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Abstract—In this work, we address a variant of the well-

known spanning tree problem which consists of finding a 

spanning tree such that the number of branch vertices, 

namely vertices with degrees of at least three, is minimum 

(MBV). First, we introduce novel Mixed Integer Linear 

Programming (MILP) formulations for the MBV by 

improving the formulations from the literature. Then, we 

perform extensive computational experiments on standard 

test sets, to analyze their performance. According to our 

computational experiments, we have observed that the 

Linear Programming relaxations of the new MILP 

formulations yield drastically improved lower bounds than 

the ones output by earlier MBV formulations. 

 
Index Terms—spanning trees, branch vertices, mixed 

integer linear programming 

 

I. INTRODUCTION 

ANY combinatorial optimization problems deal 

with constructing spanning trees which are 

optimal with respect to some conditions.  For a 

discussion of various real-life applications of the 

spanning trees arising in transportation, 

telecommunication, energy distribution, irrigation, data 

storage and cluster analysis  we refer to Ahuja, Magnanti 

and Orlin [1], Capone, Corti, Gianoli, and Sanso [3] and, 

Ozeki and Yamashita [10]. 

 

Let G=(V,E) be a connected undirected graph with a set 

of vertices V={1,...,n} and a set of edges E={e1,...,em} 

where n and m stand for the number of vertices and 

edges, respectively. A spanning tree is a subset of E such 

that no cycle is constructed and the set of selected edges 

spans all nodes in V. In this paper, we address the 

spanning tree problem with a minimum number of 

branch vertices, i.e. vertices with degrees of at least 

three, (MBV), which involves finding a spanning tree of 

G such that the number of branch vertices is minimum. 

The MBV was first introduced by Gargano, Hell, Stacho 

and Vaccaro [7] in their seminal work whereby they 

showed it to be NP-complete.  A closely related problem  

 

 
Manuscript received June 11, 2014. This work was supported by 

the Turkish Scientific and Technological Research Council Research 

Grants No: 107M462 and 109M139, and Galatasaray University 

Scientific Research Project Grant No: 14.402.003.  

T. Öncan is with the Department of Industrial Engineering, 

Galatasaray Üniversitesi, Ortaköy,İstanbul, 34357, TÜRKİYE (phone: 

+90.212 227 44 80 fax: +90 212 259 55 57 e-mail: 

ytoncan@gsu.edu.tr). 

to the MBV is the spanning tree problem with minimum 

degree sum of branch vertices (MDS) which has been 

first launched by Cerulli, Gentili and Iosa [5]. The 

authors have suggested Single Commodity Flow (SCF) 

formulations, and they have introduced three 

construction heuristics, for both the MBV and MDS. 

Later on, Sundar, Singh and Rossi [13] suggested 

efficient construction heuristics and hybrid Ant Colony 

Optimization (ACO) algorithms for both the MBV and 

MDS. Recenty, Cerrone, Cerulli and Raiconi [4] have 

devised a memetic algorithm for three degree-dependent 

spanning tree problems including the MBV.  In another 

study, four mathematical programming  formulations for 

the MBV and different relaxations of them, have been 

analyzed by Carrabs, Cerruli, Gaudioso and Gentili [2]. 

The authors suggested Lagrangean relaxation approaches 

and reported results with a subgradient method and ad-

hoc finite ascent algorithm. 

 

Real-life applications of the MBV arises prominently 

in Wavelength Division Multiplexing (WDM) 

technology, used in optical networks (Stern and Bala 

[13]). The WDM technology enables the fiber optic 

communication used for web browsing, video 

conferences, video on demand services, etc. (Gargano, 

Hell, Stacho and Vaccaro [7]). Fiber optic 

communication encodes information into light waves and 

beams through an optical fiber. Since the wavelength of 

light determines its characteristic, each wavelength 

carries its own independent data-traffic. In WDM 

systems, several different wavelengths are combined and 

simultaneously transmitted over a single fiber. A 

multiplexer is used to join signals at the transmitter (i.e. 

source vertex) whereas a de-multiplexer, at the receiver 

(i.e. destination vertex) splits them apart. Furthermore, 

WDM technology also permits multi-casting in an 

optical network by using sophisticated switches which 

make copies of optical signals by splitting light, and 

hence, they transmit information from a single source 

vertex to multiple destination vertices. The multi-casting 

technique enables the distribution of copied data packets 

to multiple users via sophisticated light-splitting 

switches, located on the branch vertices of the optical 

network. Consequently, it is of great interest to design 

optical networks which enable multi-casting with a 

minimum number of light-splitting switches and with a 

minimum sum of branch vertex degrees, taking into 

account their costs. 
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The motivation of this study is to suggest strong and 

novel Mixed Integer Linear Programming (MILP) 

formulations for the MBV which is known to be NP-

Complete. We believe our attempts in devising novel 

MILP formulations will be helpful to develop efficient 

exact solution procedures for the MBV, as well.  

 

The remainder of this work is organized as follows. In 

the next section we present some of the existing MILP 

formulations for the MBV from the literature.  In  

Section III, we further elucidate on our novel MILP 

formulations. Then, in Section IV, we report the results 

of our extensive computational experiments. Finally, we 

conclude with Section V. 

 

II. MILP FORMULATIONS FOR THE MBV 

In this section we present three existing MILP 

formulations for the MBV suggested by Cerrone, Cerulli 

and Raiconi [4]. 

 

The proposed formulations are defined on a directed 

graph G'=(V,A) obtained from G=(V,E)  where 

A={(i,j):i,j V; i ≠ j} is the arc set. In G'=(V,A), each 

undirected edge ep E, which corresponds to edge {i,j}, 

is replaced by two directed arcs (i,j) and (j,i) where i ≠ j. 

Furthermore, we assume vertex rV represents the root 

vertex. δ(i) denotes the degree of vertex i and |V| stands 

for the cardinality of the vertex set V.  

 

For all formulations, we define the following decision 

variables. Binary variables xij equal to 1 if  there exists 

an arc (i,j) from vertex i to vertex j. Binary variables yi 

equal to 1 if vertex i is a branch vertex. The proposed 

MILP formulations assume that a feasible solution 

consists of a subgraph of G'=(V,A) that spans all vertices 

in V, i.e. connected and acyclic, and has exactly one 

incoming arc to each vertex except the root vertex. 

Namely, a feasible solution is represented with an 

arborescence originating at the root vertex r such that 

there exists exactly one directed path from the root 

vertex r to every other non-root vertex iV\r. Now we 

will present three MBV formulations from the literature.  

 

A. Desrochers - Laporte Formulation 

 

The first formulation which we will present in this 

section employs the subtour elimination constraints by 

Desrochers and Laporte [6] which were originally 

proposed for the Asymmetric Travelling Salesman 

Problem (ATSP) by lifting the constraints by Miller, 

Tucker and Zemlin [9].  We refer to Gutin and Punnen 

[8] for an overview of the ATSP formulations. In the 

Desrochers-Laporte (DL) formulation for the MBV, in 

addition to binary variables xij and yi, continuous 

decision variables ui are also used to calculate the visit 

order of vertex i from the root vertex r. The DL 

formulation for the MBV is the following. 
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Here, objective function (1) calculates the number of 

branch vertices. Constraints (2) state the each vertex, 

except the root vertex, must have exactly one 

incoming arc. Constraints (3) guarantee that exactly 

|V|-1 arcs are chosen to construct a spanning tree. 

Namely, constraints (2) and constraints (3) stand for 

the assignment constraints. Constraints (4) ensure that 

a vertex j is a branch vertex when the total number of 

outgoing and incoming arcs are larger than three. 

Constraints (5) are the subtour elimination constraints 

originally proposed for the ATSP by Desrochers and 

Laporte [6]. These constraints impose that when xij=1 

then ui ≤ uj+1 holds and when xji=1 then ui -1 ≤ uj is 

satisfied. Namely, constraints (5) restrict that uj=ui+1 

holds when there exists an outgoing arc from vertex i 

to vertex j. Constraints (6) and constraints (7) impose 

lower and upper bounds on visit order variables ui. 

Finally, constraints (8) and constraints (9) stand for 

the integrality restriction on the decision variables xij 

and yj, respectively. 

 

B. Single-Commodity Flow Formulation 

The single-commodity flow (SCF) formulation employs 

the flow variables vij which stands for the amount of flow 

passing through arc (i,j).  
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Constraints (10) make sure |V|-1 units of commodities 

leave the root vertex. Constraints (11) enforce that 

exactly one unit of commodity arrives into each vertex 

except the root. Constraints (12) impose lower and upper 

bounds on the flow quantity for each arc in the spanning 

tree.  
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C. Multi-Commodity Flow Formulation 

The multi-commodity flow (MCF) formulation uses 

the flow variables wij
k
 equal to 1 if and only a 

commodity of type k flows through arc (i,j). 
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Constraints (13) guarantee that for each vertex j, such 

that j≠k, when a commodity of type k enters into vertex j 

then it must leave vertex j. Constraints (14) make sure 

that there must be exactly one commodity of type k 

which must leave the root vertex. Constraints (15) ensure 

that there is exactly one incoming commodity of type  k 

which is entered into vertex k. Constraints (16) are for 

the lower and upper restrictions on the flow variables wij
k
 

.  

 

III. NEW FORMULATIONS FOR THE MBV 

In this section we will present new formulations for the 

MBV. The new formulations are obtained with the 

addition of constraints (17)-(20) to the formulations DL, 

SCF and MCF and the new ones will be named as DL+, 

SCF+ and MCF+, respectively. According to our 

computational experiments, which will be presented in 

the next section, DL+, SCF+ and MCF+ formulations 

are much stronger than DL, SCF and MCF, respectively.  
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Now, we will show that constraints (17) -(20) are valid 

inequalities for the MBV. First of all, notice that 

constraints (17) and  constraints (18) hold by definition. 

Recall that a branch vertex i has degree of at least three. 

Keeping in mind that all vertices but the root vertex have 

one incoming arc then each branch vertex has at least 

two incoming arcs. Moreover, in case the root vertex is a 

branch vertex then it has at least three outgoing arcs. 

Therefore, we can state that constraints are valid by 

definition. 

 

Proposition 1. Constraints (19) and (20) are valid 

inequalities for the MBV 

 

Proof.  The left part of the constraints (19) hold by the 

definition of the xij and yj variables. In case, vertex j is a 

branch vertex then there exist at least two outgoing arcs 

from the vertex j. For the other case, there is either one 

or none outgoing arc from vertex j. The right part of the 

constraints (19) hold also by the definition. Whenever 

vertex j is a branch vertex then there at most δ(j)-1 

outgoing arcs. Furthermore, when vertex j is not a 

branch vertex then there is at most one outgoing arc from 

the vertex j.  

 

Similarly, for the left part of constraints (20), when the 

root vertex is a branch vertex then, there must be at least 

three outgoing arcs. However, when the root vertex is 

not a branch vertex then there must be at least one 

outgoing arc. Considering the right part of constraints 

(20), when the root vertex is a branch vertex then there 

are at most δ(r) outgoing arcs. On the other hand, when 

the root vertex is not a branch vertex then constraints 

(20) state that there are at most two outgoing arcs from 

the root vertex.                                                               ■            

                                                                                 

Proposition 2. Constraints (19) dominate constraints 

(4) 

Proof. Considering constraints (2), we can rewrite 

constraints (4) as follows: 
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On the other hand, the right hand side of constraints (19) 

can be rewritten as 
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Note that since 0 ≤ yj ≤ 1 holds for j V, the right hand 

side of constraints (22) are tighter than the one of 

constraints (21), which completes the proof.                  ■ 

 

 

In summary, we suggest four new formulations: DL+, 

SCF+ and MCF+ which are obtained with the addition of 

constraints (17)-(20) to (1)-(9); (1)-(4),(8),(9),(10)-(12) 

and (1)-(4),(8),(9),(13)-(16), respectively. 

IV. COMPUTATIONAL EXPERIMENTS 

In this section, we present our computational 

experiments to expose the strength of the constraints 

(17)-(20) when used with DL, SCF and MCF 

formulations for the MBV. That is to say, we introduce 

an experimental comparative analysis of DL, SCF, MCF, 

DL+, SCF+ and MCF+ formulations.  In the next 

discussion the test instances will be presented. Finally, 

the computational results will be reported.  

A. Test Bed 

 

To perform our experiments, we consider the test 

instances generated by Carrabs, Cerulli, Gaudioso and 

Gentili [2]. Broadly speaking we have two classes of test 

instances, the first class consists of 400 instances with n 
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between 20 and 500, the second class includes 125 

instances with n between 500 and 1000.  Consequently, 

we have 525 test instances in total. All the test instances 

generated by Carrabs, Cerulli, Gaudioso and Gentili [2] 

consist of sparse graphs where the number of edges are 

fixed according to the following equation  

   (23)                            5.1)1( ninm 

 

with i=1,2,3,4,5.  

 

B. Computational Results 

 

We now present the details of our computational 

experiments. All computations were performed on a Dell 

Server PE2900 with two 3.16 GHz Quad Core 

Processors and 16 GB RAM operating within Microsoft 

Windows Server 2003 environment. Cplex 11 with 

default options is used to solve the MILP and Linear 

Programming (LP) problems.  

 

To better expose the strength of the proposed 

formulations we report some results on the empirical 

quality of the LP relaxation bounds of the DL, SCF, 

MCF, DL+, SCF+ and MCF+ formulations which are 

obtained by replacing constraints (8) and (9) with  
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respectively. The LP relaxations of DL, SCF, MCF, 

DL+, SCF+ and MCF+ formulations will be denoted as 

LP-DL, LP-SCF, LP-MCF, LP-DL+, LP-SCF+ and LP- 

MCF+, respectively.  Furthermore we have also 

conducted computational experiments with the Integer 

Programming  (IP) relaxation of the DL+ and SCF+, by 

only replacing constraint (8) with constraints (24), and 

keeping all the remaining constraints the same. In the 

sequel, the IP relaxations of the DL+ and SCF+ will be 

referred to as IPR-DL+ and IPR-SCF+, respectively. 

Furthermore, note that, for the sake of a fair comparison 

of formulations, we have selected vertex 1 as the source 

vertex in all instances. 

 

We have employed the following formulae to measure 

the relative deviations from the optimum or best known 

solutions 
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where zIP is the optimum or best known solution value 

and zLP is the lower bound obtained by solving the LP 

relaxation of the models. The optimum solutions of 

Class I instances are obtained by solving DL+ 

formulation via Cplex 11 MILP solver with default 

options. On the other hand, for Class II instances, no 

optimum solution values are reported in the literature. 

Hence, we have again tried to employ  DL+ formulations 

via Cplex 11 MILP solver with a 3 hours CPU time 

limit. However, we have been able to reach the 

optimality only in only 99 out of 125 cases within the 

3hours CPU time limit. For the rest of the Class II 

instances, i.e. 26 instances, we consider the best feasible 

solutions output by Cplex 11 MILP solver. 

 

In Table I (Table II) we report the results obtained with 

the LP relaxation of the SCF and DL  (SCF+ and DL+)  

formulations on Class I instances, while in Table III 

(Table IV) we give the results output by LP relaxation  

of the  SCF and DL  (SCF+ and DL+) formulations on 

Class II instances. Table V includes the results obtained 

with the LP relaxation of the MCF formulation on Class 

I instances. In Table VI and Table VII, we present the 

results obtained with the MILP relaxation of the DL+  

and  SCF+ formulations on Class I and Class II 

instances, respectively.  

TABLE I 

LP RELAXATION OF SCF AND DL ON CLASS I INSTANCES 

 

 
LP-SCF LP-DL 

|V| %Dev CPU %Dev CPU 

20 35.12 0.00 30.23 0.00 
40 74.00 0.01 58.99 0.00 
60 78.12 0.01 61.95 0.01 
80 76.16 0.01 59.06 0.01 

100 73.69 0.01 58.10 0.01 
120 71.65 0.02 57.90 0.01 
140 71.47 0.02 57.36 0.01 
160 71.74 0.03 57.26 0.02 
180 69.99 0.03 56.57 0.02 
200 69.64 0.03 56.25 0.02 
250 68.36 0.04 55.25 0.02 
300 68.09 0.05 55.52 0.03 
350 68.00 0.05 55.40 0.04 
400 67.33 0.05 54.64 0.02 
450 67.59 0.07 55.23 0.03 
500 66.89 0.07 54.99 0.04 

Aver. 68.62 0.03 55.29 0.02 

 

 

 

TABLE II 

LP RELAXATION OF THE SCF+ AND DL + ON CLASS I INSTANCES 

 

 
LP-SCF+ LP-DL+ 

|V| %Dev CPU %Dev CPU 

20 10.02 0.00 10.02 0.00 
40 28.96 0.01 29.10 0.01 
60 17.17 0.02 18.15 0.01 
80 12.94 0.03 13.25 0.01 

100 9.45 0.03 9.77 0.01 
120 8.91 0.04 9.24 0.01 
140 7.76 0.06 7.91 0.02 
160 6.72 0.07 6.99 0.03 
180 6.68 0.08 6.84 0.03 
200 5.40 0.10 5.66 0.03 
250 4.72 0.11 4.85 0.03 
300 3.71 0.15 3.77 0.05 
350 5.33 0.21 5.46 0.06 
400 3.88 0.21 3.95 0.05 
450 4.63 0.27 4.72 0.06 
500 4.01 0.29 4.12 0.07 

Aver. 8.77 0.11 8.99 0.03 
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In all tables, the first columns stand for the size of the 

instances and the last rows give average values of the 

corresponding columns.  The rows indicate the average 

results obtained with 25 test instances with the same 

size. In Table I and Table II, the second  and third 

(fourth and fifth) columns stand for the percent 

deviations from the optimum solution and the CPU time 

in seconds obtained with the LP relaxation of the SCF 

(DL) formulation, respectively. However,  In Table III 

and Table IV, the second and third (fourth and fifth) 

columns are for the percent deviations from the best 

known solutions and the CPU time in seconds obtained 

with the LP relaxation of the SCF+ (DL+) formulation, 

respectively. 

 

When we analyze Table I and Table II, we can conclude 

that there is no considerable difference between the LP 

relaxation of the SCF and MCF formulations. The 

average percent deviations (CPU times in seconds) 

reported for the SCF and DL formulations are 38.69 % 

and 32.13 %  (0.7 and 0.03) for the SCF and DL 

formulations, respectively. Actually, we know that the 

subtour elimination constraints of the  SCF and DL 

formulations are incomparable in terms of their solution 

quality. For an analytical comparison of several ATSP 

subtour elimination constraints we refer to Öncan, 

Altınel and Laporte [11]. Although, the SCF and DL are 

theoretically incomparable, when we consider the 

solutions reported in Table III and Table IV we can 

observe that the DL model outperforms SCF model in 

terms of accuracy at the expense of a slight increase in 

CPU time requirement. Note that,  the average percent 

deviations (CPU times in seconds) reported in Table III 

and Table IV are 41.31 % and 26.69 %  (0.09 secs. and 

0.13secs.) for SCF and DL, respectively. 

 

 

When we compare Table I with Table II and, Table III 

with Table IV, we can clearly observe the dramatic 

improvements in accuracy obtained with the valid 

inequalities (17)-(20) presented in Section III. The 

average percent deviation obtained with the SCF (the 

DL) on Class I instances impressively reduces from 

68.62 % to 8.77 % (from 55.29 % to 8.99 %) with a 

insignificant increase in average CPU time requirement 

from 0.03 secs. to 0.11 secs. (from 0.02 secs. to 0.03 

secs.). On the other hand, for Class II instances, the 

decrease in the average percent deviation is from 68.86 

% to 18.76 % (from 51.83 % to 1.55 %)  with a slight 

change in average CPU time requirement from 0.1 secs. 

to 0.09 secs. (from 0.05 secs. to 0.22 secs.) for the SCF 

(DL) formulation.  

 

The improvements in the accuracy of the LP relaxation 

bounds obtained with the DL formulations are quite 

promising. Especially for Class II instances average 

percent deviation of 1.55 % from the best known or 

optimal solution with an insignificant average CPU time 

requirement implies that the LP relaxation bounds 

obtained with the DL formulation can be efficiently 

employed within a Branch and Bound algorithm as a 

lower bounding procedure. However, this research area 

is beyond scope of this study. Considering both the 

accuracy and the CPU time, we can state that the DL 

formulation is the winner with an overall average percent 

deviation of 29.42 % and CPU time requirement of 0.08  

secs. compared to the overall average values, i.e. 40.00 

% and 0.083 secs., obtained with the SCF formulation. 

 

We have also performed experiments with the MCF 

formulations. Unfortunately, we could only solve 

instances with sizes up to n=500.  For Class II instances 

we will not report the results with MCF formulation due 

to extreme memory space requirement of CPLEX LP 

solver. In Table V, we present the computational 

experiments performed with the LP relaxation of the 

TABLE III 

LP RELAXATION OF THE SCF AND DL ON CLASS II INSTANCES 

 

 
LP-SCF LP-DL 

|V| %Dev CPU %Dev CPU 

600 63.99 0.08 52.11 0.05 
700 64.03 0.09 52.00 0.07 
800 63.81 0.10 51.78 0.04 
900 63.68 0.10 51.58 0.04 

1000 63.76 0.12 51.66 0.04 

Aver. 63.86 0.10 51.83 0.05 

 

 

 

TABLE V 

LP RELAXATION OF THE MCF ON CLASS I INSTANCES 

 

 
LP-MCF LP-MCF+ 

|V| %Dev CPU %Dev CPU 

20 29.49 0.21 9.36 0.22 
40 58.94 0.83 28.63 0.87 
60 60.67 1.84 16.10 1.95 
80 58.73 3.76 12.22 4.51 

100 57.62 5.87 9.14 36.66 
120 57.54 8.18 8.63 11.15 
140 57.10 12.04 7.65 15.78 
160 56.95 19.32 6.39 25.45 
180 56.33 25.13 6.40 34.93 
200 56.06 34.24 5.23 49.10 
250 55.16 57.56 4.59 68.85 
300 55.41 93.32 3.64 131.32 
350 55.22 134.81 5.12 301.02 
400 54.55 186.12 3.92 263.12 
450 55.09 280.72 4.52 390.67 
500 54.93 350.02 3.90 454.28 

Aver. 54.99 75.87 8.47 111.87 

 

 

 

TABLE IV 

LP RELAXATION OF THE SCF+ AND DL+ ON CLASS II INSTANCES 

 

 
LP-SCF+ LP-DL+ 

|V| %Dev CPU %Dev CPU 

600 17.55 0.06 1.54 0.18 
700 17.93 0.07 1.54 0.21 
800 18.60 0.10 1.53 0.21 
900 19.88 0.10 1.54 0.23 

1000 19.84 0.10 1.60 0.26 

Aver. 18.76 0.09 1.55 0.22 
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MCF formulations on Class I instances. As it can be 

observed, the accuracy of the LP relaxation bound 

considerably improves when constraints (22)-(25) are 

added to the MCF formulation at the expense of an 

enormous increase in computational time requirement .  

 

 

 

 

Considering all three formulations: DL+, SCF+ and 

MCF+, we can say that although MCF+ yields the 

tightest average lower bound values, DL+ is the best 

choice when we take into account both accuracy and 

efficiency.  Note that, although the LP relaxation of the 

DL+ yields the worst average percent deviation from the 

optimum solution on Class I instances, DL+ yields an 

outstanding efficiency in computation time.  

 

In Table VI and Table VII we report the results obtained 

with the IP relaxation of the DL+ and SCF+ 

formulations. Recall that, IPR-DL+ and IPR-SCF+ stand 

for the IP relaxation of the DL+ and SCF+ formulations, 

respectively. Among all instances in Class I, in 260 and 

354 out of 400 cases we get the optimum solution value 

with IPR-DL+ and IPR-SCF+, respectively.  These 

values are 86 and 121 out of 125 cases for the Class II 

instances, with IPR-DL+  and IPR-SCF+, respectively.  

 

Consequently, we can say that DL+ and SCF+ 

formulations yield quite tight LP relaxation and IP 

relaxation lower bounds. Unfortunately, the IP relaxation 

of the MCF+ formulation requires drastic CPU time 

hence we could not report the results obtained.  

 

 

 

 

 

 

 

V. CONCLUSION 

 

We have devised novel formulations for the MBV. 

According to our computational experiments, we may 

conclude that both the linear programming and mixed 

integer linear programming  relaxations of the proposed 

formulations yield promising lower bounds. We should 

remark that the design of the branch and bound 

algorithms remains as further research. Finally, new 

formulations for other degree dependent spanning tree 

problems is also an open research avenue. 
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TABLE VI 

 MILP RELAXATION OF THE (DL+)  & (SCF+) ON CLASS I INSTANCES 

 

 
IPR-DL+ IPR-SCF+ 

|V| %Dev CPU %Dev CPU 

20 0.76 0.00 0.76 0.01 
40 2.72 0.01 2.76 0.02 
60 6.04 0.03 6.28 0.05 
80 8.96 0.05 9.24 0.18 

100 13.08 0.04 13.28 0.16 
120 17.16 0.11 17.52 0.27 
140 20.60 0.18 20.88 0.85 
160 24.80 0.24 25.04 0.87 
180 28.72 0.34 29.08 2.17 
200 32.28 0.21 32.60 1.46 
250 44.32 0.59 44.60 3.59 
300 57.04 0.93 57.36 5.97 
350 67.92 2.95 68.44 22.16 
400 81.52 2.81 81.80 15.87 
450 92.92 4.62 93.32 22.88 
500 106.16 4.13 106.68 23.49 

Aver. 37.81 1.08 38.10 6.25 

 

 

 

TABLE VII 

 MILP RELAXATION OF THE (DL+)  & (SCF+) ON CLASS II INSTANCES 

 

 
IPR-DL+ IPR-SCF+ 

|V| %Dev CPU %Dev CPU 

600 0.20 1.98 0.00 15.81 
700 0.14 4.62 0.05 42.34 
800 0.14 8.84 0.00 83.40 
900 0.17 8.24 0.00 92.56 

1000 0.17 14.60 0.03 233.68 

Aver. 0.16 7.65 0.02 93.56 
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