

Abstract — Webengine is an ancient piece of Kryptonian
technology designed to terraform an outdated website such
that its style and content are aligned with newer websites [25].
Keeping a website up-to-date, not only with content but also
with styling, is what keeps users and customers coming back.
They may not always be happy with these changes (look at
Facebook), but the ability to quickly refresh your website is
imperative to staying relevant. Two new Python scripts
webengine.py and webshooter.py strives to do just that. The
days of dynamically creating basic websites using php and
mysql have passed. Powerful new tools such as Hyde and
Jekyll are the keys to quick website creation today. With
webshooter, a system administrator or even a project leader
can create a new and fresh looking website with one of three
different style options and then populate it with the data and
content from the previous website by running webengine.

Index Terms — Hyde, Jekyll, Python, Web 2.0

I. INTRODUCTION

VERY project or team needs a website. But sometimes
once the website is deployed, it is forgotten and not
well maintained. As the new guy on my team, I was

charged with maintaining and updating our websites.

The first task was converting a Moin Moin wiki [14] to
Markdown [9] to post on the project’s GitHub [4] wiki.
This presented a number of challenges. First I tried to use
the update and export tools Moin Moin provided, but to no
avail. I then tried to wget the wiki, also to no avail. The
wiki presented files in such a way that wget did not
guarantee the recovery of all the pages. I performed a
simple Internet search for web scrapping tools, but nothing
matching my use case turned up.

I therefore began writing webengine as a simple one-off
script. After completing the Moin Moin wiki conversion,
other opportunities to use webengine surfaced in updating
our other websites, along with being the missing piece to
webshooter. With the two scripts, you can now create a new
web 2.0 website and then populate it with the data in an
existing website.

I started abstracting webengine to different scripts and
attempted to generalize the code for reuse. Every website
and wiki I updated or converted offered different challenges
and corner cases that required additional code or scripts. In
section three, Content Management Systems, I explain more

Manuscript received June 30, 2014; revised July 28, 2014. This work

was funded by the AIMS group at Lawrence Livermore National
Laboratory as a toolkit to expedite the process of converting and creating
new websites.

M. B. Harris is a Computer Scientist, Mathematical Programmer in the
AIMS Project at Lawrence Livermore National Laboratory, Livermore, CA
94550 USA (phone: 925-423-8978 fax: 925-422-7675 email:
harris112@llnl.gov).

of webengine’s history and why it came to exist.

I learned from the Moin Moin wiki conversion that the best
way to recover all the pages of a website was to wget the
pages listed on the website’s index page. Because in most
cases there are more than a hundred pages listed, a script is
required to automate this process. webengine.py first uses
wget to retrieve the wiki’s index page, copies all the pages
URLs (url_gather.py),and saves them in a file URL.txt.
Second webengine.py retrieves every URL in the newly
created URL.txt file (file_gather.py) using wget.

These actions were the start of building a collection of
scripts for web scraping website data and content for
manipulation. This Python [21] project heavily used the
Beautiful Soup [2] package. The bulk of the file converting
(file_convter.py) used Aaron Swartz’s html2text.py script
[18].

This project’s origin can be traced back to a single script
my intern Ben Carlsson and I wrote in the summer of 2013.
webshooter.py [5] created a new Hyde [11] based website.
webengine.py was the missing piece in webshooter.py.
Once a new website is created, the next step is populating it.

II. SOFTWARE USED

A. Hyde

Hyde is a static website generator written in Python. While
in literature Hyde took life as awesome Jekyll's evil twin, it
has since been completely consumed by the dark side and
has taken on an identity of its own. Hyde the website
generator desires to fulfill the lofty goal of removing the
pain points involved in creating and maintaining static
websites. [11]

Ben Carlsson and I started with Hyde because it is written
in Python and our team is a Python shop. Furthermore,
Hyde uses the jinja2 [13] template engine, which gave us
lots of options in page design.

B. Jekyll

Jekyll is a simple, blog-aware, static website generator. It
takes a template directory containing raw text files in
various formats, runs it through Markdown (or Textile) and
Liquid converters, and outputs a complete, ready-to-publish
static website suitable for use on a favorite web server.
Jekyll also happens to be the engine behind GitHub Pages
[20], which means one can use Jekyll to create a project’s
pages, blog, or website from GitHub’s servers for free. [12]

I started using Jekyll (Ruby-based) when the Earth System
Grid Federation (ESGF) [8] asked me to move their new
website to GitHub Pages [20]. That required changing from
Hyde to Jekyll.

Webengine

Matthew B. Harris

E

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

C. Webshooter

Webshooter is a command-line assistant to the static
website generator Hyde. It produces Hyde-ready websites
in the user's choice of layout and automates page creation
and website configuration through user prompts and
command line arguments. [5]

III. CONTENT MANAGEMENT SYSTEMS

Content management systems (CMSs) [6] are a great way to
quickly get a website styled. They are also user and
administrator friendly. My team is using Drupal [7], which
has a nice community around it. Plone, Zope, Moin Moin,
and other CMSs also exist.

 Drupal is an open-source content management platform
powering millions of websites and applications. It is
built, used, and supported by an active and diverse
community of people around the world.[7]

 Plone is among the top 2% of all open-source projects
worldwide, with 340 core developers and more than
300 solution providers in 57 countries.”[16]

 Zope is a free and open-source web application server
written in the object-oriented programming language
Python. [17]

 Moin Moin is an advanced, easy to use and extensible
WikiEngine with a large community of users. Said in a
few words, it is about collaboration on easily editable
web pages. [15]

While CMSs have many advantages, there are also
disadvantages. We were using a web server running
RedHat4 and hosting a Plone version 1.5 website. However,
Lawrence Livermore National Laboratory (LLNL) was
discontinuing support for RedHat4 in favor of the latest
version, RedHat6. A colleague, Dr. Jeffery Painter
attempted to update the Plone website to the latest version.
However, the upgrade tool failed because the system
packages were too new. He tried rolling these packages
back to pervious versions, but Plone and other applications
crashed. He next tried the export tool, which had the same
problem of packages not being the right version, which
made it impossible to connect to the database.

To resolve the issue of allowing a content management
system to become out of date, our solution was to stay pro-
active. I wrote a cron job that performs a Drupal update on
all of our websites once a week.

CMSs make the output HTML unnecessarily complex
Table I shows a small excerpt of two links on a Drupal page
with numerous tags for special styling and website
generation. Unless one stays up to date with the CMS and
keeps content new and relevant, a CMS can quickly spiral
out of control.

IV. WEBENGINE.PY

Table II shows the help output of the webengine.py script,
which explains the required inputs. webengine.py collects
the user input, and delegate the work to the correct script.

The webengine.py process we developed works as follows.
If the user enters a type of “wiki,” two scripts will run. First
url_gatherer.py runs, downloading the index page from the

wiki or website and creating a file with all the website
pages listed. Then file_gather.py will read in the file and
wget all the pages. Alternately, website_gather.py will run,
which does a pure wget on the URL the user passed in.
Now that the website has been collected, the work of
converting raw html to Markdown can begin.

TABLE I
OUTPUT HTML FROM A CMS

<div class="content">
<ul class="menu clearfix">

<li class="first collapsed">
Biblio

<li class="last leaf">

Recent content

</div>

TABLE II
WEBENGINE HELP OUTPUT

python webengine.py -h
usage: webengine.py [-h] URL href src type case

get all content (html / images) from a wiki (website) and convert to
markdown

positional arguments:
 URL URL to website or wiki
 href URL of the new website
 src Path to the image directory
 type "website" for full website or "wiki" for wiki Title Index page
 case jekyll, hyde, none

optional arguments:
 -h, --help show this help message and exit

file_extractor.py will recursively read all the php or html
files and will first look for a division tag (div) with a class
or identification (id) with the name of “content” or
“container” inside the body tag. If neither of these tags
exist, it will extract the entire html out of the body tag and
save this reduced copy of the page. file_corrector.py will
read in every file and change all the hypertext reference
links (href) and image sources (src) to what the user has
passed in.

html_table_2_Markdown.py then reads through all the files
looking for table tags and converts them to Markdown.
file_converter.py calls Aaron’s html2text.py, which converts
the remaining html to Markdown. image_gatherer.py scans
all the original html and downloads any missing images,
and bold_cleanup.py scans all the completed Markdown
files and removes any stray bold or italics symbols (e.g.,
“**”, “__”).

head_adder.py adds either the Hyde or Jekyll page header
to all the Markdown pages. If the choice is Hyde, it will
also change all the files extensions from .md to .html—this
makes parsing files in Hyde easier.

With webengine.py completed, the directories have been
created, as shown in Table III.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

TABLE III
WEBENGINE OUTPUT ON COMPLETION

whole_site -> The whole site from wget
extracted_files -> just the body of the raw html files
html_files -> extracted file corrected with new href and src links
html_dirty_files -> html files with converted tables html to markdown
completed_files -> md or html files as you asked for
image_files -> all the image files from the old site (images)

You may want to run md_files through file_trimmer.py to remove
unwanted headers and footers
If so remember to then run head_adder.py again by hand

V. WEBSHOOTER.PY

Running webshooter.py will create a new website that can
be populated with files from the webengine.py’s
completed_files directory. The output from webshooter.py
help can be seen in Table IV. webshooter.py currently
offers the user three website styles to choose from.
webshooter.py is a single, self-contained script for creating
a new website using Hyde.

TABLE IV
WEBSHOOTER HELP OUTPUT

python webshooter.py

I was written in Python 3.x, but you're running me with Python 2.x!
I was NOT tested with this version. Run anyway? [y/N]

usage: webshooter.py <command> [--help]

commands:
 new Interactively create a new website
 gen <website_path> Regenerate the content for the website at
 `website_path`

With webshooter.py, one can use any of the following
styling frameworks. Examples of each are included.

 Bootstrap is a sleek, intuitive, and powerful front-end
framework for faster and easier web development,
created by Mark Otto and Jacob Thornton, and
maintained by the core team with the massive support
and involvement of the community [3]. This style is
implanted on our project websites as shown on the
Ultrascale Visualization Climate Data Analysis Tools
(UV-CDAT) website [19] in Figure 1. Bootstrap is
developer friendly, providing Cascading Style Sheets
(CSS), Fonts, and JavaScript (JS) files. It is very
customizable and is mobile ready.

 one.5lab is a clone of the one-Lab website styling
implemented at LLNL [14]. This style was used for the
Analytics and Informatics Management Systems group
website [1], shown in Figure 2. LLNL’s one-lab CMS
provides a style consistent across all Lab websites. I
created a fork one.5lab to implement in our Hyde
websites.

 Tshirt is a web 1.0, simple page style that was the
original style for our project websites, seen in Figure 3.
It has not aged well but it can work for quickly
displaying information. This style will be removed
from our project websites.

VI. EXPERIENCE

A. Time savings

This project started as a way to save time web scraping data
from our obsolete websites and wikis. I did not want to
recreate every website and wiki from scratch or recreate
CSS. With webshooter.py and webengine.py, transforming
old content from static or dynamically created pages from
databases proved to be quick and easy. In addition, using
Apache or other web-hosting option is quicker and easier
for serving static webpages than php and mysql.

B. Creating updated websites

Having a website and/or wiki is a quick way to share data
and instructions with users. Because styling is important but
not the focus of our work, plugging in new popular or home
brewed styles is easy.

C. Dynamically created static webpages

Having the content in simple files (HTML, Markdown, or
plain text) allows for parsing and creation of static pages
quickly and efficiently. For example, if you need to update
the navigation menus, you simply update the topbar.j2 file
and re-generate the website again.

Fig. 1. Example of the Bootstrap style as applied to the UV-CDAT
website.

Fig. 2. Example of the one.5lab style as applied to the AIMS website.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Fig. 3. Example of the tshirt style as applied to the old ESGF website.

D. Hyde vs. Jekyll

Initially, Hyde appeared to be the best option for
webshooter.py. Hyde is a powerful tool, allowing for
considerable alterations and customization of the website.
An example is creating a carousel of images in a website
banner, which requires defining a new variable in the
website.yaml (Table V) file. In the same file is a menu
variable, which allows the carousel to be generated using
the macros.j2 (Table VI) file. This makes updating shared
parts of the website quick.

However, once I started using Jekyll to publish websites to
GitHub Pages [20], I decided it is a better option for quick
and simple websites, such as documentation and tutorials.
Jekyll is much faster from start to deploy of a basic website.
The top navigation bar lives in a simple-to-read HTML file
in the _includes directory and is included on every page.

My conclusion is that Hyde is preferable for developing
complex and robust websites where only few developers
will contribute changes. For smaller, simpler websites,
which may have many contributors, Jekyll is the good
choice.

E. Power of Markdown

Markdown comes in a few flavors one of the most used is
GitHub flavored Markdown [9]. Markdown allows one to
write using an easy-to-read, easy-to-write plain text format,
which then converts to valid HTML. It takes up less space
in the file and is easy for anyone to learn.

F. Websites built with webengine and or webshooter

1. http://aims.llnl.gov [1]
2. http://cfconventions.org
3. http://esgf.org [8]
4. http://esgf.org/wiki [24]
5. http://uv-cdat.org [19]
6. http://uv-cdat.org/wiki [19]
7. http://kitt.llnl.gov/cdat [22]
8. http://kitt.llnl.gov/cmor [23]
9. http://mattben.info

TABLE V
EXAMPLE OF A WEBSITE.YAML FILE

context:
 data:
 home_url: index.html
 nav_hover: yes
 menu:
 - title: UVCDAT
 url: index.html
 - title: About
 url:
 - title: Mission
 url: mission.html
 - title: Governance
 url: governance.html
 - title: Committee
 url: committee.html
 - title: Acknowledgments
 url: acknowledgments.html
 website_title: UV-CDAT
 carousel:
 - caption: Sample output
 image: media/images/gallery/CelinesCaliforniaPlot.png
 - caption: Sample output
 image: media/images/gallery/figure3b.png

media_url: media
mode: development
plugins: [hyde.ext.plugins.meta.MetaPlugin,
 hyde.ext.plugins.auto_extend.AutoExtendPlugin,
 hyde.ext.plugins.syntext.SyntextPlugin,
 hyde.ext.plugins.textlinks.TextlinksPlugin]

TABLE VI

EXAMPLE OF A MACROS.J2 FILE
{% macro render_carousel_items(items) -%}
 {% for carousel_item in items -%}
 <div class="item peopleCarouselImg">
 <div class="flipbox-container box100">
 <div id="flipbox1" class="flipbox">
 <center>

 <div class="carousel-caption">
 <p>{{ carousel_item.caption }}</p>
 </div>
 </center>
 </div>
 </div>
 </div>
 {%- endfor %}
{%- endmacro %}

VII. FUTURE WORK

A. Further testing

Currently, I run webengine.py and modify its collection of
scripts until I receive the desired output. This process is not
agile development by any standard, and it would be better
to standardize the script’s naming conventions. This will
help to stop confusion on further development and make the
process of reading each script simpler for future developers.
Unit tests ensure that changes or the addition of new scripts
does not break or inject bad code. Each script in the repo is
able to run independent of webengine.py, and each is
expecting a number of command line arguments. This
process needs to be simplified and made consistent across
them all. Refactoring the code to make sure each script
performs one and only one task by extracting any repeated
task to a new script will help maintain a strong code base.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

B. Solving more corner cases

Most websites we encounter are structured in files, such
that all the pages about topic “X” are in the “X” directory.
However, the file_converter.py script needs to keep track of
this structure and rename the files to make sense in a flat
file system. An example is the file X/Stuff/index.php, which
would become something like X-Stuff-Home.md.

Currently html_table_2_Markdown.py will read through a
file and convert a standard html table into Markdown. But it
also needs to be able to handle such cases as tables inside of
tables.

Links for internal or external websites are not always parsed
correctly because of the many formats used to display the
URL in <a> tag. For file_converter.py to update each link
correctly every time, it needs to have more information
about the link it is converting. If the link is an internal
reference, file_converter.py will need a way to check if that
page has changed its name and/or location, as mentioned
above. All links referencing external websites or pages can
be copied directly without modification.

C. webengine needs to be more interactive

The user needs to be able to choose which scripts to run and
in what order. For example, if the entire website is
complete, there is no need to fetch it again. Or if old
website images are not needed, there is no need to
download them.

D. Adding more options to webshooter.py

webshooter.py only supports Hyde websites. We hope to
modify it to include styles for Jekyll. This year, I will
update the three style repositories to include a set of files
for Jekyll as well as Hyde. With these updated style repos, I
will update webshooter.py to ask the user whether to create
a Hyde or Jekyll website. Also, currently converting an
existing website is a two-step process. I plan to simplify this
by having webshooter.py ask the user once the new website
is created if there is a URL s/he would like to use to
populate his/her new website. If so, webengine.py will
swing into action.

E. Automation

Once webengine.py and webshooter.py are consistently
delivering the expected results, I will develop a script
automated_update.py. This script will read in the files of
popular websites provided by the system administrator.
automated_update.py will then periodically web scrape the
styles of these websites. automated_update.py will then call
webengine.py and webshooter.py to automatically generate
new updated websites, and send an email to the
administrator that there are new websites to choose from.

VIII. CONCLUSION

The Webshooter repository [10] started with one file that
my intern Ben Carlsson and I started in June 2013. I could
not have imagined that a year later I would have a
repository with over 20 files that automate tasks my team
and I do regularly. This project has been a great learning
and teaching experience for my team and most of all for me.
I hope others will find it useful and even contribute to it.

(To contribute to the webshooter [10] repository, simply
make a fork and submit a pull request.)

ACKNOWLEDGMENTS

I would like to thank Sam Fries for his time debugging,
testing, and contributing to the code base. I would also like
to recognize Ben Carlsson, Dean Williams for their support
and contributions. Special thank you to Katie Walter, and
Brian Harris for their editorial skills. LLNL-CONF-656083

REFERENCES
[1] "The AIMS Group." Home. LLNL, n.d. Web. 20 May 2014.

<http://aims.llnl.gov/>.
[2] "Beautiful Soup." We Called Him Tortoise Because He Taught Us.

N.p., n.d. Web. 20 May 2014.
<http://www.crummy.com/software/BeautifulSoup/>.

[3] "Bootstrap." Bootstrap. Twitter, n.d. Web. 20 May 2014.
<http://getbootstrap.com/>.

[4] "Build Software Better, Together." GitHub. N.p., n.d. Web. 20 May
2014. <https://github.com/>.

[5] Carlsson, Ben. "Webshooter, Your Friendly Neighborhood Static
Website Layout Generator." Webshooter PDF. LLNL, n.d. Web. 20
May 2014. <http://mattben.info/media/pdf/webshooter.pdf>.

[6] "Content Management System." Wikipedia. Wikimedia Foundation,
22 June 2014. Web. 24 June 2014.
<http://en.wikipedia.org/wiki/Content_management_system>.

[7] "Drupal." Drupal. N.p., n.d. Web. 20 May 2014.
<https://drupal.org/>.

[8] "Earth System Grid Federation." ESGF Home Page. N.p., n.d. Web.
20 May 2014. <http://esgf.org/>.

[9] "GitHub Flavored Markdown." GitHub Help∙. N.p., n.d. Web. 20
May 2014. <https://help.github.com/articles/github-flavored-
markdown>.

[10] Harris, Matthew B. "Mattben/webshooter." GitHub. GitHub, 16 June
2013. Web. 20 May 2014.
<https://github.com/webshootertk/webshooter>.

[11] "Hyde." Overview. N.p., n.d. Web. 20 May 2014.
<http://hyde.github.io/>.

[12] "Jekyll." Jekyll Simple Blogaware Static Websites. N.p., n.d. Web. 20
May 2014. <http://jekyllrb.com/>.

[13] "Jinja2." Welcome. N.p., n.d. Web. 20 May 2014.
<http://jinja.pocoo.org/>.

[14] "Lawrence Livermore National Laboratory (LLNL)." Lawrence
Livermore National Laboratory (LLNL). N.p., n.d. Web. 20 May
2014. <https://www.llnl.gov/>.

[15] "MoinMoin: MoinMoinWiki." Moin Moin Wiki. N.p., n.d. Web. 20
May 2014. <http://moinmo.in/>.

[16] "Plone 4: Speed, Power & Beauty." Plone CMS: Open Source
Content Management. N.p., n.d. Web. 20 May 2014.
<http://plone.org/>.

[17] "Start — Zope.org." Start — Zope.org. N.p., n.d. Web. 20 May 2014.
<http://www.zope.org/>.

[18] Swartz, Aaron. "Aaron Swartz." Aaron Swartz.
Https://github.com/aaronsw/html2text, n.d. Web. 20 May 2014.
<http://www.aaronsw.com/>.

[19] "Ultrascale Visualization." UV-CDAT. N.p., n.d. Web. 20 May 2014.
<http://uvcdat.llnl.gov/>.

[20] "Websites for You and Your Projects." GitHub Pages. GitHub, n.d.
Web. 20 May 2014. <https://pages.github.com/>.

[21] "Welcome to Python.org." Python.org. N.p., n.d. Web. 20 May 2014.
<https://www.python.org/>.

[22] Williams, Dean, and Charles Doutriaux. "CDAT Home." CDAT
Home. uvcdat.llnl.gov, n.d. Web. 20 May 2014.
<http://kitt.llnl.gov/cdat/>.

[23] Williams, Dean, Charles Doutriaux, and Jerry Potter. "Climate Model
Output Rewriter Overview." Climate Model Output Rewriter. CMOR,
n.d. Web. 20 May 2014. <http://kitt.llnl.gov/cmor/>.

[24] Williams, Dean. "ESGF/esgf.github.io." GitHub. Esgf.org, n.d. Web.
20 May 2014. <https://github.com/ESGF/esgf.github.io/wiki>.

[25] "World Engine." DC Cinematic Universe Wiki. N.p., n.d. Web. 20
May 2014.
<http://dccinematicuniverse.wikia.com/wiki/World_Engine>.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

