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Abstract—A multi-objective multi-site order planning 

problem in MTO manufacturing is investigated with 
consideration of various production uncertainties and 
real-world features. A novel intelligent multi-objective 
optimization approach is developed to tackle this problem, 
which combines a harmony search based Pareto optimization 
(HSPO) process with a Monte Carlo simulation process. A 
series of experiments are conducted to evaluate the proposed 
approach based on real industrial data, and experimental 
results validates the effectiveness of the proposed approach. 
 

Index Terms—Production planning; Order planning; 
Harmony search;  Pareto optimization;  Mento Carlo 
simulation 
 

I. INTRODUCTION 

ITH increasing globalization, more and more MTO 
manufacturing enterprises produce their customer 

orders in multiple sites (plants) located in different areas. 
Order planning is at the top level of production 
decision-making and its performance can greatly affect the 
overall production and supply chain performance of an MTO 
enterprise. It is thus very important for these enterprises to 
make effective order planning decisions so that each order 
can be assigned to an appropriate plant for production.  

Some researchers also investigated the multi-site 
production planning problem [1], which consider each site as 
an independent and parallel production unit and usually 
belong to aggregate planning problems. However, relatively 
little research has investigated the order planning problem 
that aims at assigning each order or its production processes 
to appropriate plants or shop floors.  

Ashby and Uzsoy [2] addressed an order planning problem 
integrating order release, group scheduling and order 
sequencing in a single-stage production environment. Some 
researchers addressed order release problems in production 
planning stage under different production environments, 
including job shop [3], flow shop [4] and multi-stage 
assembly system [5]. These problems determined the starting 
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time of different production processes but did not consider 
where each process was performed. Chen and Pundoor [6] 
addressed order allocation and scheduling at supply chain 
level, which focused on assigning production orders to 
different plants and exploring appropriate schedules for 
processing the assigned orders in each plant. However, their 
studies have not considered the effects of such manufacturing 
features as different production departments and their 
different production capacities on order planning decisions. 
These features are typical in such MTO manufacturing 
industries as apparel, which greatly increase the complexity 
of production decision-making.  

This paper will investigate a multi-objective multi-site 
order planning (MMOP) problem in an MTO manufacturing 
environment with the consideration of multiple plants, 
multiple departments and multiple production uncertainties. 
The MMOP problem aims at planning the allocation of 
customer orders to n  self-owned or collaborative production 
plants, located in different regions so that multiple specified 
production objectives can be achieved.  

The investigated MMOP problem is a complex 
combinatorial optimization problem with a large solution 
space. Classical optimization techniques are not able to 
handle the MMOP problem effectively due to its 
computational complexity. Meta-heuristic optimization 
techniques have the potential to provide effective solutions 
for this kind of problems due to their heuristic nature [7, 8], 
among which genetic algorithm is the most commonly used 
one. In recent years, a novel meta-heuristic technique 
developed by Geem et al. [9], harmony search (HS) 
algorithm, has attracted increasing attention. Some studies 
showed that the HS could generate superior solutions to other 
meta-heuristic techniques such as genetic algorithm, particle 
swarm optimization and simulated annealing [9, 10]. 
However, few studies developed and used the HS algorithm 
in handling multi-objective combinatorial optimization 
problem. Especially, the multi-objective HS algorithm for 
production decision-making problems has not been reported 
so far. 

To solve the investigated MMOP problem, this research 
develops a novel intelligent multi-objective optimization 
(IMO) approach based on harmony search, in which a novel 
harmony search-based Pareto optimization (HSPO) process 
is developed to seek Pareto optimal MMOP solutions in 
terms of the fast non-dominated sorting technique developed 
by Deb et al. [11]. Moreover, Monte Carlo simulation 
technique is utilized to handle production uncertainties in 
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order planning since the HSPO process cannot handle 
uncertainties directly.  

 

II. PROBLEM STATEMENT 

The production in such labor-intensive MTO 
manufacturing industries as apparel and footwear is 
characterized by small order sizes and tight due dates. The 
manufacturer usually receives production orders with the 
same or close due dates from a customer at a time and then 
assign these orders to its n  plants for production. The orders 
from a same customer are grouped by their due dates. Each 
group of these orders with the same due date is defined as an 
order group. In each order group, some orders are uncertain 
because they can be cancelled by the customer before the 
final contract is confirmed. Each order consists of a 
maximum of N  production processes, which need to be 
produced in turn. Each production process of an order needs 
to be assigned to one and only one production department for 
production in a plant, donoted by k , due to the small order 
size. A total of N  types of production departments, 
numbered as 1 to N , are included, which perform, 
respectively, N  types of different production processes 
denoted as process type 1 to process type N . Different plants 
can include different types of production departments. The 
process with smaller process type number must be produced 
earlier. All finished products are delivered to a central 
warehouse for product distribution.  

The operation complexities of different production 
processes from different orders are different due to different 
technical and quality requirements. On the other hand, 
different production departments have different production 
competences due to different skill levels of their operators 
and different management performances. In real production, 
the higher the production competence level of a production 
department and the lower the operation complexity level of a 
process, the higher the production efficiency of the 
department for producing this process. 

This research uses the term “standard manpower” to 
represent the standard available manpower in a production 
department, which equals the summation of each operator’s 
average efficiency for processing a production order with 
standard product style and complexity in the department. The 
investigated MMOP problem will consider various 
production uncertainties existing in real-world production, 
including uncertain orders, uncertain processing time and 
uncertain daily production capacity in collaborative plants, 
which is thus a stochastic combinatorial optimization 
problem.  

The aim of the MMOP problem addressed is to minimize 
three important and commonly used production objectives in 
MTO manufacturing by determining the optimal solutions of 
beginning time ijB  and process allocation k

ijX  of production 

process 
ijP . k

ijX  is 1 if process ijP  is assigned to the k th plant; 

otherwise it is 0. 
 The three objectives are expressed as  
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The three objectives minimize the total tardiness of all 
orders, the total throughput time of all orders, and the total 
idle time of all production departments, respectively. iC  and 

iD  denote the completion time and the due date of order iO  
respectively, 

ijB  and 
ijC  denote the beginning time and the 

completion time for performing process ijP  respectively, ijWT  

denotes the time (days) to wait for the arrival of process ijP  in 

the idle production department, and kjSP  denotes the set of 

production processes assigned to kjS  for processing. 
 

III. PROBLEM SOLVING METHODOLOGY 

A. Framework of the proposed IMO approach 

Fig. 1 shows the architecture of the proposed IMO 
approach, which generates the final MMOP solutions using 
the following 3 process:  

(1) Harmony search-based Pareto optimization (HSPO) 
process: This process is employed to seek the initial Pareto 
optimal solutions to the deterministic MMOP problem, 
which does not consider production uncertainty and assumes 
that all uncertain orders need to be produced and the 
processing time of an order equals the mean of its processing 
time in the department assigned. 

(2) Monte Carlo simulation process: On the basis of initial 
Pareto optimal solutions, this process is then employed to 
evaluate the performance of each initial solution for the 
stochastic MMOP problem, by considering production 
uncertainties in order planning.  

 
Fig. 1. Architecture of the IMO approach 
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(3) Heuristic pruning process: Based on the performance 
evaluation for initial solutions in process (2), the heuristic 
pruning process is finally employed to generate the final 
optimal solutions for multi-site order planning practice.  

The Monte Carlo simulation process and the heuristic 
pruning process adopted the same processes proposed by 
Guo et al. [12]. The HSPO process is presented in section 
III.B  

B. HS-based Pareto optimization 

The HSPO process is proposed to generate Pareto optimal 
solutions for the deterministic MMOP problem, called initial 
Pareto optimal solutions. 

1) Procedures of HSPO 
Fig. 2 illustrates the flowchart of the HSPO process, which 

consists of 7 procedures (proc.1 - proc.7). The HSPO process 
integrates a non-dominated sorting technique into a harmony 
search process for generating Pareto optimal solutions to the 
deterministic MMOP problem. The 7 procedures are 
described as follows. 

Procedure 1. Algorithm parameter initialization 
The parameters related to the problem and HS algorithm 

need to be specified in this procedure, which include the 
possible ranges of values for all decision variables (input 
weights and hidden biases), the total number of candidate 
input variables ( C ), the harmony memory size ( HMS ), 
harmony memory consideration rate ( HMCR ), pitch 
adjustment rate ( PAR ), and the number of improvisations 
( NI ).  

Procedure 2. Harmony memory initialization 
The harmony memory is generated randomly with a 

specified initial harmony memory size according to a specific 
harmony representation. The harmony memory member is 
called a harmony, represented by s , which is a feasible 
MMOP solution. The method of harmony representation will 
be described detailedly in section III.B.2). 

Procedure 3. Performance evaluation of the harmony 
newly generated 

The performance of each newly generated harmony is 
evaluated by calculating the values of objective functions to 
be optimized. Sub-section III.B.3) will describe in detail how 
the objective function values are calculated.  

Procedure 4. Harmony sorting using a non-dominated 
sorting technique 

On the basis of the values of objective functions of all 
harmonies, the multi-objective performances of these 
harmonies are sorted by using the fast non-dominated sorting 
technique [11]. 

Procedure 5. Improvise a new harmony  
Generating a new harmony is called improvisation. After 

the objective function values of all harmonies in the harmony 
memory are calculated, the improvisation process proposed 
by Mahdavi et al. [13] is used to improvise a new harmony.  

Procedure 6. Updation of harmony memory 
If the new harmony is better than the worst one in the 

harmony memory in terms of the harmony sorting result, the 
new one is used to replace to the existing worst in the 
harmony memory. All harmonies in the harmony memory are 
then sorted by their objective function values.  

Procedure 7. Termination criteria checking 

The HS is controlled by a specified number of 
improvisations. If this termination criteria is satisfied, the HS 
process is terminated and the best harmonies are the Pareto 
optimal solutions to the deterministic problem. Otherwise, go 
to procedure 5. 

2) Harmony representation 
Each harmony (solution individual) represents a distinct 

and feasible MMOP solution. To handle the investigated 
problem, a feasible solution should be capable of determining 
the assignment of each production process of each order to an 
appropriate plant. Actually, the solution can be determined 
by the assignment of each order group’s production 

processes because the orders of each order group should be 
assigned to the same plant. 

In real production practice, the number of production 
plants assigned to process an order should be as few as 
possible to reduce the transportation time and cost between 
different plants. The assignment of production process 1 of 
each order group determines the assignments of subsequent 
processes in this order group. This research thus constructs 
the harmony by using the assignment of production process 1 
of each order group to an appropriate plant. Each harmony s  

is a sequence of elements, ],...,,...,,[s 21 Ci ssss , whose 

length is equal to the number of order groups to be processed. 
Each element represents an order group, and the value of 
each element indicates the plant to produce production 
process 1 of the corresponding order group. Fig. 3 shows an 
example of this representation which considers an order 
planning problem of allocating 10 order groups to 4 plants.  

 
Solution
individual

1 3 1 2 2 3 2 3 1 4

Order group
No.

1 2 3 4 5 6 7 8 9 10
 

Fig.3. An example of the harmony representation 
 

On the basis of each harmony, the allocation and 
processing sequence of the subsequent production processes 

 
Fig. 2. Flowchart of the proposed HSPO process 
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of each order group are then deduced by the process 
assignment rules described in section III.B.3). 

3) Calculation of objective function values 
To obtain the values of objective functions, one needs to 

firstly determine the values of variables ijB  and 
k

ij
X . Since 

the harmony only indicates the assignment of production 
process 1 of each order group to an appropriate plant, the 
allocation and processing sequence of the subsequent 
production processes of each order group need to be deduced 
further by heuristic rules.  

The following three heuristic process assignment rules are 
proposed to handle the assignment of subsequent processes:  

Rule 1) The production processes of the same process type 
in a order group must be assigned to the same plant for 
processing in real-world production. 

Rule 2) For a production process of a production order, if 
the plant, assigned to produce its last process, contains the 
production department processing the current process, the 
process must be assigned to the same plant for processing. 
Otherwise go to rule 3). 

Rule 3) Randomly assign the current process to another 
plant capable of processing it. 

The processing sequence of production process )2( jPij  

in a production department corresponds to its beginning time 
ijB , which depends on this process’s arrival time, the 

completion time of its preceding process jiP ,'  in the 

department and the processing priority of its corresponding 
order. In the scenario that the production department is idle 
and waiting for the arrival of production orders, the order 
with earlier arrival time should be processed first. In the 
scenario that multiple orders are awaiting to be processed in a 
department, the order with highest processing priority should 
be processed first. The processing priority of each order and 
order group is determined in terms of following rules: 

Rule 1) The order group with an earlier due date needs to 
be produced with a higher priority. 

Rule 2) The order group with the less production workload 
needs to be produced with a higher priority if multiple order 
groups have a same due date. 

Rule 3) The order with the larger number of processes 
needs to be produced with a higher priority in an order group. 

Rule 4) The order with less workload needs to be produced 
with a higher priority, if multiple orders have the same 
number of production processes in an order group.  

 

IV. NUMERICAL EXPERIMENTS 

To evaluate the performance of the proposed IMO 
approach, a series of simulation experiments have been 
conducted. Due to the page limit, this section highlights one 
experiment in detail. Similar production tasks widely exist in 
most labor-intensive MTO manufacturing companies. 

A. Experimental data and setting 

There are no available public datasets appropriate for the 
experiments of this research because very limited similar 
research can be found so far. Industrial data was thus 
collected as experimental data from the production 

management database in an MTO manufacturing company 
producing outwear in Mainland China.  

In this experiment, 10 order groups with 55 production 
orders are processed. Due to page limit, this paper does not 
show the related information of each production process of 
each order, including the workloads of 5 production 
processes of one order, the complexity level and the 
cancellation probability of each order, which plant has 
produced a same order before, and the number of times the 
additional order has been processed in the plant. The due 
dates of order groups are shown in Table I (count workdays 
only).  

The investigated company comprises 4 plants located in 
different cities. 5 different production departments are 
involved. Table II shows the standard manpower of 
production departments in each plant and the efficiency level 
of each plant. The standard manpower of a production 
department is 0 if the department does not exist in the plant. 
The transportation time between different locations, 
including 4 plants and a distribution center, is shown in Table 
III.  

 
TABLE I.  

DUE DATES OF ORDER GROUPS IN THE EXPERIMENT 
OG1 OG2 OG3 OG4 OG5 OG6 OG7 OG8 OG9 OG10

8 8 15 16 18 22 25 29 31 38

 
TABLE II.  

STANDARD MANPOWER OF EACH PLANT’S PRODUCTION 
DEPARTMENTS 

Production
department 1

Production
department 2

Production
department 3

Production
department 4

Production
department 5

Efficiency
level

Plant 1 11 68 19 178 29 3
Plant 2 57 0 33 1197 144 2
Plant 3 40 0 23 1005 93 2
Plant 4 15 0 0 308 40 1

 
 

TABLE III.  
TRANSPORTATION TIMES (DAYS) BETWEEN DIFFERENT 

LOCATIONS 

Plant 1 Plant 2 Plant 3 Plant 4
Central

warehouse
Plant 1 0 0.5 1 1 0.5
Plant 2 0.5 0 0.5 0.5 0.5
Plant 3 1 0.5 0 0.5 1
Plant 4 1 0.5 0.5 0 1
Central

warehouse
0.5 0.5 1 1 0

 
 

For simplicity, it is assumed that the production 
departments discussed are empty initially. The proposed 
approach was established based on the settings: the initial 
harmony memory sizes HMS  of HSPO processes was equal 
to 500, the maximum numbers of improvisations NI  was 
100, and the harmony memory consideration rates HMCR  
was 0.9. MvTimesmax  equaled 30, and smaxSimTime  
equaled 10000.  

The ranking preference of objective functions is the 
case in which objective 1 is more important than 
objective 2, and objective 2 is more important than 
objective 3. To highlight the importance of objective 1, 
we set 21 2ww  . This ranking preference is consistent 

with the policies and priorities of the investigated 
company. 
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B. Experimental results 

Fig. 4 shows 30 initial Pareto optimal solutions generated 
by the IMO approach. Based on these initial solutions, the 
heuristic pruning process generated 6 final (pruned) solutions 
as shown in Table IV In Fig. 4, the final solutions are also 
marked by ‘ ’ points while the initial Pareto optimal 
solutions are marked by ‘ ’ points. The second column of 
Table IV shows the 6 allocation solutions of production 
process 1 of all order groups. Taking solution 1 as an 
example, the production process 1 of order group 2 and 5 are 
assigned to plant 1 while the production process 1 of order 
groups 4, 8 and 10 are assigned to plant 2. Columns 3-5 show 
the values of 3 objective functions generated by the 
corresponding solution to the deterministic MMOP problem, 
whereas columns 6-8 show the average values of objective 
functions generated by the solution when various 
uncertainties are considered.  

 

C. Performance comparison 

In the proposed IMO approach, the HSPO process is the 
most crucial component since it takes charge of seeking 
initial Pareto optimal solutions and determines the 
optimum-seeking capability of the IMO approach. To further 
validate the optimum-seeking capability of the IMO 
approach, this research compares optimization results 
generated by the HSPO process with those generated by an 
NSGA-II [11] -based optimization process (NSGA-II 
approach) and an industrial method in terms of the 
deterministic MMOP problems.  

It is well known that Pareto optimal solutions generated by 
a metaheuristic optimization approach are probably different 
in different trials if multiple trials are conducted. To reduce 
the effects of randomicity of iterative processes of the 
proposed HSPO process and NSGA-II approach, this 
research repeatedly runs the two approaches 50 times to 
obtain the statistical results of each objective. In each run, the 
Pareto optimal solutions to the deterministic MMOP problem 
are obtained.  

The NSGA-II approach, used for performance comparison, 
had the same solution representation to the HSPO process. In 
this approach, the tournament selection was adopted. The 
mutation operation was implemented by randomly changing 
the values of several randomly selected genes. The uniform 
crossover was adopted to execute crossover operation. In the 
NSGA-II approach, the maximum number of generations 
was 1000. The population size was equal to 500. In each 
generation, the crossover probability changed randomly 
between 0.5 and 0.8 while the mutation probability changed 
randomly between 0.01 and 0.05.  
 

The solutions generated by the industrial method are called 
industrial solutions. The industrial method, which is being 
used in the investigated manufacturing company, generates 
actual MMOP solutions by using four rules: (1) The actual 
order planning only focuses on the objective of minimizing 
the total tardiness of all orders; (2) The order group with a 
larger product quantity needs to be assigned to the plants with 
more available standard manpower; (3) Order planning 
decisions are made by considering the production in sewing 
departments only; and (4) The order group with an earlier due 
date needs to be processed first.  
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Fig. 4. Pareto optimal set in two-dimensional spaces 

(  - Pareto optimal solutions,  - Final solutions) 
 

TABLE IV:  
PRUNED SOLUTIONS 

Objective 1 Objective 2 Objective 3 Objective 1 Objective 2 Objective 3

1 0 1081.3 36.6 3.4 1047.0 35.8
2 23.0 868.4 33.6 20.0 834.8 32.8
3 30.3 1031.9 30.2 24.3 999.1 29.7
4 30.9 890.7 33.1 20.8 850.3 32.2
5 41.9 938.1 30.1 29.8 919.2 29.7
6 94.8 943.1 28.9 75.5 917.7 28.2

(1, 4, 2, 3, 4, 3, 2, 2, 3, 3)
(1, 4, 3, 2, 4, 3, 2, 2, 3, 3)

Values of objective functions
(Deterministic)

Solution
No.

Average values of objective
functions (Stochastic)

Assignment of production process 1
of each order group (OG)

(3, 1, 3, 2, 1, 4, 3, 2, 4, 2)
(4, 1, 3, 2, 4, 3, 3, 2, 3, 2)
(4, 1, 2, 3, 4, 3, 2, 2, 1, 3)
(1, 4, 3, 2, 4, 3, 3, 2, 3, 2)
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Table V shows the comparison results, based on the 
solutions, generated by the 3 different methods, to the 
deterministic MMOP problems. Columns of ‘Min’ and 
‘Mean’ show respectively the minimum, mean of the 
corresponding objectives generated by the 3 methods in 50 
repetitive runs whereas ‘Times’ columns show the times of 
getting the corresponding minimal objective value in the 50 
runs. It can be found that from Table V that:  

(1) The HSPO process has the ability to find the globally 
optimal solutions. Taking objective 1 as an example, it is 
clear that the minimal value of objective 1 converges to its 
global minimum 0;  

(2) Comparing with the NSGA-II approach, the HSPO 
process reaches the minima more frequently and generates 
less means for 3 objectives;  

(3) For each objective, some minima generated by the 
proposed HSPO process is slightly less than the minima of 
corresponding objective values shown in Columns 3-5 of 
Table IV. It is because some initial Pareto optimal solutions 
with a globally minimal objective value could be pruned if 
their other objectives are relatively large;  

(4) The HSPO and NSGA-II can generate superior results 
to the industrial methods because they generate smaller 
objective values.  

The comparison results described above show that the 
proposed HSPO process can achieve good convergence and 
effectively handle the MMOP problem by generating Pareto 
optimal solutions obviously superior to the results generated 
by the NSGA-II approach and the industrial method. 

 

V. CONCLUSIONS 

This paper addressed an MMOP problem in MTO 
manufacturing environment with the consideration of 
production uncertainties. A novel intelligent optimization 
approach was developed to handle the investigated problem. 
This approach firstly employed an HSPO process to seek the 
initial Pareto optimal solutions to the deterministic MMOP 
problem. The Monte Carlo simulation process and the 
pruning process were then used to handle uncertainties and to 
obtain final Pareto optimal solutions. Extensive experiments 
were conducted to evaluate the effectiveness of the proposed 
IMO approach by using production data from industrial 
practice. The experimental results have shown that the 
proposed approach could tackle the MMOP problem 
effectively. Further research will focus on the application of 
the proposed methodology to MMOP problems in other 
manufacturing environments, and the development of novel 
pruning techniques. 
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TABLE V.  
PERFORMANCE COMPARISON OF DIFFERENT METHODS 

Min Times Mean Min Times Mean Min Times Mean

Proposed
HSPO

0 42 0.1 866.2 48 866.3 25.9 47 26.0

NSGA-II 0 37 0.5 866.2 46 866.4 25.9 35 32.8

Industrial
method

23.0 / / 868.4 / / 33.6 / /

Method
involved

Objective 1 Objective 2 Objective 3
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