
 

 
Abstract—Steel industry today looks for important savings 

in order to keep its competitiveness. One of the most affecting 
factor is the cost of energy, especially for the electric arc 
furnace (EAF) process where the energy cost could raise up to 
40% of the final gross price. Based on the opportunities offered 
from energy markets is possible to reduce this cost in a 
significant way. This paper presents an integrated system for 
the optimization of the power purchase of a steelworks. The 
system consists in a series of tools interacting together in order 
to forecast the electric consumption of the plant basing on the 
planned production, identify possible deals over the markets 
and supporting the bidding strategy. A real life example is 
presented and discussed.  

 

 
Index Terms—steelworks; simulation; consumption 

forecasting; power. 
 

I. INTRODUCTION 
HIS paper presents the work carried out to forecast the 
energetic consumption of a steelworks and optimize the 

power purchase [1]. An important part of the work has been 
dedicated to provide the cost of the energy consumed basing 
on the electricity market analysis, in order to optimize the 
energy purchase. 

 The forecasting of the best purchase profile of power is 
carried out by simulations based on the actual production 
plan. The simulation results (plant electric absorption profile 
hour by hour) are employed for the identification procedures 
of the energy purchase opportunities. In particular, is 
assumed as more probable consumption profile, the profile 
which will assure, with a 95% confidence, to have available 
a sufficient energy for the production operations. 

 The informatics system supporting the steelworks 
operations is composed by: 

• The electric consumption module. In this model the 
system extracts the orders portfolio (from the planned 
production) and the status of the plant (from the plant 
automation system) and employs said data as inputs of a 
simulation model. The latter effects the analysis and the 
forecasting of the plant electric consumption, providing 
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the electric power profile for the next days of operation.  
• The market forecasting part. This part takes the data 
from the electric energy markets (MI 1, MI 2, MI 3, MI  
4 or infra-day markets, MGP or market of the day 
before) and stores it in a database. The market analysis 
and prediction is demanded to an ARIMA model which 
provides the forecasted costs of energy for each hour of 
the day and for the different markets.  

• The forecasted consumption and the forecasted energy 
prices are the input of an optimization procedure, whose 
outputs are the energy price of offer, the amount of 
energy to be purchased and the market in which to 
purchase the energy. 
 

II. PROCESS OF THE STEELWORKS 
The analyzed steelworks has two baskets available for 

scrap, served by two cranes and an arc furnace (EAF) with 
75 MVA power served by two cranes, one for scrap loading 
and one for bleeding and empty ladle disposal. Moreover, 
two ladle furnaces (LF) are available, of respectively 36 
MVA and 25 MVA. A Void Degassing (VD) location is 
present, for the degassing operations: all castings need to 
undergo this position. The production can be sent directly to 
the continuous casting (CCO) or to one of the two casting 
pits (Pit 1 or Pit 2). The ladle furnace LF1 and the VD 
location have a direct access, while the LF2 requires a 
loading cart. All the castings provide the same production 
path: scrap loading, EAF fusion, LF treatment, VD 
treatment and casting (in CCO or in Pits 1 or 2).  

 

 
Fig. 1.  Operations in the steelworks. 
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The VD treatment lasts 40 minutes, whereas the lasting of 
the treatment in LF is variable between 60 and 240 minutes 
according to logistic congestion, to the typologies of 
additives (ferralloys) or to the type of steel. 

The process reference parameters are the temperature of 
input to VD/casting and the rate of free oxygen (CELOX). 
All the appointments requiring a waiting for the LF 
treatment are managed by a lengthening of the treatment 
time. The production in pit (ingots) occurs with weights 
varying between 5 t and 85 t. The steelworks uses 6 active 
ladles of which 5 big ( up to 85 t) and one small (up to 63 t). 
The latter is kept in standby. After casting, the ladle is taken 
to the draining area and then to the first stand of inspection 
zone; then, it is taken to the zone of substitution of the 
porous septum and to one of the two positions of vertical 
heating. In the last zone, is present a non heated cot for 
ladles positioning. Two positions are present for the 
remaking of ladles and for the vertical heating and one 
position is dedicated to drying. Pit 2 is served by a casting 
cart and by stripping cranes. There is also a pass-span cart 
serving the three spans and another pass span cart serving 
the three spans and the park span, the latter containing slabs 
and sheets. Two other pass-span carts are needed to displace 
the scrap baskets.  

In Figure 1 are reported the processes implemented in the 
simulation model. The traffic lights indicate the existence of 
a waiting logics between the end of a process and the next 
one, whereas the block “CCO” indicates the casting 
position, which may occur either in continuous casting or in 
one of the two pits. The red color in the scheme indicates a 
variability of the process time in function of the respect of 
appointments and of the results of chemical and quality 
analyses. The “heating” position is intended as the heating 
in ladle nearby the electric oven.  

 

III. THE SIMULATION MODEL “SIM PROCESS” 
Sim Process is an innovative software package able to 

improve the execution of a steelworks production plan, 
through Montecarlo simulations. On the basis of the plant 
instant-by-instant real situation (ladles position and their 
state, state of the different processes etc.), time forward 
simulations of the plant operation are launched in real time 
and the electric consumption profiles are determined. 
Through the continuous monitoring of the electric markets it 
is possible to determine which is the best price to buy the 
electric energy, thus developing a correct planning strategy 
of the power purchase. 

The heart of the software package is the Montecarlo 
simulator. The latter executes many different simulations, 
being the simulator a probabilistic model and not a 
deterministic one; therefore, each run produces a potentially 
different evolution of the plant in time. The synthesis of the 
runs in statistical terms is carried out through the DOE 
(Design Of Experiments) methodology, which allows to 
determine the confidence band of the energetic consumption 
final result. In particular, the model output is a consumption 
value for each time slot, characterized by a 95% confidence 
value (i.e. 95 times over 100 the consumption will have the 
forecasted value).  

The Sim Process system is described in detail in the 
following, analyzing separately: 

• the simulation module (input, output, features); 
• the reference statistics for electric consumption 

definition; 
• the prevision algorithm  
• the market analysis  
• the output of the software package. 

  

A. The simulation module 
The scheme in Figure 2 reports the interaction between 

the simulation model (Virtual Plant) and the real plant.  
Through a tracking system the state of the different plants 

(LF, VD, EAF, CCO etc.) and the estimated position of the 
various ladles are defined.  

Starting from the actual state, time by time available 
thanks to the tracking system, the Virtual Plant is activated, 
simulating the forward march of the plant, producing the 
Gantt diagram of the activities and defining the future 
consumptions of the plant (see Figure 3). 

 
Fig. 2.  Interaction between virtual plant and real plant. 

 

 
Fig. 3.  Production Gantt diagram and energy consumption profile. 

 
Such simulation (forecasting of the operations) is realized 

through the use of average expected times obtained by a 
statistical analysis on the previous operations recorded in the 
tracking system. For each minute and in correspondence of 
each event that may determine an update of the schedule 
(e.g. end of an operation, end of casting …), the simulation 
is run again, updating the graphical representation in the 
Gantt diagrams. 

The simulation model battery limits are, upstream, the 
production of the scrap baskets and downstream the ladle 
casting in the continuous casting or in the pits (Pit 1 or Pit 
2). The simulation model is able to simulate the ladles 
logistics, and it is thus able to estimate the waiting time in 
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the furnaces. This time represents the “technological 
minimum” in which the ladle is engaged; to this time, in 
function of the situation downstream of the treatment, can 
be added an auxiliary time to allow the correct management 
of the castings.  

The whole steel manufacturing process may be described 
by a schematization, in which only four kinds of processes-
types are individuated. A process is defined as an ensemble 
of operations. 
• Active processes:

• 

 these are a sequence of operations, 
each of which is fulfilled at the end of the previous one. 
Typical examples are processes in the furnace where 
after the melting of a scrap basket another is added and 
melted again. These are also called process-steps and are 
introduced in order to define electrical consumption 
profiles. 
Passive processes:

• “

 in these processes the different 
operations are in queue and are waiting to be called by a 
server. Typical example is the maintenance of ladles 
where the ladle is waiting in order to be maintained by 
the workers. 
Wait” processes

• “

: in this kind of processes, the objects 
wait for the operations until they are “unlocked” by 
another process, this is the typical condition for 
appointment-like process (i.e. the empty ladle waits the 
EAF to be in the tapping status). 
Wait until” processes:

Particular attention is posed on the general architecture of 
this simulation model since it has to be used on-line and in 
real-time with the operating plant. In this way information 
about the current status of the plant are taken from the “level 
1” automation, the current production plan is taken from 
“level 2” automation and routing and operational instruction 
are described in the “routing” tables. In ROUTE table the 
sequence of status are given, in PWAIT table the wait 
conditions are specified and in LSEQO table the production 
sequence is given. 

 in this kind of processes one 
object needs to wait that other objects reach a 
determined condition to undergo an operation. Typical 
example is the EAF, for which the casting needs to reach 
particular conditions and one ladle needs to be free.  

Simulation is running then in order to produce the various 
events, some of these events are expected to consume 
energy, so by computing all the energy consumed by each 
event an expected consumption profile is calculated every 
simulated minute. This profile is the used to estimate the 
total electrical consumption expected for the planned 
production. 
 

B. The reference statistics 
Since the overall results of the simulation are a possible 

evolution of the system, the resulting consumption chart 
(fig. 3) is just a possibility and cannot be regarded simply as 
the expected consumption profile; many different simulation 
runs, each with a different random seed, are then performed 
in order to sample the various possibilities. Such simulated 
results are then used with a statistical t-Student test in order 
to identify the expected consumption profile at a pre-defined 
significance level (i.e. alpha-0.05%).  

All the statistical significance tests assume initially the 

null hypothesis. When comparing two or more groups of 
samples, this hypothesis imposes that no difference exists 
between the groups for what about the considered 
parameter. So, the possible differences among the samples 
are to be attributed to the case. The decision to reject the 
null hypothesis is probably right, but it may also be wrong. 
The probability to commit this error is called level of 
significance of the test. The level of significance is usually 
set to typical values of 5% or 1%.  

When the mean of a population is not known, often 
neither the variance σ2 is. What can be done is simply 
substitute the variance of the population with that of the 
sample (S2). When effecting this substitution, it is necessary 
to remember that the probability distribution is no more 
normal, but is described by the t of Student. It can be 
demonstrated that, for small samples, the difference between 
the mean of samples drawn from the same population and 
the mean of the universe, in relation to the standard error, is 
not a normal distribution as would occur for samples of 
infinite size. Using the formulas in place of words, the 
random variable can be written in this way: 

 

𝑡 =
𝑋� − 𝜇
𝑆/√𝑛

 (1) 

 
where 𝑋� is the mean of the sample, 𝜇 is the mean of the 

population, 𝑆/√𝑛 is the standard error of the sample, being 
n the number of samples. According to the theory, a whole 
family of Student distributions exists, for each degree of 
freedom. For an infinite number of samples, the Student 
distributions tend to a normal distribution. 

Therefore, the model launches n runs of simulation to 
determine the plant electric consumption in the hours 
following the present time. Samplings are object of the 
Student test to verify, within the level of significance of the 
test, if the population from which they come assures the 
satisfaction of the target function. In other words, the n 
launches tell n different stories of the plant development in 
time and of its consumptions. These stories constitute the 
statistical basis for the system output, which represents the 
value of energetic request of the plant in 95% of the cases.  

In this way, the system calculates a profile of electric 
consumption estimated on the basis of the expected value of 
the mean consumption, for each quarter of hour; the mean 
has been produced by the n replications of the simulator, to 
which is added the semi-amplitude of the confidence band 
calculated through the distribution of the t of Student, which 
is:  

𝑟𝑖𝑠𝑢 = 𝑟𝑖𝑠𝑚 + 𝑡0.05,𝑛−1 ∗
𝑟𝑖𝑠_𝑠
√𝑛

 

 
where: 

𝑟𝑖𝑠𝑢 [MW] is the upper value of the electric consumption of 
the quarter of hour;  
𝑟𝑖𝑠𝑚 [MW] is the mean simulated value of the electric 
consumption in the quarter of hour; 
𝑟𝑖𝑠𝑢 [MW] is the difference calculated on the simulated 
electric consumption in the quarter of hour; 
n is the number of replications; 
𝑡0.05,𝑛−1 is the percentile of the Student t distribution for n-1 
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degrees of freedom and 95% level of confidence. 
 

C. The market forecasting algorithm 
Once the expected electrical consumption profile is 

identified, it is necessary to investigate the future price of 
the electricity in the 5 available markets in order to 
investigate the best bid strategy for purchasing the required 
energy. A forecasting model was than implemented using 
the Box-Jenkins methodology. 

The model individuation was made through the Box 
Jenkins procedure, which develops in 4 phases: 
1) verification of the series stationarity and research of the 

proper transformations to make the series stationary 
2) identification of the appropriate model and choice of the 

model orders 
3) estimation of the model coefficients 
4) verification of the model on the basis of the residuals 

analysis and of the analysis of the previsions. 
For the first point, it is useful the employ of an integrated 

moving average auto regressive model ARIMA(p,d,q) 
where the d parameter corresponds to the order of the 
differentiations to be executed in order to make the model 
stationary [2], [3], [4]. 

After the verification phase, the model’s orders are 
searched, analyzing the diagrams of global and partial auto-
correlation of the series. 

The global auto-correlation function [5] is the covariance 
function normalized on the variance, 𝜌(𝑘).  

 

𝜌(𝑘) =
𝐶𝑜𝑣(𝑋𝑡 ,𝑋𝑡+𝑘)

�𝑉𝑎𝑟(𝑋𝑡)𝑉𝑎𝑟(𝑋𝑡+𝑘)
 (2) 

 
It oscillates between -1 and 1, and is employed to see how 

much the observations of a time series are correlated one the 
other. The partial auto-correlation function provides the 
degree of dependence between one observation and another, 
in which the effects of the intermediate values are removed. 

A further extension of the ARIMA process is called 
moving average integrated auto-regression with seasonality 
(SARIMA), which adds the seasonality to the model. The 
seasonal part has the same structure of the non-seasonal one, 
having a seasonal AR factor, a seasonal MA factor and a 
seasonal order of integration. All these three factors act on a 
multiple delay of the seasonality frequency. 

The SARIMA model can be seen as an 
ARIMA(p,d,q)(P,D,Q)[S] process, where p is the auto-
regression order AR, d is the integration/differentiation 
order, q is the moving average order MA, P is the seasonal 
auto-regression order, D is the seasonal 
integration/differentiation order, Q is the seasonal moving 
average order, S is the number of periods per season. 

The parameters for the seasonal model part are researched 
in the same way of the non-seasonal ones, observing the 
global and partial auto-correlation diagrams, this time 
controlling the lag in multiples of S (number of periods).  
The estimation of the coefficients can be calculated with the 
minimum square method or with the maximum similarity 
method. 
 
 

The last step of the Box Jenkins method is the verification 
that the model obtained is the generator of the analyzed 
series. To do this, it is necessary to analyze the estimated 
parameters and the estimation of the residuals, also verifying 
that the number of parameters utilized is the minimum 
possible. The estimations of the parameters need to be 
different from zero; a test on the residuals needs to be 
carried out in order to verify whether a seasonal component 
is still present; in this case, the diagrams of the auto-
correlation function of the residuals will show correlations.  

The Ljung Box tests must verify that the errors are totally 
random, as generated by a white noise generator [6].  

Finally, a ex-post prevision is required, so that the values 
forecasted by the model can be directly compared with the 
observed values. To estimate the model forecasting capacity, 
it is possible to employ the mean absolute percent error 
(MAPE) defined as: 

 

𝑀𝐴𝑃𝐸 =
100
𝐿

�
𝑋𝑡+𝑙 − 𝑋�𝑡+𝑙

𝑋𝑡+𝑙

𝐿

𝑙=1

 (3) 

 
where L is the number of total observations to forecast, 

𝑋�𝑡+𝑙  is the forecasted value and 𝑋𝑡+𝑙 is the observed value. 
 

D. The electric market analysis 
The data employed for the market analysis come from the 

Italian electric market IPEX. It deals with 5 historical series 
one for each market managed by the GME (Italian Electric 
Market Manager). In this paragraph, only the series related 
to the Market of the Day Before (MGP) will be considered, 
but the same analysis was carried out for the four other 
infra-day markets (MI1, MI2, MI3, MI4). The series 
contains the hourly prices in €/MWh, from 1st of January to 
31st of December. The observations are reported in Figure 4.  

The data have been pre-processed:  
• all the excessive peaks, non congruent with the data 

series, have been removed  
• although the average price is often stationary also 

considering the monthly subseries, a first order 
differentiation has been made, to take the mean value to 
zero. 

• at this point, the parameter of non-seasonal 
differentiation will be equal to 1.  

From the data so processed, it is possible to pass to the 
analysis of auto-correlation functions, partial and global, 
represented in Figure 5.  

 
Fig. 4.  Daily prices of power, for the Market of Day Before (MGP). 
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Fig. 5.  Global (above) and partial (below) auto-correlation diagrams. 

 
The partial auto-correlation function (PACF) shows two 

initial peaks in correspondence of lags 1 and 2. These peaks 
give information about the parameter of the auto-regressive 
part, p=2. The auto-correlation function (ACF) shows a 
decline to zero only after the fifth lag, and successively still 
oscillates. This is due to seasonality and to the calculation of 
the ACF which, being global, takes into account the effects 
of the values of the intermediate lags.  

From model runs with the part of non seasonal moving 
average q ϵ {1,2, … 5}, no positive value of q was remarked 
to be significant and the coefficients θi  0 < i < 5 were not 
significantly different from zero. Thus, the choice of the q 
parameter was made to 0 according to literature.  

For the seasonal part a differentiation of the first order 
was carried out and the parameters of the auto-regressive 
seasonal part and of the mobile average part were chosen.  

To evaluate the forecasting performance of the model, 
together with the MAPE, the mean daily error (MDE) was 
employed, which considers the error with respect to the 
average value of the daily price and not with respect to the 
hourly price, which can oscillate of more than 100 €/MWh 
within the same day. The MDE [7] is defined as:  

 

𝑀𝐷𝐸 =
100
24

�
𝑋𝑡+1 − 𝑋�𝑡+1

𝑋𝑡���

24

𝑖=1

 (4) 

 
where 𝑋𝑡��� = 1

24
∑ 𝑋𝑡+𝑖23
𝑖=0  and 𝑋�𝑡+1 is the estimated hourly 

price. Up to today, the average MDE for the previsions of 
the last 30 days is of about 8.56% with a standard deviation 
of 3.86%.  

The following pictures (Figures 6, 7 and 8) provide some 
results of the activity of market analysis.  

 
Fig. 6.  Results of the market analysis tool. 
 

 

 
Fig. 7.  Results of the market analysis tool. 

 

 
Fig. 8.  Results of the market analysis tool. 

 
In the figures, the lines in black represent the actual price 

values, the lines in grey the predicted values. Also, in the 
pictures are indicated the values of MAPE and MDE. 

 

E. The output 
The tool, finally, produces a comprehensive report in 

which is presented:  
 
 

 
 Fig. 9.  Comparison among the market prices and the optimized solution. 

 
• on the first page a table indicating the consumption of 

the plant for time slot and the best market on which to 
purchase the power in order to optimize the daily 
energetic cost; 

• on the second page the optimized cost of power 
purchase, compared with the possible purchase 
scenarios and the saving margin (see Figure 9);  
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• on the third page the diagrams of the energetic 
consumption per market: contract, MI1, MI2, MI3, 
MI4, MGP (see Figure 10);  

• on the fourth page, the cost of the kWh in function of 
the hour and of the market of purchase (see Figure 11). 
 

 
 
 

Fig. 10.  Composition of the markets for energy purchase. 
 
 

 
Fig. 11.  Price of the energy. 

IV. RESULTS 

The following Table I contains the consumptions in the 
first 4 days of the month of January. In the table are 
indicated the predicted consumption, the actual consumption 
and the error. 

 
 

TABLE I 
CONSUMPTION AND ERRORS 

Date Source Total  

01/01/2013 Prediction [kWh] 774778.00 
 Consumption [kWh] 872159.20 
 Error [kWh] 97381.20 
 Error % 12.57 
02/01/2013 Prediction [kWh] 3198944.40 
 Consumption [kWh] 2945989.20 
 Error [kWh] 535085 
 Error % 7.91 
03/01/2013 Prediction [kWh] 4141000.00 
 Consumption [kWh] 3877623.20 
 Error [kWh] 517494.4 
 Error % 6.36 
04/01/2013 Prediction [kWh] 42100000.00 
 Consumption [kWh] 3945766.00 
 Error [kWh] 449294.00 

 Error % 6.28 

 
The plant average hourly consumption is 150 MWh, the 

average daily consumption is about 4000 MWh, whereas the 
total monthly consumption is 121484.8 MWh. 

Figure 12 provides the valorization on the market. In the 
diagram are indicated the total cost for the effective 
consumption at the PUN (Unique National Price) of the last 
year (75.48 €/MWh), the cost for the effective consumption 
at the PUN hour by hour (as if all the purchases had been 
done on the MGP), the cost for the effective consumption at 
the real price suggested by the Sim Process system, the cost 
for the effective consumption at the best price of the 5 
markets, the cost for the forecasted consumption. 

 

 
Fig. 12.  Valorization on the market. 

 
In Table II is indicated the analysis ex post on the real 

consumptions for the month of January 2013.  
With this analysis it is possible to calculate the savings 

obtained by a model of energy purchase based on purchases 
on the spot market according to the indications provided by 
the Sim Process system.  

The saving is indicated as the difference of energy 
purchase at the hourly PUN in the MGP market, with 
respect to the purchase of the same energy amount on 
different markets (MGP, MI1, MI2, MI3, MI4) hour by hour 
suggested by the platform on the basis of the price 
forecasting in these markets. 

Also, is shown the cost for supply at the best hourly 
price which is the price that effectively revealed to be the 
lowest.  
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The input of the analysis consists in the hourly 
consumptions of the plant [kWh] for a defined period of 
time. The consumptions are valorized in three different 
modalities: the first one is that considering the energy 
purchase at the hourly PUN price on the MGP. The second 
modality represents the energy purchases following the 
indications of the Sim Process system: are here employed 
the forecasted values calculated by the platform to find the 
cheapest market for each hourly purchase. Once found the 
market, the consumptions are valorized at the effective 
prices present on the database. The third modality is a 
benchmark, which is the price of purchase on the cheapest 
market looking at the results ex-post. It indicates how much 
the prediction platform can be improved. The output of this 
analysis consists in a table which shows the purchase price 
and the savings, and the performance with respect to the 
benchmark.  

 
TABLE II 

RESULTS OF THE ANALYSIS 
Total (Jan 2013) Euro Saving €/MWh Performance 
PUN 7 822 448,00  64.39  
Sim Process 7 421 645,00  61.09  - 53% 
Benchmark 6 961 931,00  57.31  

 
The prices indicated are the pure purchase prices on the 

electric markets, net of system charges, network services 
and taxes.  

V.  CONCLUSIONS 
The presented paper has described an integrated tool to 

provide a significant support to energy and plant managers 
in steel industry. Significant results were obtained from the 
real life application of the proposed methodologies. The 
obtained results are suitable for application in many other 
industrial cases where energy consumption plays a crucial 
role in the cost saving process. 
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