

Abstract— Prefix trees or tries are data structures that are

used to store data or index of data. The goal is to be able to
store and retrieve data by executing queries in quick and
reliable manners. In principle, the structure of the trie depends
on having letters in nodes at the different levels to point to the
actual words in the leafs. However, the exact structure of the
trie may vary based on several aspects. In this paper, we
evaluated different structures for building tries. Using datasets
of words of different sizes, we evaluated the different forms of
trie structures. Results showed that some characteristics may
impact significantly, positively or negatively, the size and the
performance of the trie. We investigated different forms and
structures for the trie. Results showed that using an array of
pointers in each level to represent the different alphabet letters
is the best choice.

Index Terms— data structures, indexing, tree structure, trie,
information retrieval.

I. INTRODUCTION

Data structures are used to save and retrieve a large
amount of aggregated data. They can vary in structure based
on the nature or the purpose for having or using such data
structure. Performance or the speed of storing and accessing
data in those data structures are the main characteristics that
can judge the quality of any data structure. Any current
natural language such as: English, French, Arabic, etc. can
have number of words up to one million words although
dictionaries may not contain all such words especially as
Languages continuously grow to add new words or borrow
words from other languages. Current versions of Oxford
English Dictionary may have up to half million words. As
such, a software product or web application that needs or
use a dictionary should have efficient data structures for
effective: storage, access and expansion of data or words.

Prefix trees or tries are data structures that are usually
used to store dictionaries or words. Their nature of structure
can facilitate retrieving queried words quickly. In each trie,
nodes form the children that can further be parents for lower
nodes. Nodes contain letters that represent keys or pointers
to words (or the rest of the words) at the lowest leaf levels.
In principle, each node can contain the searched for word (if

Feras Hanandeh , Dept. of Computer Information Systems, Faculty of
Prince Al-Hussein Bin Abdallah II For Information Technology, Hashemite
University, Zarqa, Jordan, feras@hu.edu.jo
Izzat Alsmadi , Dept. of Computer Information Systems, IT & CS Faculty,
Prince Sultan University, Riyadh, KSA, ialsmadi@cis.psu.edu.sa
Muhammad M. Kwafha ,Dept. of Computer & Information Technology,
Al- Balqa Applied University, Irbid, Jordan, mohkofahi@hotmail.com

.

it is a leaf). This can dynamically change if more words are
added. Finding a word in a trie depends on the size of the
ree or the number of words along with its structure. The
depth of the nodes that a query can go depends on the
number of words in the searched for word. If the word does
not exist in the tree, the longest node sequence is performed.
Figure 1 show a simple example of trie structure where each
node stores an array of alphabet keys or pointers.

Figure 1: A trie structure for example 1

Figure 2 shows another example of a trie where each node
contains the array of alphabets and an underlined letter
indicates that this letter is a leaf for at least one word. As we
will describe later, using array of pointers can optimize size
in many cases.

Figure 2: A trie structure for example 2

There are several factors that should be considered when
designing a trie. For example:

 The memory size that each node should have affects the
total trie size. The size of the whole trie is the aggregated
size of all its nodes. Nodes can be empty, store one letter as

Evaluating Alternative Structures for Prefix
Trees

Feras Hanandeh, Izzat Alsmadi and Muhammad M. Kwafha

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

pointer, or store up to certain number of letters (say 20) to
represent words. A good trie structure can store the same
number of words with minimum size. Of course taking a
small number of words is not enough as a good trie
structure. It should not be customized based on a limited
number of words (for example 10 words that all start with
the letters: AB). Such trie may be better in comparison with
others based only on this specific set of words.

The node level specifies its location in words. For
example, a node with letter E in the second level may
represent all words that their second letter is E (e.g. tea, sea,
key). If the nodes represent single letters, then examples of
match words will only be for example: sea, set, sell, seat,
etc.

While in the current large amount of available memories
and disk sizes, size may not be a critical factor, however, if
such trie can achieve lowering the overall size without
impacting other aspects such as speed of storage or retrieval,
then this can be still a major comparison factor.

 Trie structure nature: certain structures can facilitate not
only quicker access and retrieval of information; they can
further facilitate smooth expansion of such structures. In
many cases, it is necessary for a dictionary to accept the
addition of new words and hence the structure should
facilitate this expansion smoothly and dynamically. This can
be for either fragmentation or for allocation/reallocation. In
some other cases, it maybe necessary to compress, encode
or encrypt data in those tree structures.

The performance of the structure can be highly
dependent on the dataset of words, the distribution of words,
or the number of letters in the words. It can be also language
dependent especially if the number of letters in the language
alphabet is small or large. Each node of a tree store two
kinds of data: user data and trie-related data. Let say
alphabet has at most 256 letters, thus letter could be saved in
a byte. For space optimization, it is best to store nodes in a
pair form (e.g. KeyValuePair<char, TrieNode>). The first
part which will take only one charachter stores the key part
of the node which is one charachter size. The second part is
a node, an object which further can be represented by
charachters and nodes. As we will show later on, this is
shown to be the best optimized approach to use for building
a trie. This can be represented by a template in C++ or
generic in Java and C#.
While the subject of prefix trees or tries is not new, new
techniques to improve the structure of the trie showed
significant improvements. This is largely due to the creation
of new programming language components or libraries.
The rest of this paper is organized as follows: Section two
presents' related studies to the paper subject, section three
shows the proposed methodology, section four presents
implementation and experimental results, Last section
presents the conclusions and future work.

II. RELATED WORK

Data structures such as trees evolved from the early 19th
century. Tries evolved from trees. They were called
different names such as: Radix tree, compact trie, bucket
trie, prefix tree, Crit bit tree, and PATRICIA (Practical

Algorithm to Retrieve Information Coded in Alphanumeric).
Some current papers argue that new data structures such as
Hash tables or Linked structures can be better alternatives
for tries in terms of flexibility and performance.

In the current general form, it is believed that tries were first
proposed by Morrison [1].Those different names may have
some differences in the detail structure. For example, unlike
PATRICIA tree nodes that store keys and words, with the
exception of leaf nodes, nodes in the trie work merely as
pointers to words [9, 10]. Before Morrison, Fredkin
published a paper titled (Trie Memory) [2] describing the
trie structure. Fredkin wrote in 2008 “As defined by me,
nearly 50 years ago, it is properly pronounced "tree" as in
the word "retrieval". At least that was my intent when I gave
it the name "Trie". The idea behind the name was to
combine reference to both the structure (a tree structure) and
a major purpose (data storage and retrieval)”. Looking at the
size issue, it is estimated that using PATRICIA trie for
100,000 words, in current typical desktop, trie size can be
around 5 MBytes (assuming average size of english
keywords of 5 letters.

In [3], Heinz claimed that Burst-trie version of prefix trees
is the fastest. This trie tried to further reduce the number of
nodes by collapsing similar nodes that share same prefixes.
The Buckets or nodes were represented using linked lists.
Later papers claimed that Bursts can be further reduced
using caches. The main goal or enhancement of Burst trie
over traditional trie is in reducing the number of required
search cycles to retrieve subject or query.

Tanhermhong et al in [12] proposed a new tri-based
structure called (structure-shared trie) with the goal of data
compression to reduce size. The main idea is to utilize
unused space within the trie structure.

 Using tries for approximate string matching discussed by
Shang and Merrett in [11]. The proposed approach claimed
to have a search process that is independent of the subject
document size. The search depends on an approximate
match between query and searched for text. Such algorithms
can be used for recommendations systems where the
information system can suggest alternative approximate
terms for users’ queries.

Askitis and Sinha proposed HAT-trie as an alternative better
trie representation [4]. This is based on the previous
approach: Bucket-trie where Buckets are divided using B-
tree splitting. The paper tried to improve Burst-tries through
caching and using Hash tables. Authors assembled several
datasets of texts for comparison for their data structure with
some known ones (i.e. known design structures for tries)
and showed improvement in performance and memory size.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Askitis and Sinha [13] proposed an approach to combine a
trie and a Hashtable (Hat trie). The goal is to optimize in
memory data usage in terms of efficiency and speed. Askitis
and Zobel in [15] discussed optimizing efficient data
structures such as Hash tables and Burst tries based on
caching. Authors claimed that storage can be significantly
reduced.

In [6], Knuth proposed enhancing performance in tries
through flexible size pointers of array lists in comparison
with original fixed size pointers. This requires non-root
nodes to be highly occupied in order for such alternative to
be competitive. Nodes can share keys with neighbors rather
than split when get full.

Behdadfar and Saidi used trie search for IP routing table
search optimization where they tried to scale tries to deal
with large size data structures such as those of IP addresses
[7]. They tried to sort nodes through encoding their
addresses with numbers which can be reached faster based
on encoded numbers. They found out that some methods
can be optimized for search or query as methods maybe
optimized for an addition or update process to the trie table.
Bando and Chao tried also to use trie compression for
enhancing IP lookup [8]. The proposed Flash trie data
structure used compression techniques to reduce the overall
size of the trie.

A recent paper, Leis et al in 2013 [14], discussed an
approach to enhance Radix trees for efficient indexing in
main memory. The approach is compared in terms of
performance with Hash-tables. Several other recent papers
such as Böhm et al in [15] discussed recent issues related to
in-memory trie structures optimization in terms of size,
efficiency, performance, etc.

III. TRIE STRUCTURE IMPLEMENTATION

We tried several alternative structures for trie or prefix trees.
The different alternatives are based either on using different
variable or data types (e.g. strings, array of strings,
characters, array of characters, templates, generics, etc.) or
based on the way the trie nodes are formed. The general
agreed upon structure for the trie assume nodes in the
different levels with alphabet letters in those nodes as
prefixes to the words. Each node can hold only one letter
from each word. However, if the letter is a leaf, it can hold
more than one letter if no split is required. Later on, an
addition of a word may require this node of several letters to
be further divided. In other words, in a complete full
structure, a word of three letters will span over three nodes
letter in each node. That does not prevent a single node to
be an array of pointers of several different letters as it can be
still seen as a single node given the ability of some data
types representation to hold an array of pointers. Figure 3
shows a sample trie structure. Not all node elements should

be used in a particular trie instance. This is why many recent
trie structure approaches tried to optimize space through
some compression techniques.

Figure 3: A trie structure

New technologies and data structures impact the usage of
older data structures such as trees. As such, we tried to
evaluate the impact of utilizing new programming or data
type elements in the structure of the trie in terms of size or
memory usage and space utilization.
In order to make a fair comparison, we implemented all
different alternative implementation in one programming
language (.NET C#). For each program, three classes are
created, Trie, Node and Main class. In the main class, for
each experiment a trie is created, experimental text files are
parsed and save in a string array word by word. After that,
words from the string array are inserted in the trie nodes
through a loop. Size metrics are then collected at the end of
the insertion process.

IV. EXPERIMENT RESULTS

To investigate the efficiency of the different evaluated trie
structures, several text files of words from English
dictionary are assembled. They are selected randomly from
the dictionary with only size or number of words as the
main concern. The small sets are selected all from the start
of the dictionary. This means that all those below a certain
size (e.g. 2000 words) will be from the first English letter
(A). As tries or prefix trees structure depends on the first
letters of the words or prefixes, selecting all words that start
from one letter may indicate different results from selecting
a set of words that span over all alphabet letters. Later
random selection of words from all dictionary locations will
be implemented to ensure a fair distribution of words. In the
largest tested size, we tried to a dictionary file of 349,900
words or 3.473 MByte memory size. Table 1 below
summarizes files selected for testing, number of words and
approximate memory size. Memory size is approximate
since we selected each test set based on the number of
words and repeat the process several times where some
selections maybe slightly different from others based on the
selected words.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

TABLE 1
NO OF WORDS AND SIZE OF EVALUATED DICTIONARY FILES
No. Of words Size (MByte) No. of selections

100 0.001 5

500 0.006 5

2,000 0.02 5

5,000 0.051 5

10,000 0.1 5

72,858 0.65 1

349,900 3.47 1

Size of tries and nodes is measured based on debugging
source code and also using memory profilers.

In the first experiment three different alternative trie
structures (prog1, prog2, and prog3) were experimented on
small data files. For each selected size (i.e. 100, 500, 2,000,
5,000, and 10,000 words), 5 different selections are taken
and average values of those five selections is considered.
The first two columns (size of created nodes, and number of
nodes) were collected from memory profilers while the last
two (root direct children and trie size) were collected from
code debugging.

TABLE 2
SUMMARY OF RESULTS FOR THE FIRST EXPERIMENT

No. Of
words

(program)

Size of
created
Nodes
(Kbyte)

No. of
nodes
in each
level
(max)

Root
direct
children

Trie size:
children/Nodes

100(1)
4220.8 263 1 32

100(2)
4220.8 263 27 9

100(3)
5276 263 1 32

500(1)
20985.6 1311 1 85

500(2)
20985.6 1311 27 16

500(3)
26232 1311 1 85

2000(1)
84064 5254 1 365

2000(2)
84,064 5254 27 58

2000(3)
105,080 5254 1 365

5000(1)
213,843 13365 1 786

5000(2)
213,843 13365 27 115

5000(3)
267,304 13365 1 786

10000(1)
415,187 25949 1 1278

10000(2)
415,187 25949 7 174

10000(3)
518,984 25949 1 1278

Results in Table 2 shows that trie structure of program two
is better in terms of size utilization for all text file sizes.
Number of nodes in each level column has the same value
for all program alternatives as this has to do with the general
trie-node structure which is similar. However, the first
column on the right (trie size) shows significantly why
program two is the best in terms of size utilization. Trie size
is a method we defined (Figure 4) to show the total number
of actually utilized nodes. Notice that this number changes
based on stored data. This value is the same for programs 1
and 3. The value of actual trie size is significantly reduced
in program 2 when size of text file is large.

The key to the difference between program 2 at one side
from programs 1 and 3 at another side can be seen looking
the second column from the right (number of root direct
children). Program two creates for each trie level nodes of
the number of alphabets regardless of the size or the nature
of the data. However, for programs 1 and 3 and since all
selected data in Table 2 are from the letter (A) in the
dictionary, those two programs have one child node from
the root which is the node of the (A) letter. Program 2
created 27 nodes even if one node or letter is utilized.
However, each node stores two elements: a key of type
character for the key letter in the node and 27 elements of
type Node. The utilization of this structure can be further
seen if we selected words from all letters of the dictionary.

In the second experiment three different alternative trie
structures (prog1, prog2, and prog3) were experimented on
large files. We used the two large files (i.e. 72,858 and
349,900 words) to evaluate the difference between the three
different alternative structures. Table 3 below shows the
summary of results.

Figure 4: Trie-size: Number of utilized nodes

Figure 5 and 6 show snapshots from ANTS memory
profiler. Two of the column variables are collected from this
profiler: Nodes size and node or live instances. This is
repeated for every tested file. In Figure 5 TrieNode [] is an
array of nodes that was implemented in one version of the
programs [program 2].

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Figure 5: A snapshot view from ANTS memory profiler: array nodes

Figure 6: A snapshot view from ANTS memory profiler: single nodes

Table 3 shows a summary of results for the second
experiment with the large size text files. The
experiment is conducted using the three developed
versions of Trie. Table 3 shows summary of results.
We focused only on code data since used memory
profiler showed inconsistent results for large size data
structures.

TABLE 3
SUMMARY OF RESULTS FOR THE SECOND EXPERIMENT

No. Of words
(program)

Root direct
children

Trie size:
children/Nodes

72,858(1)
27 14,561

72,858(2)
27 3,301

72,858(3)
27 14,561

349,900(1)
27 49,394

349,900(2)
27 7,945

349,900(3)
27 7,931

Table 3 shows that all alternative programs used the 27 first
level nodes due to the large size used datasets. Size in
program 2 is significantly less than the size of the other two
programs in most cases.

As mentioned earlier, results can vary based on the nature of
data and the hardware or computer components used in the
experiments or evaluation.

V. CONCLUSIONS AND FUTURE WORK

The continuous development and production of
new hardware and programming components and data
structures have impacts on several quality attributes related
to software products. In this paper, we evaluated different
alternative structures for prefix trees or tries. We used three
different versions to implement the structure of tries. We
then assembled several testing documents with different
sizes that include words from English dictionary. Metrics
related to size and usage of memory and computer resources
are collected for all investigated test files. Results showed
while all different evaluated versions share the same
common trie structure, yet using some of the new
programming components can significantly improve the trie
structure and optimize its memory usage. While in this
paper, we tried to focus only on one aspect related to size,
several other aspects should be evaluated related to the
speed of trie data insertion and update. The speed of query
retrieval is also important especially for some applications
such as library or web indexers. In the current large size
applications and data, using a proper data structure that can
optimize memory and resources usage and accelerate the
speed of adding and retrieving data is always important and
necessary.

REFERENCES
[1] Morrison, D. (1968) ' PATRICIA—Practical Algorithm To Retrieve

Information Coded in Alphanumeric', Journal of the ACM (JACM),
Vol. 15, No. 4, pp. 514-534.

[2] Fredkin, E. (1960) 'Trie Memory', CACM, Vol. 3, No. 9, pp. 490-499.

[3] Heinz, S., Zobel, J. and Williams, H. (2002) 'Burst tries: a fast,
efficient data structure for string keys', ACM Transactions on
Information Systems (TOIS), Vol. 20, No. 2, pp. 192-223.

[4] Askitis, N. and Sinha, R. (2007) 'HAT-trie: a cache-conscious trie-
based data structure for strings', ACSC '07 Proceedings of the thirtieth
Australasian conference on Computer science, Vol. 62, pp. 97-105.

[5] Askitis,N. and Zobel,J(2011).' Redesigning the String Hash Table,
Burst Trie, and BST to Exploit Cache', ACM Journal of Experimental
Algorithmics, Vol . 15, No. 1.

[6] Knuth, D. (1998) The art of computer programming, 2nd ed.,
Redwood City, CA, USA.

[7] Behdadfar, M. and Saidi, H.(2008) ' The CPBT: a method for
searching the prefixes using coded prefixes in B-tree' ,
NETWORKING'08 Proceedings of the 7th international IFIP-TC6
networking conference on AdHoc and sensor networks, wireless
networks, next generation internet, pp. 562-573.

[8] Bando, M. and Chao, J.(2010)' FlashTrie: Hash-based Prefix-
Compressed Trie for IP Route Lookup Beyond 100Gbps', IEEE
Communications Society subject matter experts for publication in the
IEEE INFOCOM 2010 proceedings, pp. 1-9.

[9] Knizhnik, K. (2008) 'Patricia Tries: A Better Index For Prefix
Searches', Dr. Dobb's Journal.

[10] Knessl,C. and Szpankowski,W.(1999) ' Limit laws for heights in
generalized tries and PATRICIA tries'.

[11] Shang, H. and Merrettal, T. (1996) 'Tries for Approximate String
Matching', IEEE Transactions on Knowledge and Data Engineering,
Vol. 8, No. 4, pp. 540-547.

[12] Tanhermhong, T., Theeramunkong, T. and Chinnan, W. (2001) 'A
Structure-Shared Trie Compression Method', Proceedings of The 15th
Pacific Asia Conference.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

[13] Askitis, N. and Sinha, R. (2010) 'cache and space efficient tries for
strings', The VLDB Journal — The International Journal on Very
Large Data Bases, Vol. 19, No. 5, pp. 633-660.

[14] Leis, V., Kemper, A. and Neumann, T.(2013) ' The Adaptive Radix
Tree: ARTful Indexing for Main-Memory Databases', 29th IEEE
International Conference on Data Engineering (ICDE 2013).,
Brisbane, Australia, pp.38-49.

[15] Böhm, M., Schlegel, B., Volk, P.B., Fischer, U., Habich, D. and
Lehner, W., (2011) 'Efficient in-memory indexing with generalized
prefix trees', In BTW, pp. 227--246.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

