

Abstract—An existing software system sometimes needs to be

redesigned to accommodate various change requirements. A

system analyst gathers new user requirements to analyze

software requirements and create a conceptual model of the

new version of the system. While certain requirements of the

existing software system should remain in the new version of

the system, some of them may be dropped and some new

requirements are to be added. Since incomplete software

requirements will lead to incorrect design of the new system,

the system analyst needs to verify that the gathered

requirements for the new system are complete, i.e. those that

should be retained in the new system are not missing and those

that are changed or newly introduced are included. This paper

presents a method to help the system analyst to verify change

requirements for the new version of the software system. As an

initial model created from the new software requirements, the

conceptual UML class diagram of the new system is compared

with that of the existing system. The comparison algorithm

called S-UMLDiff considers similarity of the diagram structure

and semantic similarity of names in the two diagrams. The

reported similarities and differences between the diagrams can

assist the system analyst in reviewing the conceptual model of

the new system to verify early on whether it is built upon a

complete set of change requirements. The paper also presents

an evaluation which shows that the S-UMLDiff algorithm

performs well, having precision of 0.88 and recall of 0.94.

Index Terms—software change requirement, conceptual

class diagram, WordNet

I. INTRODUCTION

OFTWARE systems need to undergo changes

constantly. Changes may either be applied directly to

existing systems to add or fix certain functions, or they

require the systems to be redesigned and reconstructed. The

motivation behind redesigning an existing system can be that

there are changes in concepts, processes, or functions within

the business domain which necessitate changes in the

software system structure.

To redesign the software system, the system analyst

Manuscript received June 7, 2014; revised July 1, 2014.

P. Saisim was with the Department of Computer Engineering, Faculty

of Engineering, Chulalongkorn University. She is now with KTB Computer

Services, 22/1 Sawai Brown 2 Building, Sukhumvit Soi 1, Klongtoey Nua,

Wattana, Bangkok 10110 (email: onzony@gmail.com).

T. Senivongse is with the Department of Computer Engineering, Faculty

of Engineering, Chulalongkorn University, Bangkok 10330 Thailand

(corresponding author phone: +66 2 2186996; fax: +66 2 2186955; e-mail:

twittie.s@chula.ac.th).

restarts the whole development process by eliciting new user

requirements to gather change requirements as well as

studying the requirement specification of the existing

system. While certain requirements of the existing software

system should remain in the new version of the system, some

of them may be dropped and some new requirements are to

be added. The problem that may arise is that the users and

the development team may be a different group from those

who gave the original requirements and developed the

existing system. This may result in the software requirements

of the new system being incomplete as the users may forget

or even not know of certain functions or data that should be

retained, and the new development team may not fully

understand the business domain. Since incomplete software

requirements will lead to incorrect design of the new system,

the system analyst needs to verify that the gathered

requirements for the new system are complete.

To help ensure that the new version of the system will be

developed according to the correct change requirements, this

paper presents an approach to verifying change requirements

for a new version of a software system through a comparison

of conceptual UML class diagrams. As a conceptual model,

a conceptual UML class diagram captures important

concepts and relationships as classes and their associations

within a business domain [1]. We assume that, since the

newly-designed conceptual UML class diagram captures

initially the software requirements of the new system,

comparing it with the conceptual class diagram of the

existing system should help identify the similarities and

differences between the two system versions. The system

analyst can then review certain aspects of the software

requirements 1) whether they are still needed but missing

from the new model, 2) whether they are not needed but are

still included in the new model, 3) whether they should be

added but are missing from the new model, and 4) whether

they really are changes that should be made in the new

model. In other words, the system analyst can verify that

certain requirements that should be retained in the new

system are not missing and those that are changed or newly

introduced are included. The comparison is done by an

algorithm called S-UMLDiff, which is an extension to the

UMLDiff algorithm proposed by Xing [2]. S-UMLDiff

compares two versions of the conceptual UML class

diagrams to analyze name and structural changes between

subsequent versions. Unlike UMLDiff, the algorithm is

enhanced with the capability to analyze semantic similarity

between names in the two versions of the diagram, using

Verifying Software Change Requirements

through Conceptual Class Diagrams

Comparison

Pattamaporn Saisim and Twittie Senivongse

S

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

WordNet [3]. Considering name similarity improves the

ability of the algorithm to recognize additions, removals,

matches, moves, renamings of software model elements from

one version to the next.

Section II of this paper discusses background and related

work. Section III describes the S-UMLDiff algorithm, with

an evaluation of its performance given in Section IV.

Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

UML class diagrams [1] are useful in many stages of

software system design. In the analysis stage, a class

diagram can help the system analyst to understand the

requirements of the problem domain and to identify

important elements, data, functions, and relationships

between elements. The class diagram in this stage is

conceptual, having no detailed design for the

implementation of the software. A conceptual class diagram

contains 1) classes that represent concepts in the business

domain, 2) attributes of a class, 3) methods of a class, 4)

associations, aggregations, compositions, and

generalizations which represent different relationships

between classes, and 5) packages that represent groups of

related classes and their relationships. Here other details

such as data types of attributes, method parameters, and

visibility of attributes and methods are not of concern.

Many algorithms to compare UML class diagrams have

been proposed for different purposes. There is a possibility

to apply one of them to our problem, but the chosen

algorithm has to be applicable to the conceptual class

diagrams which leave out a number of design details and, at

the same time, it should be able to accommodate different

kinds of changes that could occur in real-world software.

Among the algorithms that we consider is the one by

Girschick [4] which detects differences between several

modifications of a design class diagram for tracking changes

during the development process. Matching of design

elements are based on generic graph matching techniques,

and the elements that are compared are packages, classes,

generalizations, attributes, associations, and operations and

their parameters. Detected changes are add, delete, rename,

move, clone, and modify property (e.g., visibility, data type,

multiplicity, stereotype). A color-coding scheme is used to

present different kinds of changes in different colors. The

algorithm by Auxepaules et al. [5] is also a graph matching

method but is used in an object-oriented modeling learning

environment. The algorithm compares a student’s diagram

with an expert’s diagram to give the student relevant

feedbacks in modeling exercises. It uses the graph matching

algorithm of Sorlin et al. [6] and a string matching algorithm

of Giunchiglia et al. [7] which also uses WordNet to

determine similarity of names. Detected differences are

insert, omit, transfer, replace, modify property, merge, split,

and cluster.

We select the UMLDiff algorithm of Xing [2] as a basis

for our work since the algorithm considers all model

elements in a conceptual class diagram and the kinds of

differences that are detectable, i.e., add, remove, rename,

move, and modify property of elements, are sufficient for

class diagrams at a conceptual level. UMLDiff relies on

lexical similarity and structure similarity for recognizing the

conceptually same model elements in the two compared

versions of the class diagram. It does not take semantics of

names into account, and thus it cannot recognize when a

model element changes to a different but semantically

similar name. In addition, it cannot recognize when a model

element changes its type, e.g., an attribute is changed to a

class.

III. CONCEPTUAL CLASS DIAGRAMS COMPARISON

We present the S-UMLDiff (or Semantic-UMLDiff)

algorithm to compare the conceptual class diagram of a new

system with that of the existing system. The S-UMLDiff

algorithm shares with UMLDiff in that it considers lexical

similarity of names and structural similarity of model

elements. Lexical similarity refers to string similarity of

names while structural similarity refers to similarity of

containment (i.e., a parent element contains another element

as its child) and other relationships (i.e., an element has an

association, aggregation, composition, and generalization

relationship with another element). S-UMLDiff also

enhances UMLDiff by considering semantic similarity of

names and change of model element types.

To explain the S-UMLDiff algorithm in details, we use a

real-world case of a bank in Thailand as an example. Two

versions of a conceptual class diagram are in Figs. 1(a) and

1(b). The differences are circled; for example, the class

name Employee is changed to Officer, the attribute

expiryDate is added to the class LoanInfo, the class

Collateral is removed, the class Committee is added to

extend from the class Officer, and the attribute address in

the class Customer has its element type changed and

becomes the class Address.

A. Overview of Difference Analysis

The S-UMLDiff algorithm is supported by an analysis

tool developed in Java. The analysis consists of:

1) Transform the two conceptual class diagrams into the

XML Metadata Interchange (XMI) format. We use the

ArgoUML modeling tool [8] to draw the conceptual models

and obtain their representation in the XMI format.

2) Extract model elements. Model elements in the two

diagrams (i.e., packages, classes, attributes, and methods)

are extracted, together with their names and the relationships

that they have with other elements and that the other

elements have with them. The relationships include

containment, association, aggregation, composition, and

generalization.

3) Build a directed graph G(V, E) for each version of the

class diagram, where the vertex set V contains the extracted

model elements and the edge set E contains the relationships

among them. An example of the vertices from the new

diagram and relevant edges is shown in Table I.

4) Map the two graphs Gexisting(Vexisting, Eexisting) and

Gnew(Vnew, Enew) by computing the intersection and margin

sets between (Vexisting, Vnew) and (Eexisting, Enew) to determine

name similarity and structural similarity. That is, (Vexisting –

Vnew) is computed for the removed model elements, (Vexisting

∩ Vnew) for the mapped (i.e., matched, renamed, semantics-

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

of-names-matched, moved, and element-type-changed)

elements, (Vnew – Vexisting) for the added model elements,

(Eexisting – Enew) for the removed relationships, (Eexisting ∩

Enew) for the matched relationships, and (Enew – Eexisting) for

the added relationships. To be precise, the intersection and

margin sets are computed by comparing the following in the

two diagrams:

4.1) Compare packages;

4.2) Compare classes within the matched packages;

4.3) Compare attributes within the matched classes;

4.4) Compare methods within the matched classes;

4.5) Compare removed class with added attribute, and;

4.6) Compare removed attribute with added class.

Fig. 1. Example of conceptual class diagrams of (a) existing system (2)

new system.

TABLE I

EXAMPLE OF MODEL ELEMENTS AND RELATIONSHIPS FROM NEW DIAGRAM

Relationship

Source Target

Name Element

Type

Name Element

Type

Contain VirtualRoot
a Diagram CreditRevie

w

Package

 CreditRevie

w

Package LoanInfo Class

 LoanInfo Class expiryDate Attribute

 LoanInfo Class removeInfo Method

Generalization Officer Class Committee Class

Composition LoanInfo Class BankAccou

nt

Class

Association CustomerR

elation

Class LoanInfo Class

aVirtualRoot is a default name for a conceptual class diagram.

For steps 4.1-4.4, S-UMLDiff identifies:

a) Whether the model elements match by having the same

name (i.e., identify Match);

b) Whether the model elements with different names are

the case of name change (i.e., identify Rename or Semantic

Match) by determining the overall similarity including

lexical, semantic, and structural similarities, and;

c) Whether the model elements that are not identified as

having a name change are the case of move (i.e., identify

Move) by checking if there is a parent change. Otherwise it

is the case of add or remove.

Steps 4.5-4.6 are added to S-UMLDiff to determine

change of model element types. Types of differences that

will be reported by S-UMLDiff are shown in Table II.

Details of the comparison are discussed in the subsequent

sections.

TABLE II

TYPES OF DIFFERENCES DETECTED IN NEW DIAGRAM

Difference Type Description

Match Model element in new diagram is the same as model

element in existing diagram.

Rename The name of model element in new diagram has

lexical similarity to a name of model element in

existing diagram.

Semantic Match The name of model element in new diagram has

semantic similarity to a name of model element in

existing diagram.

Move The name of model element in new diagram is the

same as that of model element in existing diagram

but has different parent.

Add Model element is found in new diagram but not in

existing diagram.

Remove Model element is found in existing diagram but not

in new diagram.

Change Type The name of model element in new diagram is the

same as that of model element in existing diagram

but has different element type.

B. Name Similarity

To compute similarity of names, S-UMLDiff takes into

account lexical similarity and semantic similarity. The model

elements in the new conceptual class diagram may use

different names for better modeling or due to change of

concepts in the problem domain. S-UMLDiff first

determines the semantic similarity wScore between the two

words being compared, using the Wu-Palmer similarity

(a)

(b)

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

measure that is implemented in the WordNet::Similarity

package [3] where wScore is in [0, 1]. If the wScore is not

less than a Word Similarity Threshold which is specified by

the system analyst, the two words are considered

semantically similar. In the case that a string name is not a

single word but a phrase (having dots, dashes, underscores

and case switching as delimiters between words) and

WordNet cannot determine similarity directly, we use a

semantic similarity measure for phrases [9]. For phrases a

and b comprising m and n words respectively, the phrase

semantic similarity pScore is computed by

1

(,)

(,)

m

s

s

wpScore a b

pScore a b
m

==

∑
 (1)

1(,) max((,),..., (,))s s s nwpScore a b wScore a b wScore a b= (2)

where wScore(as, bn) = semantic similarity score between

word s of phrase a and word n of

phrase b by Wu-Palmer measure.

Similarly, if the pScore is not less than a Phrase

Similarity Threshold which is specified by the system

analyst, the two phrases are considered semantically similar.

In the case that wScore (or pScore) is not greater than the

corresponding threshold, name similarity is determined by

lexical similarity using the Longest Common Subsequence

(LCS) algorithm [10]. LCS is the longest subsequence (i.e.,

a set of characters that appear in left-to-right order but not

necessarily consecutively) that appears in both string names

a and b. The lexical similarity metric lcsScore is defined by

2* ((,))
(,)

() ()

length LCS a b
lcsScore a b

length a length b
=

+

. (3)

For example, using (1) and (2), we can compute the

similarity score between the method names deleteInfo in Fig.

1(a) and removeInfo in Fig. 1(b) by

pScore(deleteInfo, removeInfo)

 = (wpScore(delete, removeInfo) + wpScore(Info,

removeInfo))/2

 = (max(wScore(delete, remove), wScore(delete, Info))

+ max(wScore(Info, remove), wScore(Info, Info)))/2

 = (max(0.8, 0) + max(0.4, 1))/2 = (0.8 + 1)/2 = 0.9.

Suppose the Phrase Similarity Threshold is 0.9, the two

phrases are considered similar semantically. But if the

threshold is set to 9.5, the two are not similar by semantics

and S-UMLDiff will calculate their lcsScore.

Note that the part of speech of the two words has to be

specified for WordNet::Similarity to obtain wScore for them.

Since names in the diagrams usually are nouns and verbs and

if the two words can be both nouns and verbs, wScore for

them will be an average of the similarity scores when they

are nouns and when they are verbs. In addition, it is assumed

that a method name starts with a verb and hence only verb

will be used as the part of speech of the first word of a

method name.

C. Structural Similarity

S-UMLDiff follows UMLDiff in checking for structural

similarity by mapping the model elements of the same type

and of the same name or similar names and then comparing

names of the contained model elements. To compare

structure of two packages, their classes are compared. To

compare two classes, their attributes, methods, and

relationships with other classes are compared. However, in

the new version of the diagram, there might be change of

model element type such as the attribute address of the class

Customer in Fig. 1(a) is changed to the class Address in Fig.

1(b). S-UMLDiff therefore also checks names of class and

attribute to see if it is the case of an attribute changing to a

class or a class changing to an attribute, and not the case of

removed and added model elements.

D. Overall Similarity

Computing overall similarity takes into account both

names and structure of model elements in the two diagrams.

Let MatchPoint = overall similarity score between model

elements x and y

NamePoint = name similarity score between model

elements x and y (see III.B)

x = model element in the existing diagram

y = model element in the new diagram.

Adapted from UMLDiff, the overall similarity

computation for each model element type is as follows.

Overall Similarity between Packages

The following MatchPoint between two packages is

calculated to determine if they match:

()

NamePoint ChildrenMatchCount
MatchPoint

NamePoint xChildrenCount yChildrenCount ChildrenMatchCount

+
=

+ + −

 (4)

where ChildrenMatchCount = number of classes in

package x whose names match those of classes

in package y

 xChildrenCount = number of classes in package x

 yChildrenCount = number of classes in package y.

Overall Similarity between Classes

The following MatchPoint between two classes is

calculated to determine if they match:

3

NamePoint ChildrenPoint UsagePoint
MatchPoint

NamePoint

+ +
=

+

 (5)

ChildrenMatchCount
ChildrenPoint

xChildrenCount yChildrenCount ChildrenMatchCount
=

+ −

 (6)

where ChildrenMatchCount = number of attributes in

class x whose names match those of attributes in

class y + number of methods in class x whose

names match those of methods in class y

xChildrenCount = number of attributes and

methods in class x

yChildrenCount = number of attributes and

methods in class y

 UsagePoint = similarity score between names of

classes that have relationships with class x and

names of classes that have relationships with

class y (see III.B).

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Overall Similarity between Attributes

The following MatchPoint between two attributes is

calculated to determine if they match:

* 2

ParentPoint* NamePoint
MatchPoint

ParentPoint NamePoint
=

+
 (7)

where ParentPoint = similarity score between class name

of attribute x and class name of attribute y (see

III.B).

 Overall Similarity between Methods

The following MatchPoint between two methods is

calculated to determine if they match:

* 2

ParentPoint* NamePoint
MatchPoint

ParentPoint NamePoint
=

+
 (8)

where ParentPoint = similarity score between class name

of method x and class name of method y (see

III.B).

Use of MatchPoint

To identify if the two model elements with different

names match, i.e., there is a lexical or semantic change of

name, the comparison, adapted from UMLDiff, is performed

as in Fig. 2. Steps added by S-UMLDiff are shaded.

Fig. 2. Comparison to check if two model elements with different names

match.

First, semantic similarity of names of the two model

elements is determined using wScore or pScore. As

mentioned earlier, if the names are not considered as similar

by semantics according to the respective Word Similarity

Threshold or Phrase Similarity Threshold, lexical similarity

is computed by lcsScore. After that, the overall similarity or

MatchPoint is computed for the two model elements. In the

same manner, the Rename Threshold is introduced to

identify that the two model elements are a match as they are

similar enough by name and structure even though there

might be a change of name (i.e. Semantic Match or

Rename). Otherwise, it is the case of Not Rename and the

two are unmatched, i.e., they are different model elements.

For the unmatched elements, they will be checked further for

the case of move, add, remove, or change of element type.

Example

This section discusses a comparison between the

conceptual class diagrams in Figs. 1(a) and 1(b). Let

match = set of model elements that are considered the

same in both diagrams;

first = set of model elements in the existing diagram that

remain unmatched, and;

second = set of model elements in the new diagram that

remain unmatched.

1) Following the steps in Section III.A.4), first the two

packages has the same name CreditReview and are

considered the same package.

2) Then the classes in the two packages are compared,

i.e.,

first = {FinancialCredit, ApplicationInfo, CustRelation,

Employee, Customer, LoanInfo, BankAccount,

Collateral}

second = {FinancialCredit, ApplicationInfo, Committee,

CustomerRelation, Officer, Client, LoanInfo,

BankAccount, Address}.

The comparison of class names results in the following

matched and unmatched elements:

match = {(FinancialCredit:FinancialCredit),

(ApplicationInfo:ApplicationInfo),

(LoanInfo:LoanInfo), (BankAccount:BankAccount)}

first = {CustRelation, Employee, Customer, Collateral}

second = {Committee, CustomerRelation, Officer, Client,

Address}.

3) Then the classes in first and second are checked for

overall similarity to see if any pairs of classes can match (see

III.D). The classes CustRelation and CustomerRelation are

identified as Rename and the classes Employee and Officer

as well as the classes Customer and Client are identified as

Semantic Match. Therefore the set match is updated with

these similar classes whereas the classes Collateral,

Committee, and Address are identified as Not Rename and

remain unmatched.

match = {(FinancialCredit:FinancialCredit),

(ApplicationInfo:ApplicationInfo),

(LoanInfo:LoanInfo), (BankAccount:BankAccount),

(CustRelation:CustomerRelation),

(Employee:Officer), (Customer:Client)}

first = {Collateral}

second = {Committee, Address}

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

4) Next, the classes in first and second are checked for the

case of move, i.e., whether there is a class Collateral in

other package (i.e., having other parent) in the existing

diagram and whether Committee and Address appear in other

package in the new diagram. In this case, there is no other

package and so it is not the case of move. Therefore

Collateral is removed, and Committee and Address are

added.

5) After a comparison at the class level, S-UMLDiff will

compare attributes of each pair of matched classes in the set

match. The comparison is similar to comparing classes, i.e.,

checking for a match, checking for a name change (semantic

match or rename), and checking for move. Likewise, S-

UMLDiff will compare methods of each pair of matched

classes in the set match. The results are

removed class = {Collateral}

removed attribute = {collId, contractId,

appraisalAmount, appId, appId, empId, address}

added class = {Committee, Address}

added attribute = {approveDate, rejectDate, addrName,

addrNo, street, district, city, zipCode, appNo,

appNo, expiryDate, expiryDate, empNo}

added method = {approveAppInfo, rejectAppInfo}.

6) In addition, S-UMLDiff checks for the case of change

of element type and finds that there is a match between the

removed attribute address and the added class Address.

Therefore the attribute address is of the case of change type.

IV. EVALUATION

Evaluation of the S-UMLDiff algorithm is by measuring

precision and recall [11] of diagram differences that are

reported by the algorithm against the differences identified

by a system analyst with 12 years of experiences:

| |

| |

actual reported

reported

M M
precision

M

∩
= (9)

 | |

| |

actual reported

actual

M M
recall

M

∩
= (10)

 where Mactual = set of differences identified by the

 system analyst

Mreported = set of differences reported by the

algorithm.

Ten pairs of the two versions of the conceptual class

diagrams which cover all kinds of changes are used in the

evaluation. We adjust the thresholds in the experiment so

that they give the best measurement results as shown in

Table III. The Word Similarity Threshold, Phrase Similarity

Threshold, and Rename Threshold are 0.7, 0.9, and 0.5

respectively. The algorithm gives the average precision of

0.88 and average recall of 0.94 which are very satisfactory.

V. CONCLUSION

The S-UMLDiff algorithm can help identify the

differences between the two versions of the conceptual

diagram and therefore the system analyst can use the

differences report to verify if the changes that are present in

the new diagram are correct and complete according to the

change requirements of the new system to be developed. The

analysis of semantic similarity of names and change of

model element types enhances the algorithm and gives a

more informative report of changes in the new version.

However, the specified thresholds affect how S-UMLDiff

classify changes, such as the case of the methods deleteInfo

and removeInfo in Section III.B which may or may not be

identified as a semantic match depending on how high the

Phrase Similarity Threshold is. In addition, the system

analyst’s judgment and the score given by S-UMLDiff may

sometimes be conflicting such as the case of the attributes

appId and appNo. While the system analyst sees that they

match and identifies them as Rename, the overall similarity

between these two attributes are lower than the Rename

Threshold and hence the algorithm identifies them as Not

Rename and appId is reported as Remove and appNo as Add.

The performance of the algorithm in terms of precision and

recall, as a result, depends on these thresholds. As future

work, S-UMLDiff and the supporting tool can be improved

by visualizing the comparison results and even supporting

change impact analysis.

TABLE III

EVALUATION RESULTS

Case#
|Mactual| |Mreported| |Mactual∩

Mreported|

precision recall

1 11 11 10 0.91 0.91

2 15 15 15 1 1

3 8 8 8 1 1

4 28 34 25 0.74 0.89

5 20 20 19 0.95 0.95

6 37 37 36 0.97 0.97

7 24 30 22 0.73 0.92

8 24 30 22 0.73 0.92

9 20 22 18 0.82 0.9

10 34 34 33 0.97 0.97

 average 0.88 0.94

REFERENCES

[1] Object Management Group. (2011, August). Unified Modeling

Language [Online]. Available: http://www.omg.org/spec/UML/2.4.1/

[2] Z. Xing, “Supporting object-oriented evolutionary development by

design evolution analysis,” Doctoral dissertation, Department of

Computing Science, University of Alberta, Canada, 2008.

[3] T. Pedersen. (2013, January). WordNet::Similarity [Online].

Available: http://wn-similarity.sourceforge.net/

[4] M. Girschick, “Difference detection and visualization in UML class

diagrams,” TU Darmstadt, Germany, Technical Report TUD-CS-

2006-5, 2006.

[5] L. Auxepaules, D. Py, and T. Lemeunier, “A diagnosis method that

matches class diagrams in a learning environment for object-oriented

modeling,” in Proc. 8th IEEE Int. Conf. Advanced Learning

Technologies (ICALT 2008), Santander, Cantabria, 2008, pp. 26-30.

[6] S. Sorlin, C. Solnon, J.-M. Jolion, “A generic graph distance measure

based on multivalent matchings,” Applied Graph Theory in

Computer Vision and Pattern Recognition, Studies in Computational

Intelligence, vol. 52, pp. 151-181, 2007.

[7] F. Giunchiglia, M. Yatskevich, and P. Shvaiko, “Semantic matching:

algorithms and implementation,” J. Data Semantics, vol. 9, pp. 1-38,

2007.

[8] Tigris.org. (2009). ArgoUML [Online]. Available:

http://argouml.tigris.org/

[9] W. Gad and M. Kamel, “PH-SSBM: Phrase semantic similarity based

model for document clustering,” in Proc. 2nd Int. Symp. Knowledge

Acquisition and Modeling, DC, 2009, pp. 197-200.

[10] C. Stein. (2012, September). Longest Common Subsequence

[Online]. Available:

http://www.columbia.edu/~cs2035/courses/csor4231.F11/lcs.pdf

[11] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,

Second edition. Essex: Addison Wesley, 2011.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

