



Abstract—In this work, we address a variant of the well-

known spanning tree problem which consists of finding a

spanning tree such that the number of branch vertices,

namely vertices with degrees of at least three, is minimum

(MBV). First, we introduce novel Mixed Integer Linear

Programming (MILP) formulations for the MBV by

improving the formulations from the literature. Then, we

perform extensive computational experiments on standard

test sets, to analyze their performance. According to our

computational experiments, we have observed that the

Linear Programming relaxations of the new MILP

formulations yield drastically improved lower bounds than

the ones output by earlier MBV formulations.

Index Terms—spanning trees, branch vertices, mixed

integer linear programming

I. INTRODUCTION

ANY combinatorial optimization problems deal

with constructing spanning trees which are

optimal with respect to some conditions. For a

discussion of various real-life applications of the

spanning trees arising in transportation,

telecommunication, energy distribution, irrigation, data

storage and cluster analysis we refer to Ahuja, Magnanti

and Orlin [1], Capone, Corti, Gianoli, and Sanso [3] and,

Ozeki and Yamashita [10].

Let G=(V,E) be a connected undirected graph with a set

of vertices V={1,...,n} and a set of edges E={e1,...,em}

where n and m stand for the number of vertices and

edges, respectively. A spanning tree is a subset of E such

that no cycle is constructed and the set of selected edges

spans all nodes in V. In this paper, we address the

spanning tree problem with a minimum number of

branch vertices, i.e. vertices with degrees of at least

three, (MBV), which involves finding a spanning tree of

G such that the number of branch vertices is minimum.

The MBV was first introduced by Gargano, Hell, Stacho

and Vaccaro [7] in their seminal work whereby they

showed it to be NP-complete. A closely related problem

Manuscript received June 11, 2014. This work was supported by

the Turkish Scientific and Technological Research Council Research

Grants No: 107M462 and 109M139, and Galatasaray University

Scientific Research Project Grant No: 14.402.003.

T. Öncan is with the Department of Industrial Engineering,

Galatasaray Üniversitesi, Ortaköy,İstanbul, 34357, TÜRKİYE (phone:

+90.212 227 44 80 fax: +90 212 259 55 57 e-mail:

ytoncan@gsu.edu.tr).

to the MBV is the spanning tree problem with minimum

degree sum of branch vertices (MDS) which has been

first launched by Cerulli, Gentili and Iosa [5]. The

authors have suggested Single Commodity Flow (SCF)

formulations, and they have introduced three

construction heuristics, for both the MBV and MDS.

Later on, Sundar, Singh and Rossi [13] suggested

efficient construction heuristics and hybrid Ant Colony

Optimization (ACO) algorithms for both the MBV and

MDS. Recenty, Cerrone, Cerulli and Raiconi [4] have

devised a memetic algorithm for three degree-dependent

spanning tree problems including the MBV. In another

study, four mathematical programming formulations for

the MBV and different relaxations of them, have been

analyzed by Carrabs, Cerruli, Gaudioso and Gentili [2].

The authors suggested Lagrangean relaxation approaches

and reported results with a subgradient method and ad-

hoc finite ascent algorithm.

Real-life applications of the MBV arises prominently

in Wavelength Division Multiplexing (WDM)

technology, used in optical networks (Stern and Bala

[13]). The WDM technology enables the fiber optic

communication used for web browsing, video

conferences, video on demand services, etc. (Gargano,

Hell, Stacho and Vaccaro [7]). Fiber optic

communication encodes information into light waves and

beams through an optical fiber. Since the wavelength of

light determines its characteristic, each wavelength

carries its own independent data-traffic. In WDM

systems, several different wavelengths are combined and

simultaneously transmitted over a single fiber. A

multiplexer is used to join signals at the transmitter (i.e.

source vertex) whereas a de-multiplexer, at the receiver

(i.e. destination vertex) splits them apart. Furthermore,

WDM technology also permits multi-casting in an

optical network by using sophisticated switches which

make copies of optical signals by splitting light, and

hence, they transmit information from a single source

vertex to multiple destination vertices. The multi-casting

technique enables the distribution of copied data packets

to multiple users via sophisticated light-splitting

switches, located on the branch vertices of the optical

network. Consequently, it is of great interest to design

optical networks which enable multi-casting with a

minimum number of light-splitting switches and with a

minimum sum of branch vertex degrees, taking into

account their costs.

New Formulations for the Minimum Branch

Vertices Problem

Temel Öncan

M

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

The motivation of this study is to suggest strong and

novel Mixed Integer Linear Programming (MILP)

formulations for the MBV which is known to be NP-

Complete. We believe our attempts in devising novel

MILP formulations will be helpful to develop efficient

exact solution procedures for the MBV, as well.

The remainder of this work is organized as follows. In

the next section we present some of the existing MILP

formulations for the MBV from the literature. In

Section III, we further elucidate on our novel MILP

formulations. Then, in Section IV, we report the results

of our extensive computational experiments. Finally, we

conclude with Section V.

II. MILP FORMULATIONS FOR THE MBV

In this section we present three existing MILP

formulations for the MBV suggested by Cerrone, Cerulli

and Raiconi [4].

The proposed formulations are defined on a directed

graph G'=(V,A) obtained from G=(V,E) where

A={(i,j):i,j V; i ≠ j} is the arc set. In G'=(V,A), each

undirected edge ep E, which corresponds to edge {i,j},

is replaced by two directed arcs (i,j) and (j,i) where i ≠ j.

Furthermore, we assume vertex rV represents the root

vertex. δ(i) denotes the degree of vertex i and |V| stands

for the cardinality of the vertex set V.

For all formulations, we define the following decision

variables. Binary variables xij equal to 1 if there exists

an arc (i,j) from vertex i to vertex j. Binary variables yi

equal to 1 if vertex i is a branch vertex. The proposed

MILP formulations assume that a feasible solution

consists of a subgraph of G'=(V,A) that spans all vertices

in V, i.e. connected and acyclic, and has exactly one

incoming arc to each vertex except the root vertex.

Namely, a feasible solution is represented with an

arborescence originating at the root vertex r such that

there exists exactly one directed path from the root

vertex r to every other non-root vertex iV\r. Now we

will present three MBV formulations from the literature.

A. Desrochers - Laporte Formulation

The first formulation which we will present in this

section employs the subtour elimination constraints by

Desrochers and Laporte [6] which were originally

proposed for the Asymmetric Travelling Salesman

Problem (ATSP) by lifting the constraints by Miller,

Tucker and Zemlin [9]. We refer to Gutin and Punnen

[8] for an overview of the ATSP formulations. In the

Desrochers-Laporte (DL) formulation for the MBV, in

addition to binary variables xij and yi, continuous

decision variables ui are also used to calculate the visit

order of vertex i from the root vertex r. The DL

formulation for the MBV is the following.

 

  (9) 1,0

(8)),(1,0

(7) 0

(6))1(1

(5)),()1()2(

(4) 2)(

(3) 1

(2) 1

.

(1) Z min:

),(),(

),(

),(

1

Vjy

Ajix

u

\rVjVu

AjiVuuxVxV

\rVjyjxx

Vx

V\r jx

ts

yDL

j

ij

r

j

jiijji

j

n

ri

ij

n

ri

ji

Vi rj

ij

rj

ij

n

i

i

AjiAji

Aji

Aji



































 







Here, objective function (1) calculates the number of

branch vertices. Constraints (2) state the each vertex,

except the root vertex, must have exactly one

incoming arc. Constraints (3) guarantee that exactly

|V|-1 arcs are chosen to construct a spanning tree.

Namely, constraints (2) and constraints (3) stand for

the assignment constraints. Constraints (4) ensure that

a vertex j is a branch vertex when the total number of

outgoing and incoming arcs are larger than three.

Constraints (5) are the subtour elimination constraints

originally proposed for the ATSP by Desrochers and

Laporte [6]. These constraints impose that when xij=1

then ui ≤ uj+1 holds and when xji=1 then ui -1 ≤ uj is

satisfied. Namely, constraints (5) restrict that uj=ui+1

holds when there exists an outgoing arc from vertex i

to vertex j. Constraints (6) and constraints (7) impose

lower and upper bounds on visit order variables ui.

Finally, constraints (8) and constraints (9) stand for

the integrality restriction on the decision variables xij

and yj, respectively.

B. Single-Commodity Flow Formulation

The single-commodity flow (SCF) formulation employs

the flow variables vij which stands for the amount of flow

passing through arc (i,j).

  (12)),(1-

(11) 1

(10) 1-

(9)(8), (4),-(1) :SCF

),(),(

),(),(

AjixVvx

\rVjvv

Vvv

ijijij

Aji

ij

Aij

ji

Ari

ir

Air

ri















Constraints (10) make sure |V|-1 units of commodities

leave the root vertex. Constraints (11) enforce that

exactly one unit of commodity arrives into each vertex

except the root. Constraints (12) impose lower and upper

bounds on the flow quantity for each arc in the spanning

tree.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

C. Multi-Commodity Flow Formulation

The multi-commodity flow (MCF) formulation uses

the flow variables wij
k
 equal to 1 if and only a

commodity of type k flows through arc (i,j).

(16)),(; 0

(15) 1

(14) 1

(13) ; , 0

(9)(8), (4),-(1) : MCF

),(),(

),(),(

),(),(

VjiVkxw

\rVkww

\rVkww

kj\rVkjww

ij

k

ij

Akj

k

jk

Ajk

k

kj

Arj

k

jr

Ajr

k

rj

Aji

k

ij

Aij

k

ji





















Constraints (13) guarantee that for each vertex j, such

that j≠k, when a commodity of type k enters into vertex j

then it must leave vertex j. Constraints (14) make sure

that there must be exactly one commodity of type k

which must leave the root vertex. Constraints (15) ensure

that there is exactly one incoming commodity of type k

which is entered into vertex k. Constraints (16) are for

the lower and upper restrictions on the flow variables wij
k

.

III. NEW FORMULATIONS FOR THE MBV

In this section we will present new formulations for the

MBV. The new formulations are obtained with the

addition of constraints (17)-(20) to the formulations DL,

SCF and MCF and the new ones will be named as DL+,

SCF+ and MCF+, respectively. According to our

computational experiments, which will be presented in

the next section, DL+, SCF+ and MCF+ formulations

are much stronger than DL, SCF and MCF, respectively.

(20) 2)2)((21

(19) 1)2)((2

(18) 2

(17) 1

),(

),(





















r

rj

rjr

j

rj

jij

rrkrjri

iikji

yrxy

\rVjyjxy

\rVi,j,kyxxx

\rViyxx

Ajr

Aij





Now, we will show that constraints (17) -(20) are valid

inequalities for the MBV. First of all, notice that

constraints (17) and constraints (18) hold by definition.

Recall that a branch vertex i has degree of at least three.

Keeping in mind that all vertices but the root vertex have

one incoming arc then each branch vertex has at least

two incoming arcs. Moreover, in case the root vertex is a

branch vertex then it has at least three outgoing arcs.

Therefore, we can state that constraints are valid by

definition.

Proposition 1. Constraints (19) and (20) are valid

inequalities for the MBV

Proof. The left part of the constraints (19) hold by the

definition of the xij and yj variables. In case, vertex j is a

branch vertex then there exist at least two outgoing arcs

from the vertex j. For the other case, there is either one

or none outgoing arc from vertex j. The right part of the

constraints (19) hold also by the definition. Whenever

vertex j is a branch vertex then there at most δ(j)-1

outgoing arcs. Furthermore, when vertex j is not a

branch vertex then there is at most one outgoing arc from

the vertex j.

Similarly, for the left part of constraints (20), when the

root vertex is a branch vertex then, there must be at least

three outgoing arcs. However, when the root vertex is

not a branch vertex then there must be at least one

outgoing arc. Considering the right part of constraints

(20), when the root vertex is a branch vertex then there

are at most δ(r) outgoing arcs. On the other hand, when

the root vertex is not a branch vertex then constraints

(20) state that there are at most two outgoing arcs from

the root vertex. ■

Proposition 2. Constraints (19) dominate constraints

(4)

Proof. Considering constraints (2), we can rewrite

constraints (4) as follows:

(21) 1)(

),(

\rVjyjx j

ri

ji

Aji








On the other hand, the right hand side of constraints (19)

can be rewritten as

(22) 21)(

),(

\rVjyyjx jj

ri

ji

Aji








Note that since 0 ≤ yj ≤ 1 holds for j V, the right hand

side of constraints (22) are tighter than the one of

constraints (21), which completes the proof. ■

In summary, we suggest four new formulations: DL+,

SCF+ and MCF+ which are obtained with the addition of

constraints (17)-(20) to (1)-(9); (1)-(4),(8),(9),(10)-(12)

and (1)-(4),(8),(9),(13)-(16), respectively.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we present our computational

experiments to expose the strength of the constraints

(17)-(20) when used with DL, SCF and MCF

formulations for the MBV. That is to say, we introduce

an experimental comparative analysis of DL, SCF, MCF,

DL+, SCF+ and MCF+ formulations. In the next

discussion the test instances will be presented. Finally,

the computational results will be reported.

A. Test Bed

To perform our experiments, we consider the test

instances generated by Carrabs, Cerulli, Gaudioso and

Gentili [2]. Broadly speaking we have two classes of test

instances, the first class consists of 400 instances with n

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

between 20 and 500, the second class includes 125

instances with n between 500 and 1000. Consequently,

we have 525 test instances in total. All the test instances

generated by Carrabs, Cerulli, Gaudioso and Gentili [2]

consist of sparse graphs where the number of edges are

fixed according to the following equation

   (23) 5.1)1(ninm 

with i=1,2,3,4,5.

B. Computational Results

We now present the details of our computational

experiments. All computations were performed on a Dell

Server PE2900 with two 3.16 GHz Quad Core

Processors and 16 GB RAM operating within Microsoft

Windows Server 2003 environment. Cplex 11 with

default options is used to solve the MILP and Linear

Programming (LP) problems.

To better expose the strength of the proposed

formulations we report some results on the empirical

quality of the LP relaxation bounds of the DL, SCF,

MCF, DL+, SCF+ and MCF+ formulations which are

obtained by replacing constraints (8) and (9) with

(25) 10

(24)),(10

Vjy

Ajix

j

ij





respectively. The LP relaxations of DL, SCF, MCF,

DL+, SCF+ and MCF+ formulations will be denoted as

LP-DL, LP-SCF, LP-MCF, LP-DL+, LP-SCF+ and LP-

MCF+, respectively. Furthermore we have also

conducted computational experiments with the Integer

Programming (IP) relaxation of the DL+ and SCF+, by

only replacing constraint (8) with constraints (24), and

keeping all the remaining constraints the same. In the

sequel, the IP relaxations of the DL+ and SCF+ will be

referred to as IPR-DL+ and IPR-SCF+, respectively.

Furthermore, note that, for the sake of a fair comparison

of formulations, we have selected vertex 1 as the source

vertex in all instances.

We have employed the following formulae to measure

the relative deviations from the optimum or best known

solutions

 (26) 100 






 


IP

LPIP

z

zz

where zIP is the optimum or best known solution value

and zLP is the lower bound obtained by solving the LP

relaxation of the models. The optimum solutions of

Class I instances are obtained by solving DL+

formulation via Cplex 11 MILP solver with default

options. On the other hand, for Class II instances, no

optimum solution values are reported in the literature.

Hence, we have again tried to employ DL+ formulations

via Cplex 11 MILP solver with a 3 hours CPU time

limit. However, we have been able to reach the

optimality only in only 99 out of 125 cases within the

3hours CPU time limit. For the rest of the Class II

instances, i.e. 26 instances, we consider the best feasible

solutions output by Cplex 11 MILP solver.

In Table I (Table II) we report the results obtained with

the LP relaxation of the SCF and DL (SCF+ and DL+)

formulations on Class I instances, while in Table III

(Table IV) we give the results output by LP relaxation

of the SCF and DL (SCF+ and DL+) formulations on

Class II instances. Table V includes the results obtained

with the LP relaxation of the MCF formulation on Class

I instances. In Table VI and Table VII, we present the

results obtained with the MILP relaxation of the DL+

and SCF+ formulations on Class I and Class II

instances, respectively.

TABLE I

LP RELAXATION OF SCF AND DL ON CLASS I INSTANCES

LP-SCF LP-DL

|V| %Dev CPU %Dev CPU

20 35.12 0.00 30.23 0.00
40 74.00 0.01 58.99 0.00
60 78.12 0.01 61.95 0.01
80 76.16 0.01 59.06 0.01

100 73.69 0.01 58.10 0.01
120 71.65 0.02 57.90 0.01
140 71.47 0.02 57.36 0.01
160 71.74 0.03 57.26 0.02
180 69.99 0.03 56.57 0.02
200 69.64 0.03 56.25 0.02
250 68.36 0.04 55.25 0.02
300 68.09 0.05 55.52 0.03
350 68.00 0.05 55.40 0.04
400 67.33 0.05 54.64 0.02
450 67.59 0.07 55.23 0.03
500 66.89 0.07 54.99 0.04

Aver. 68.62 0.03 55.29 0.02

TABLE II

LP RELAXATION OF THE SCF+ AND DL + ON CLASS I INSTANCES

LP-SCF+ LP-DL+

|V| %Dev CPU %Dev CPU

20 10.02 0.00 10.02 0.00
40 28.96 0.01 29.10 0.01
60 17.17 0.02 18.15 0.01
80 12.94 0.03 13.25 0.01

100 9.45 0.03 9.77 0.01
120 8.91 0.04 9.24 0.01
140 7.76 0.06 7.91 0.02
160 6.72 0.07 6.99 0.03
180 6.68 0.08 6.84 0.03
200 5.40 0.10 5.66 0.03
250 4.72 0.11 4.85 0.03
300 3.71 0.15 3.77 0.05
350 5.33 0.21 5.46 0.06
400 3.88 0.21 3.95 0.05
450 4.63 0.27 4.72 0.06
500 4.01 0.29 4.12 0.07

Aver. 8.77 0.11 8.99 0.03

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

In all tables, the first columns stand for the size of the

instances and the last rows give average values of the

corresponding columns. The rows indicate the average

results obtained with 25 test instances with the same

size. In Table I and Table II, the second and third

(fourth and fifth) columns stand for the percent

deviations from the optimum solution and the CPU time

in seconds obtained with the LP relaxation of the SCF

(DL) formulation, respectively. However, In Table III

and Table IV, the second and third (fourth and fifth)

columns are for the percent deviations from the best

known solutions and the CPU time in seconds obtained

with the LP relaxation of the SCF+ (DL+) formulation,

respectively.

When we analyze Table I and Table II, we can conclude

that there is no considerable difference between the LP

relaxation of the SCF and MCF formulations. The

average percent deviations (CPU times in seconds)

reported for the SCF and DL formulations are 38.69 %

and 32.13 % (0.7 and 0.03) for the SCF and DL

formulations, respectively. Actually, we know that the

subtour elimination constraints of the SCF and DL

formulations are incomparable in terms of their solution

quality. For an analytical comparison of several ATSP

subtour elimination constraints we refer to Öncan,

Altınel and Laporte [11]. Although, the SCF and DL are

theoretically incomparable, when we consider the

solutions reported in Table III and Table IV we can

observe that the DL model outperforms SCF model in

terms of accuracy at the expense of a slight increase in

CPU time requirement. Note that, the average percent

deviations (CPU times in seconds) reported in Table III

and Table IV are 41.31 % and 26.69 % (0.09 secs. and

0.13secs.) for SCF and DL, respectively.

When we compare Table I with Table II and, Table III

with Table IV, we can clearly observe the dramatic

improvements in accuracy obtained with the valid

inequalities (17)-(20) presented in Section III. The

average percent deviation obtained with the SCF (the

DL) on Class I instances impressively reduces from

68.62 % to 8.77 % (from 55.29 % to 8.99 %) with a

insignificant increase in average CPU time requirement

from 0.03 secs. to 0.11 secs. (from 0.02 secs. to 0.03

secs.). On the other hand, for Class II instances, the

decrease in the average percent deviation is from 68.86

% to 18.76 % (from 51.83 % to 1.55 %) with a slight

change in average CPU time requirement from 0.1 secs.

to 0.09 secs. (from 0.05 secs. to 0.22 secs.) for the SCF

(DL) formulation.

The improvements in the accuracy of the LP relaxation

bounds obtained with the DL formulations are quite

promising. Especially for Class II instances average

percent deviation of 1.55 % from the best known or

optimal solution with an insignificant average CPU time

requirement implies that the LP relaxation bounds

obtained with the DL formulation can be efficiently

employed within a Branch and Bound algorithm as a

lower bounding procedure. However, this research area

is beyond scope of this study. Considering both the

accuracy and the CPU time, we can state that the DL

formulation is the winner with an overall average percent

deviation of 29.42 % and CPU time requirement of 0.08

secs. compared to the overall average values, i.e. 40.00

% and 0.083 secs., obtained with the SCF formulation.

We have also performed experiments with the MCF

formulations. Unfortunately, we could only solve

instances with sizes up to n=500. For Class II instances

we will not report the results with MCF formulation due

to extreme memory space requirement of CPLEX LP

solver. In Table V, we present the computational

experiments performed with the LP relaxation of the

TABLE III

LP RELAXATION OF THE SCF AND DL ON CLASS II INSTANCES

LP-SCF LP-DL

|V| %Dev CPU %Dev CPU

600 63.99 0.08 52.11 0.05
700 64.03 0.09 52.00 0.07
800 63.81 0.10 51.78 0.04
900 63.68 0.10 51.58 0.04

1000 63.76 0.12 51.66 0.04

Aver. 63.86 0.10 51.83 0.05

TABLE V

LP RELAXATION OF THE MCF ON CLASS I INSTANCES

LP-MCF LP-MCF+

|V| %Dev CPU %Dev CPU

20 29.49 0.21 9.36 0.22
40 58.94 0.83 28.63 0.87
60 60.67 1.84 16.10 1.95
80 58.73 3.76 12.22 4.51

100 57.62 5.87 9.14 36.66
120 57.54 8.18 8.63 11.15
140 57.10 12.04 7.65 15.78
160 56.95 19.32 6.39 25.45
180 56.33 25.13 6.40 34.93
200 56.06 34.24 5.23 49.10
250 55.16 57.56 4.59 68.85
300 55.41 93.32 3.64 131.32
350 55.22 134.81 5.12 301.02
400 54.55 186.12 3.92 263.12
450 55.09 280.72 4.52 390.67
500 54.93 350.02 3.90 454.28

Aver. 54.99 75.87 8.47 111.87

TABLE IV

LP RELAXATION OF THE SCF+ AND DL+ ON CLASS II INSTANCES

LP-SCF+ LP-DL+

|V| %Dev CPU %Dev CPU

600 17.55 0.06 1.54 0.18
700 17.93 0.07 1.54 0.21
800 18.60 0.10 1.53 0.21
900 19.88 0.10 1.54 0.23

1000 19.84 0.10 1.60 0.26

Aver. 18.76 0.09 1.55 0.22

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

MCF formulations on Class I instances. As it can be

observed, the accuracy of the LP relaxation bound

considerably improves when constraints (22)-(25) are

added to the MCF formulation at the expense of an

enormous increase in computational time requirement .

Considering all three formulations: DL+, SCF+ and

MCF+, we can say that although MCF+ yields the

tightest average lower bound values, DL+ is the best

choice when we take into account both accuracy and

efficiency. Note that, although the LP relaxation of the

DL+ yields the worst average percent deviation from the

optimum solution on Class I instances, DL+ yields an

outstanding efficiency in computation time.

In Table VI and Table VII we report the results obtained

with the IP relaxation of the DL+ and SCF+

formulations. Recall that, IPR-DL+ and IPR-SCF+ stand

for the IP relaxation of the DL+ and SCF+ formulations,

respectively. Among all instances in Class I, in 260 and

354 out of 400 cases we get the optimum solution value

with IPR-DL+ and IPR-SCF+, respectively. These

values are 86 and 121 out of 125 cases for the Class II

instances, with IPR-DL+ and IPR-SCF+, respectively.

Consequently, we can say that DL+ and SCF+

formulations yield quite tight LP relaxation and IP

relaxation lower bounds. Unfortunately, the IP relaxation

of the MCF+ formulation requires drastic CPU time

hence we could not report the results obtained.

V. CONCLUSION

We have devised novel formulations for the MBV.

According to our computational experiments, we may

conclude that both the linear programming and mixed

integer linear programming relaxations of the proposed

formulations yield promising lower bounds. We should

remark that the design of the branch and bound

algorithms remains as further research. Finally, new

formulations for other degree dependent spanning tree

problems is also an open research avenue.

REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows:

Theory, Algorithms and Applications, Prentice-Hall, Englewood

Cliffs, NJ, 1993.

[2] F. Carrabs, R. Cerulli, M. Gaudioso, and M. Gentili, “Lower and

upper bounds for the spanning tree with minimum branch

vertices,” Computational Optimization and Applications, vol.

56, pp. 405–438, 2009.

[3] A. Capone, D. Corti, L. Gianoli, and D. Sanso, “An optimization

framework for the energy management of carrier ethernet

networks with multiple spanning trees,” Computer Networks,

vol. 56, pp. 3666–3681, 2012.

[4] C. Cerrone, R. Cerulli, and A. Raiconi, “Relations, models, and a

memetic approach for three degree-dependent spanning tree

problems,” European Journal of Operational Research, vol.

232, pp. 442–453, 2014.

[5] R. Cerulli, M. Gentili, and A. Iossa, “Bounded-degree spanning

tree problems: models and new algorithms,” Computational

Optimization and Applications, vol. 42, pp. 353–370, 2009.

[6] M. Desrochers, G. Laporte, “Improvements and extensions to the

Miller-Tucker-Zemlin subtour elimination constraints,”

Operations Research Letters, vol. 10, pp. 27–36, 1991.

[7] L. Gargano, P. Hell, L. Stacho, and U. Vaccaro, “Spanning trees

with bounded number of branch vertices, Lecture Notes in

Computer Science, vol. 2380, Springer Verlag, Berlin 2002.

[8] G. Gutin, A.P. Punnen, “The Traveling Salesman Problem and

Its Variations, ” Kluwer, Dordrecht, 2002.

[9] C.E. Miller, A.W. Tucker, and R.A. Zemlin, “Integer

programming formulations and traveling salesman problems,”

Journal of Association for Computing Machinery, vol. 7, pp.

326–329, 1960.

[10] K. Ozeki, T. Yamashita, “Spanning trees: a survey, ” Graphs

and Combinatorics, vol. 27, pp. 1–26, 2011.

[11] T. Öncan, İ.K. Altınel, and G. Laporte, “A comparative analysis

of several asymmetric travelling salesman problem

formulations,” Computers and Operations Research, vol. 36, pp.

637–654, 2009.

[12] T.E. Stern, K. Bala, “Multi-wave length Optical Networks: A

Layered Approach, ” Prentice-Hall, NJ, 1999.

[13] S. Sundar, A. Singh, and A. Rossi, “New heuristics for two

bounded-degree spanning tree problems,” Information Sciences,

vol. 195, pp. 226–240, 2012.

TABLE VI

 MILP RELAXATION OF THE (DL+) & (SCF+) ON CLASS I INSTANCES

IPR-DL+ IPR-SCF+

|V| %Dev CPU %Dev CPU

20 0.76 0.00 0.76 0.01
40 2.72 0.01 2.76 0.02
60 6.04 0.03 6.28 0.05
80 8.96 0.05 9.24 0.18

100 13.08 0.04 13.28 0.16
120 17.16 0.11 17.52 0.27
140 20.60 0.18 20.88 0.85
160 24.80 0.24 25.04 0.87
180 28.72 0.34 29.08 2.17
200 32.28 0.21 32.60 1.46
250 44.32 0.59 44.60 3.59
300 57.04 0.93 57.36 5.97
350 67.92 2.95 68.44 22.16
400 81.52 2.81 81.80 15.87
450 92.92 4.62 93.32 22.88
500 106.16 4.13 106.68 23.49

Aver. 37.81 1.08 38.10 6.25

TABLE VII

 MILP RELAXATION OF THE (DL+) & (SCF+) ON CLASS II INSTANCES

IPR-DL+ IPR-SCF+

|V| %Dev CPU %Dev CPU

600 0.20 1.98 0.00 15.81
700 0.14 4.62 0.05 42.34
800 0.14 8.84 0.00 83.40
900 0.17 8.24 0.00 92.56

1000 0.17 14.60 0.03 233.68

Aver. 0.16 7.65 0.02 93.56

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

