

The figure just constructed, see Figure 1, is a concentric,
altemmating sequence of an zth annulus and an :th circle,
with an empty unit disc at the centre. We call the union
of an annulus and its circle a “band” and we refer to the
whole figure as a “rainbow” in anticipation of variants that
are taken, not over a full rotation, but over an arc.

Many variations on this construction are possible. We
might want to: let the angle range over more than a full
rotation so that the windings encode a countable infinitude
of partitions of all possible worlds; let the angle range over
some quantity other than an integral mumber of full rotations
so that both the lower and upper bounds of the range are
included in the range; take the angle about zero so that it
can be constructed by a Lie group [1]; take the angle in the
range —7/2 < 8 < w/2 or @ = & so that it is in the principal
range of the transreal arctangent [7]. We might want to define
some other planar shape entirely.

E. Partitioning, Significance and Consistency

One way to handle inconsistent predicates is to partition
them into internally consistent partitions [26]. Da Costa
[13] uses a hierarchy of such partitions. The partitions
may be constructed syntactically or by semantic relevance
[19][25][27]. Self evidently this produces islands of con-
sistent reasoning but it does more. Priest [26] discusses
the well known preface paradox in which an author writes
a book containing many statements, which the author has
good grounds to believe are true, but who also writes,
in the preface, that in any list of many statements there
must be errors. Thus the author is in the paradoxical, or
paraconsistent, position of believing every single one of
the statements and not believing, actually disbelieving, the
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conjunction of all of the statements. This paradox is dissolved
by Williams [33] who points out that a human can rationally
believe a set of statements and not believe their conjunction.
He cites the example of a motorcycle rider who knows a
certain route that involves a left-hand bend followed by a
right-hand bend. The rider successfully negotiates the route.
Over time the rider comes to learn the conjunction that
the left-hand bend is followed by the right-hand bend and
changes behaviour to take the faster ‘racing line’ through
the switchback. Thus it is human experience that one can
know many propositions and not know their conjunction.
Hence there is no mystery in the fact that a human can
believe inconsistent predicates if he or she has not derived
a contradiction. This issue is taken up in a description of
how autoepistemic reasoning can be implemented in a finite
{Prolog) implementation of a system’s own beliefs [22]. Thus
we have reason to expect that human and all finite reasoning
may contain inconsistent statements and that one way to
handle them is via partitioning.

There is a simpler way to handle inconsistencies using
arithmetic. Suppose we have the sentence “p & —p.” If we
handle this sentence algebraically we may conclude, by con-
junction elimination, that p is True and —p is True, regardless
of whether the truth values are classical or paraconsistent.
But if we evaluate this proposition arithmetically we have
gither T& F =F or F & T = F, the conjunction fails, so we
camnot derive a contradiction. Hence reasoning arithmetically
blocks the derivation of contradictions but reasoning alge-
braically may admit them. It is no surprise, then, if human
reasoning has evolved to be particular, working on concrete
mental models, rather than having great facility in general
reasoning [21].

Suppose we reason arithmetically and keep a record of
the serial or parallel sequence of points we visit in a logical
space. Then the trace is necessarily consistent because it
was derived arithmetically. In a biological system, we might
reinforce all of the neurones in the trace [14]; in a computer
system we store the trace as a collection of line segments. In
paraconsistent terms the trace is a partition. If we find more
than one line segment passing through a point then all of
the traces are consistent at that point and we may combine
the common parts of the traces. The common parts form a
partition that have been consistent over the entire history of
the arithmetical reasoning system.

If all of the components on an axis in logical space
are negative then all of the system’s history supports the
conclusion that the predicate tied to the axis is more False
than True; if positive then the predicate is historically more
True than False; if there are components that are both positive
and negative then the predicate is historically contradictory or
paraconsistent. Hence a reasoning system that has sufficient
geometrical or algebraic power may detect the inconsistency
or paraconsistency. If many traces haven components in this
axis then a contradiction or paraconsistency is important
to the mental life of the system. This bears on a case
discussed by Priest [26]. Bohr’s model of the atom is useful
in predicting atomic structure and is, in our terms, associated
with many traces. Maxwell’s equations are useful in electro-
dvnamics and are also associated with many traces. But the
two are inconsistent in that the orbit of a Bohr electron should
decay due to Maxwell radiation, which it does not. The
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non-decay is therefore significant, because it is associated
with many fraces, and finds resolution in the combination
of quantal energy levels and the Pauli exclusion principle.
Thus logical space offers a measure of the significance of
a predicate, in terms of the number of traces that pass
through it in logical space, and we now arrive at a measure
which classifies classical and dialetheaic consistencies. Let
our desideratum be d = p & —p. If d = —co then predicate
p is a classical consistency; if —oco < d < O then p is a
dialetheaic consistency; if & = 0 then p is both a dialetheaic
consistency and a dialetheaic contradiction; if 0 < d < oo
then p is dialetheaic contradiction; if d = oo then p is a
classical contradiction; if d = $ then p is a Gap.

F. Advanced Paraconsistent Logics

We have deliberately introduced an elementary paraconsis-
tent logic. It is just strong enough to generalise propositional
logic [23] to paraconsistent form but this means it is a
basis for generalising more advanced paraconsistent logics.
For example the computer language, Prolog [12], provides
a propositional logic [23] with existential and universal
guantifies introduced by controlling the scope of variables.
Variables with scope local to a clause are existential, while
variables with global scope are universal [31] (p. 10). Any
propositional logic is trivially extended by the paraconsistent
logic presented here but the example of Prolog raises a deeper
issue. Prolog works by unifying variables with arguments.
The unification triggers execution of the clause but in a
paraconsistent logic, such as ours, all paraconsistent truth
values will unify with arguments fo some extenr. One way
to handle this would be to allow all clauses to execute in
parallel but it is unlikely that a practical machine would
have the resources to do this for many clauses. A more
practical approach might be to allow only the execution of
clauses that have a high degree of truthfulness, embedding a
best-first strategy in the execution of the computer language.
Triggering on truthfulness reflects the human bias for positive
reasoning but in an artificial intelligence we may prefer to
trigger on a high degree of divergence from being equally
False and True. In a practical system we might want some
measure of usefulness, expected value [17], or subjective
value [14] to drive the selection of clauses, in which case
we could couple a value parameter with clauses. This takes
us deeply into the design of robots and the modelling of
animal and artificial intelligences.

The matching of all paraconsistent truth values to a
clause’s variables leads us to expect that useful paraconsistent
logics will have some implicit or explicit notion of execution
control, raising the prospect that they should be as powerful
as the Turing machine. Clearly paraconsistent logics can
be very powerful, taking them a very long way from the
elementary, paraconsistent logic introduced here. Our para-
consistent logic may be of interest precisely because of its
mathematical simplicity. We invite the reader to consider if
more competent, paraconsistent logics, would benefit from
being arithmetised in transreal arithmetic rather than calling
on the advanced, even heroic, mathematics that is usually
used as a consistent basis for a paraconsistent logic.
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III. CONCLUSION

We present a paraconsistent logic by arithmetising the
Sheffer Stroke in transreal arithmetic. We use negative in-
finity to model classical False and positive infinity to model
classical True. The real numbers model truth values that are
both False and True. The negative, real numbers are more
False than True; the positive, real numbers are more True
than False; zero models the truth value that is equally False
and True. The transreal mumber nullity, which is unordered
and lies outside the range of ordered numbers from negative
infinity to positive infinity, models truth values that have
no component of falsity or truthfulness. These Gap truth
values are neither False nor True. As the Sheffer Stroke can
be used to develop all classical, truth functional logics, our
logic is just one of a class of paraconsistent generalisations
of classical logic. The reader, who is skilled in formal logic,
can easily develop other paraconsistent logics using transreal
arithmetic as a consistent basis. This is a very much simpler
approach to the formalisation of paraconsistent logics than
is usually attempted so it brings paraconsistent logics within
the reach of non-specialists, such as Electronic Engineers
and Computer Scientists, who have been trained in classical,
Boolean logic.

The Sheffer Stroke directly implements the operation Not-
And (NAND). NAND gates can be used to implement all of
the logic in general purpose computers so our paraconsistent
generalisation of the Sheffer Stroke specifies the behaviour
of a paraconsistent NAND gate. This could be used to imple-
ment paraconsistent processors in hardware. Such hardware
might be particularly well suited to the execution of Artificial
Intelligence and Cybemetics programs, for example those
which exploit models of neural processing or fuzzy logic.

We give a geometrical construction which encodes all
paraconsistent, possible worlds in an alternating sequence
of an annulus and a circle that fills out the real plane, with
each radins marking off one possible world.

We point out the obvious property that evaluation of
logical sentences involving only connectives and literal False
and True values, not variables, cannot support the conclusion
of a contradiction. Thus on-the-fly evaluation of a literal
sentence is always consistent. We propose that this property
can be used to partition predicates into internally consistent
sets and that this provides a measure of the significance of
predicates. We also give a simple, transarithmetical measure,
a desideratum, d = p & —p, for categorising predicates
into classical or else dialetheaic form and for categorising
classical or else dialetheaic consistencies and contradictions.

We give a very simple principle of metalogical mono-
tonicity that forces a logic to be non-explosive. In future we
might examine existing paraconsistent logics to see if they
implicitly obey this principle.

Given the interest there is in the number nullity, perhaps
the single most important, original contribution of this paper
is to observe that the transreal number nullity provides a
faithful model of Gap values in advanced logics.
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