
Systems of Linear Equations and 
their Graphical Solution

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



The possible values for s lie in the interval [0,1].
As the ratio between the number of zeroed elements
and the number of elements if it were full grows, the
sparsity degree will grow. On the other hand, s = 0
represents a fully connected system (i.e. every node
is connected to every other node). Between these two
extremes (i.e. 0 < s < 1), A is neither full nor
decoupled and its corresponding graph will not be
fully connected (i.e. not all the nodes are connected
among them). It turns out that many physical systems
solved using linear systems are very sparse i.e s→ 1.
In particular, in electrical power systems, the matri-
ces which represent transmission networks are very
sparse. This is the main reason why sparsity tech-
niques have been improved by research whose goal
is to solve efficiently the actual state of the power
system; such as the best elimination ordering [5],
[8]. Sparsity techniques have been around since at
least 1970 using a technique known as bifactorization
[9]. The main principles used in bifactorization are
strongly directed toward exploiting the underlying
matrix graph.

Therefore in order to approach the solution using
its graph representation, first an appropriate model
has to be derived. This model has to be able to
represent the complete SLE elements (i.e. A, x, and
b). The model proposed in this document is based on
a per equation basis. This representation is given in
figure 1.

a ix..+ ija jx +.. bi=+..+

xi

aii

ib
aji

aij

ii

Fig. 1. Conversion from a linear system of
equations to its graph model

In this model an equation is represented by two
components: a node and a set of links. The node
is a well defined component which consists of two
subcomponents: a circle consisting of two half parts
and an arc. The upper part of the circle represents
the variable related to this equation which has to
be solved by the system (i.e. xi) and the lower part
represents the coefficient related to this variable in

equation i (i.e. aii). The arc represents the i − th
component in b (i.e. bi). The second part depends on
the SLE topology and is represented by links which
connect the nodes. These links will be denoted as
(i, j) where i and j represent the row and the column
number respectively. There can be zero or more links
which connect the node with some other nodes in
the graph. Each link has an associated value for the
coefficient located in the row i column j (i.e. aij).
Perhaps it is a little absurd to consider the case where
there are no external links. However, as will be shown
later, this is the basic configuration which will always
be pursued in order to solve the SLE.

In order to illustrate these concepts let us instan-
tiate equation 1 to equation 3

0.5 −1 −1 0
−1 2 −1 0
−1 −1 1 −1
0 0 −2 4



x1
x2
x3
x4

 =


0
0
−5
0

 (3)

Applying the model defined in figure 1 to each
equation, the graph shown in figure 2 is obtained.

x =?1 x =?2

−1

3

x =?4

4

−1 −2

x =?

−1 −1

0

0.5

0
2

1

−5

0

Fig. 2. Graph corresponding to the system
defined by equation 3

Unidirectional links (→ and ←) have to be used
as in general aij 6= aji, as shown by links (3, 4)
and (4, 3), representing elements a34 and a43. If
aij = aji then these elements are represented with
a bidirectional link (↔) as shown by the link (1, 3),
representing elements a1,3 and a3,1. This graph repre-
sents an asymmetric SLE (ASLE). An ASLE is a SLE
where there exists at least one pair of links (i, j), (j, i)
where i 6= j, such that aij 6= aji holds.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



In this document the main aim is to express New-
ton’s method to solve non-linear optimisation prob-
lems using a graph approach. The kind of matrices
involved in such problems are symmetric, therefore
the main focus will be on this subset of SLE.

III. Symmetric Systems of Linear Equations
and Its Graphical Representation.

Symmetric systems of linear equations (SSLE) are
SLEs where aij = aji holds for all i, j. These are
very well behaved matrices with some special proper-
ties; such as real eigenvalues, orthogonal eigenvalues;
as analysed in [7]. This document will not deal with
the analysis of the properties these systems hold. The
main interest here is how to represent such systems
using graphs and how to exploit them in order to
solve the SLE. SSLEs are very common in physical
systems, in particular, a great range of problems
in electrical power systems can be addressed with
SSLEs. To represent SSLEs into its graphical form,
the graph representation proposed in figure 1 is
modified as shown in figure 3.

a ix..+ ija jx +.. bi=+..+

aijxi

aii

ib
ii

Fig. 3. Conversion from a symmetric linear
system of equations to its graph model

The only modification in this variant is with regard
to the unidirectional links. The graphs representing
SSLEs must contain only bidirectional links. The
link representation has been modified and the arrows
are no longer used as they do not give any extra
information. In order to illustrate these concepts let
us instantiate equation 1 with equation 4 which is
basically equation 3 where the element a43 has been
set to −1 in order to be equal with element a34.


0.5 −1 −1 0
−1 2 −1 0
−1 −1 1 −1
0 0 −1 4



x1
x2
x3
x4

 =


0
0
−5
0

 (4)

Applying the model defined in figure 3, yields the
graph shown in figure 4

2

−1

3

x =?4

x =?1 x =?

−5

0
4

−1

x =?

−1 −1

0

0.5

0
2

1

Fig. 4. Graph corresponding to the system
defined by equaion 4

SSLEs can be described as perfect SLEs; they are
well behaved and their properties have been known
for a long time. However, there exists a subset of
SSLE which besides all those properties possessed by
them, have another property. They can be represented
with a graph known as a tree and as a consequence
all the well known algorithms regarding trees can be
applied to them. For reasons which will be explained
in the following chapters these will be the SLEs
this document will be dealing with. Therefore, the
attention will be focused on this kind of systems.

IV. Tree Structured Symmetric Systems of
Linear Equations and Its Graphical Repre-
sentation.

Tree structured symmetrical systems of linear
equations (TSSSLE) are SSLE where the graph rep-
resenting the SSLE is a tree. Based on this structure,
efficient algorithms can be derived in order to solve
this kind of systems. These algorithms emerge natu-
rally, just by exploiting the properties of trees. This
kind of graphs have been applied to solve electrical
distribution networks whose main characteristic is its
radial shape (i.e. no loops exists in the network).
Therefore a tree structure can be derived for the SLE
representing these systems. Algorithms to solve dif-
ferent problems with different degree of complexity
have been proposed for distribution networks based

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



on this structure in [4], [3], [2], [6]. A deeper analysis
of this kind of systems will be done in another
contribution.

A tree-shaped graph has to be free of loops.
This work does not deal with how to identify and
remove loops from graphs. Therefore, graph 4 will
be converted into a graph representing a TSSLE
by removing the link (1, 2). This implies removing
elements a12 and a21 from matrix A. Let us instan-
tiate equation 1 with equation 5 which is basically
equation 4 where elements a12 and a21 have been set
to 0


0.5 0 −1 0
0 2 −1 0
−1 −1 1 −1
0 0 −1 4



x1
x2
x3
x4

 =


0
0
−5
0

 (5)

Applying the model defined in figure 3, leads to
the graph shown in figure 5 which is graph 4 where
link (1, 2) has been removed.

x =?1 x =?2

−1

3

x =?4

1

−5

0
4

x =?

−1 −1

0

0.5

0
2

Fig. 5. Graph corresponding to the system
defined by equation 5

This example will be used throughout this chapter.
The system will be solved using different strategies
which have to lead to the same solution. To this end
Gaussian elimination will be used as the main tool to
solve the system.

V. Gaussian Elimination and Its graphical
Interpretation

Gaussian elimination is a general method to solve
a SLE. It consists of the iterative application of
elementary row operations which lead the system

to an echelon form. This is achieved by modifying
each of the elements which do not belong to the
column and row to the equation under reduction.
These elements are modified using expression 6.

a
′

ij = aij −
aikakj
akk

(6)

Gaussian elimination can be regarded as a matrix
transformation from Rn×n → Rn−1×n−1. The result-
ing system has all the information needed to solve the
subsystem resulting from the transformation. When
dealing with sparse systems several observations have
to be done. Figure 6(a) represents an sparse matrix
and figure 6(b) shows the transformation it undertakes
when Gaussian elimination is applied to x1. Dark
gray entries represent elements which di not change.
Elements in light gray represent those whose value
changes and the entries in red denote elements whose
values were zero before the transformation, i.e. they
were created.

(a) Before the elimination (b) After the elimination

Fig. 6. Gaussian elimination and its matrix
interpretation for a sparse matrix

Now, let us analyse the transformation in its graph-
ical representation. To this end, let us define Γk as
the set of nodes connected to node k. In this case
let us instantiate k = 1 as the node to be eliminated;
consequently, Γ1 = {2, 3, 4}. A graph interpretation
for this transformation is shown in figure 7. Here
figure 7(a) represents the state of the graph before the
transformation is applied and figure 7(b) represents
the state of the graph after the transformation has
been applied.

This shows that when node k is eliminated then
the nodes which are connected to it, Γk, will form
a complete graph among them as a result of this
transformation. This is reflected by equation 7

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



x

x

x

x

x

5

1

2

3

4

(a) Before the elimination

x

x

5

2

3

4

1
x

x

x

(b) After the elimination

Fig. 7. Gaussian elimination and its graph
interpretation for a sparse matrix

Γ′j ← (Γj ∪ Γk) \ {j, k} ∀j ∈ Γk (7)

Where Γj and Γ′j denote the neighbour nodes
of node j before and after the transformation, re-
spectively. If nodes i and j were connected before
the transformation then the value for the link (i, j)
which was connecting them (shown in dark gray)
will be updated by equation 6. On the other hand,
if they were not connected (i.e. aij = 0) then these
interconnections would have to be created (shown in
red). If no pair of nodes i, j, where i, j ∈ Γk, were
connected before the transformation then a complete
subgraph would be created among them. The number
of links needed to build this subgraph, Nk, is given
by equation 8.

Nk =
|Γk| (|Γk| − 1)

2
(8)

Therefore, Gaussian elimination has two costs: one
which has to be applied every time is updating, and
the second one is the creation of new links, known in
the literature as fill-ins. Furthermore, from figure 7(b)
link (3, 5) and node 5 were not used at all in the
transformation. Here is where the power of sparse
methods appears in systems whose components are
lossely coupled as they do not deal with elements not
involved in the transformation. Obviously, the burden
set by sparse methods have to be avoided if the sys-
tems under study are known to be very full matrices
which derive almost complete graphs tranformations.
[1] gives a deeper description about the modifications
of the graph as the reduction process is applied.

VI. Graph-based Solution for Symmetric Sys-
tems of Linear Equations

Solving a SLE, when translated to its graph coun-
terpart, means to assign some value to the question
marks shown in figure 5 such that they fulfills all
the equations. It is desirable to end up with the same
values as the initial configuration but as it will be
seen this is not possible as the successive application
of the Gaussian elimination will modify these values.
Furthermore, the final configuration will depend on
the order in which the Gaussian elimination was
applied. How were these values obtained? There are
several methods to solve SLE which are based on
Gaussian Elimination. Here the graph is reduced by
applying Gaussian elimination, one node at a time
iteratively, until the graph is reduced to just one node.
This method is known as forward elimination. At this
point the system can be solved as its configuration is

a′iixi = b′i

from this xi is solved with a value of

xi =
b′i
a′ii

Then a process called backward substitution can be
applied by solving the previous node and so on. It is
important to keep the tree structure in the elimination
process as it will perform the fastest and cheapest
solution for the SLE. Let us apply the Gaussian
elimination to the example graph given in figure 5.
The first question is which node has to be applied
the elimination on? A more advanced question is
which elimination order has to be applied?. This is
an open question and has been addressed in different
scenarios. There are several elimination orders which
will take us to the solution of the system. In fact, the
total number of elimination orders, Ne, for a system
with n variables and n equations is nn. However,
some of them can not be applied as they would lead to
an inconsistent system. An inconsistent configuration
appears when the node where Gaussian elimination is
to be applied is zero. This would lead equation 6 to an
undefined value and would stop the reduction process.
If we derive a configuration where all the nodes are
zero then the system is said to be singular. Therefore,
in its matrix version, this situation is avoided by

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



interchanging (or renumbering) rows and columns,
provided the system is not singular. In the graph
representation just an inspection have to be done at
the actual node where the Gaussian elimination is to
be applied. If its value is zero then its reduction is
delayed to a later moment.

In this section, two different elimination orders
will be applied to the graph system shown in figure 5
in order to obtain some insight about the Gaussian
elimination process (applying all the possible orders
implies 4! = 24 elimination orders). The first elimi-
nation order shown in 8 is 1 → 2 → 4 → 3. First,
node one, using the reduction shown in figure 5, is
reduced into node 3 as shown in figure 8(a). In the
same way, node 2 is reduced into node 3 as shown
in figure 8(b). Finally, as for the reduction process,
node 4 is reduced into node 3 as shown in the upper
part of figure 8(c). Now x3 can be solved, as shown
in bottom part of figure 8(c). Once x3 is solved, the
substitution process can be applied as node 1, 2, and
4 were connected to node 3 only. This process leads
to the configuration shown in figure 8(d). As it can be
appreciated, no new links are created. Furthermore,
node 3 is the only node whose initial configuration
is modified.

The second elimination order, shown in figure 9,
is 3 → 4 → 2 → 1. Here, three new links are
created when node 3 is eliminated as |Γ3| = 3. The
initial configuration for all nodes has been modified.
Furthermore, in order to solve x3 the rest of the
variables have to be solved. To solve x4, first x1 and
x2 have to be solved. Finally, to solve x2, first x1
must be solved.

A. About the Importance of the Initial Configura-
tion

In the previous examples, the modification to the
initial configuration was mentioned. This is important
to preserve or at least try to preserve it as much
as possible as there are iterative algorithms which
will be using this configuration in order to reach
the solution. If the algorithm which solves the graph
modifies this configuration at every iteration, then this
will have to be reinstantiated in each of them.

0
2

x =?4

−1

2

−1

−1

−5

x =?

0
4

x =?
3

(a)

0
4

x =?
3

−1.5

4

−5

−1

x =?

(b)

−5

−1.75

x =?
3

20
7

−5

−1.75

3
x = __

(c)

x =
3

x =4

10
1 x =2

7

7
40

7x =
−1 −1

0

0.5

0
2

−5

0
4

__

−1

__

__20

__

1.75

7

5

(d)

Fig. 8. The graph solution with elimination
order 1→ 2→ 4→ 3

VII. Concluding Remarks

In this work the graph representations for SLEs,
SSLE and TSSSLE have been presented. Here we
have learnt the differences among them and the fact
that TSSSLE ⊂ SSLE ⊂ SLE. Then Gaussian
elimination and its graphical interpretation has been
presented. Even that different elimination orders have
the same solution when Gaussian elimination is ap-
plied, some will require less operations to reach the
solution. Also depending on this elimination order
a variable number of new links will be created or
not. Furthermore, some elimination orderings are not
allowed as they will derive graphs whose pivot where
gaussian elimination is to be applied is zero.

When solving a SLE, the objective is to find the
values for variables represented by vector x. The
basic tool to find those values will be based on
the Gaussian elimination. The processing task for
this graph will address the previous features so no
links are created at all. A TSSSLE is a SLE which
can be represented with a tree. Finally,the solution
to TSSSLE does not require the creation of links,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



1 x =?2

3

4

x =?
−1

1−0.5

x =?

−5 −5

−5

−1−1

(a)

6

__−4
3

3
−5 2__

1
x =?

2
x =?

__
3

__

__

3
−20−20

(b)

1
x =?

__
6

__
6

−120

−21

__
6

−21
7
__40

1
x =

__
6

−120

(c)

6

__−4
3

__
3

−20

7
−5

10

__
1

x =
2

x =

__

__

3
−20

2
3

__40__
7

(d)

3
−20

__
6

−21

10

4

__

__

__
7

x =

−5

−1−1

3

2
x=

__2
3

1
x =

__
6

−120

__40
7 −1

5
7

(e)

x =
3

x =4

__
7
40

1

1 x =2

__−120 −20
3

x =
−1 −1

−5

0
3

__

−1

__20

__

7

5
7

7
10

__
6

__−21 3
2

__
6

(f)

Fig. 9. The graph solution with elimination order 3→ 4→ 2→ 1

therefore is a very efficient structure which every
solution algorithm must try to derive.

References

[1] Anne Berry and Pinar Heggernes. The minimum degree
heuristic and the minimal triangulation process. In Proceed-
ings of WG 2003, pages 58–70. Springer Verlag, 2003.

[2] G.J. Chen, K.K. Li, T.S. Chung, and G.Q. Tang. An
efficient two-stage load flow method for meshed distribution
networks. In Proceedings of the 5th Conference on Advances
in Power System, Control, Operation and Management, AP-
SCOM 2000, pages 537–542, October 2000.

[3] D. Das, H. S. Nagi, and D. P. Kothari. Novel method for
solving radial distribution networks. IEE Proceedings on
Generation, Transmission and Distribution, 141(4):291–298,
July 1994.

[4] S. K. Goswami and S.K. Basu. Direct solution of distribution
systems. IEE Proceedings on Generation, Transmission and
Distribution, 138:78–85, 1991.

[5] Harry M. Markowitz. The elimination form of the inverse and
its application to linear programming. Management Science,
3(3):255–269, April 1957.

[6] S.F. Mekhamer, S.A. Soliman, M.A. Moustafa, and M.E. El-
Hawary. Load flow solution of radial distribution feeders:
A new contribution. Electrical power and Energy Systems,
24:70–707, 2002.

[7] Gilbert Strang. Linear Algebra and Its Applications. Brooks
Cole, 4 edition, July 2005.

[8] W. F. Tinney and J. W. Walker. Direct solutions of sparse
network equations by optimally ordered triangular factoriza-
tion. Proceedings of the IEEE, 55(11):1801–1809, 1967.

[9] K. Zollenkopf. Bifactorization: Basic computational al-
gorithm and programming techniques. In Oxford, editor,
Conference on Large Sets of Sparse Linear Equations, pages
76–96, 1970.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014




