
Comparisons of Improved Round Robin
Algorithms

Christopher McGuire and Jeonghwa Lee

Abstract—Many altered versions of the Round Robin CPU
scheduling algorithm have been created to fix the shortcomings
of the Standard Round Robin algorithm. When these improved
Round Robin algorithms are first created, they are always
compared to the Standard Round Robin algorithm to ensure
that they provide an improvement over it. Occasionally, they
are compared to one other improved Round Robin algorithm
for comparison as well, however little work has been done to
compare several of these algorithms simultaneously to observe
which ones make the greatest improvements over the Standard
Round Robin algorithm. This research seeks to answer this
query by comparing five improved Round Robin algorithms.
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I. INTRODUCTION

THE Round Robin (RR) CPU scheduling algorithm,
referred to hereafter as Standard RR, is commonly used

in time sharing and real time operating systems [1], [2],
[3], [8], [17] because it keeps response time low [1] and
gives each process a fair share of time to use the CPU.
Despite these advantages, it is well known that the Standard
RR algorithm suffers from several disadvantages; those
being low throughput, high turnaround time, high waiting
time, and a high amount of context switches [1], [8], [15].
Other researchers have proposed improved RR algorithms to
minimize these shortcomings. These algorithms have been
compared to the Standard RR algorithm to prove that they
produce better results than it, and occasionally they are
compared to one or two other improved RR algorithms.
Rarely have larger numbers of improved RR algorithms
been compared at the same time to see how each of these
improved RR algorithms compare to the others.

This paper compares the effectiveness of five improved
RR algorithms; A New RR (AN RR) [1], Optimized RR
[2], Priority-Based RR [8], Adaptive RR [15], and Efficient
RR [17]. The effectiveness of the Standard RR algorithm
was measured to use as a base-line for these improved RR
algorithms.

Section II describes each of the RR algorithms. Section
III explains the experiment used to analyze the effectiveness
of each algorithm. Section IV summarizes the results, and
Section V discusses the results.

II. DESCRIPTIONS OF THE ROUND ROBIN ALGORITHMS

The performance of Standard RR is greatly affected by
the choice of the time quantum [15], [17]. If the time
quantum is very small, then the RR algorithm degenerates
into a Processor Sharing algorithm, and the overhead due
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to frequent context switching becomes costly. If the time
quantum is too large, then the RR algorithm degenerates into
a First-Come-First-Served (FCFS) algorithm [3], [4], [15].

A. AN RR
AN RR focuses on calculating an ideal time quantum

[1]. It is like Standard RR with exception that each time
a process moves in or out of the ready queue, the time
quantum is recalculated. If the ready queue is empty, then the
time quantum equals the burst time of the running process.
Otherwise, the time quantum equals the average burst time
of the processes in the ready queue.

B. Optimized RR
Optimized RR is like Standard RR with the following

exceptions. Optimized RR consists of two phases. During
phase 1, processes are executed in order just like they are
in Standard RR, and each process runs for one time slice.
During phase 2, the time quantum is doubled, and processes
are executed in the order of their remaining burst times with
shorter times running before longer times. After each process
has run for one time slice, the phase shifts back to phase
one [2]. In [2], no information was given as to what would
happen if a process arrived mid-phase. This paper assumes
that processes that arrive mid-phase will not get a chance to
run until the next phase. This paper also assumes the time
quantum resets to its initial value after the second phase.

C. Priority-Based RR
Priority-Based RR combines elements of Priority schedul-

ing and RR scheduling. Priority-Based RR consists of two
phases. During phase 1, processes are executed in RR
fashion in the order of their default priorities, and each
process runs for one time slice [8]. During phase 2, processes
are assigned new priorities based on their remaining burst
times with shorter remaining burst times receiving higher
priorities. Processes are executed in the order of their new
priorities and each process runs to completion [8]. This paper
assumes that processes that arrive mid-phase will not get a
chance to run until the next phase.

D. Adaptive RR
Like AN RR, Adaptive RR focuses on calculating an ideal

time quantum [15]. Adaptive RR is like the Standard RR
algorithm with the following exceptions. First, processes are
sorted by their burst times with the shorter processes at the
front of the ready queue. Next, the adaptive time quantum is
calculated. If the number of processes in the ready queue is
even, then the time quantum equals the average burst time
of all the processes. Otherwise, the time quantum equals the
burst time of the process in the middle of the ready queue.
Any processes that arrive in the middle of the algorithms
execution, are added at the end of the queue and do not run
during the current round. After each of the initial processes
have had a chance to run, the process repeats.
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E. Efficient RR
Efficient RR combines elements of the Shortest Remain-

ing Time (SRT) algorithm and the Standard RR algorithm. In
the SRT algorithm, the process with the shortest remaining
burst time is always selected to run, and preemption can
occur whenever a new process arrives. One of the downsides
to SRT is that processes with long remaining burst times can
suffer from starvation [1], [3].

Efficient RR is just like the SRT algorithm, but instead
of preemption occurring whenever a new process arrives,
preemption only occurs at the end of the time slice. At the
end of the time slice, when it comes time to select a process
to run, the process with the shortest remaining burst time is
always selected [16], [17]. Long processes can suffer from
starvation in Efficient RR just like in SRT.

III. SIMULATION

The following simulation gives an example of how each
algorithm would schedule a set of processes for a given
time quantum (when applicable to the algorithm). For all
algorithms assume the following list of processes given in
Table 1. In the case where two processes arrive at the same
time, the process listed first is assumed to have arrived just
slightly before the next process.

TABLE I. SIMULATED LIST OF PROCESSES

Process Arrival Time Burst Time Priority
P1 0 7 2
P2 0 5 1
P3 3 4 6
P4 5 4 4
P5 10 8 3
P6 13 8 5

A. Standard Round Robin
Gantt Chart

P1 P2 P3 P1 P4 P2 P5 P6 P5 P6

0 4 8 12 15 19 20 24 28 32 36

Time Quantum = 4
Average Turnaround Time = 17.17
Average Waiting Time = 11.17
Number of Context Switches = 9

B. AN RR
Gantt Chart

P1 P2 P3 P4 P1 P5 P6

0 5 10 14 18 20 28 36

Time Quantum calculated by algorithm
Average Turnaround Time = 15.83
Average Waiting Time = 9.83
Number of Context Switches = 6

C. Optimized RR
Gantt Chart

P1 P2 P2 P1 P3 P4 P5 P6

0 4 8 9 12 16 20 28 36

Time Quantum = 4 (Phase One), 8 (Phase Two)
Average Turnaround Time = 15.00
Average Waiting Time = 9.00
Number of Context Switches = 7

D. Priority-Based RR
Gantt Chart

P2 P1 P2 P1 P4 P3 P5 P6 P5 P6

0 4 8 9 12 16 20 24 28 32 36

Time Quantum = 4
Average Turnaround Time = 15.67
Average Waiting Time = 9.67
Number of Context Switches = 9

E. Adaptive RR
Gantt Chart

P2 P1 P3 P4 P5 P1 P6 P5

0 5 11 15 19 23 24 32 36

Time Quantum calculated by algorithm
Average Turnaround Time = 16.67
Average Waiting Time = 10.67
Number of Context Switches = 7

F. Efficient RR
Gantt Chart

P2 P2 P3 P4 P1 P1 P5 P5 P6

0 4 5 9 13 17 20 24 28 36

Time Quantum = 4
Average Turnaround Time = 13.33
Average Waiting Time = 7.33
Number of Context Switches = 8

IV. NUMBERICAL EXPERIMENT

The hardware specs for the machine used to run this
experiment were as follows:
• Operating System: Windows 8
• Processor: Intel Core i7-3630QM CPU @ 2.4GHz
• Installed memory (RAM): 8.00 GB (7.89 GB usable)
• System: 64-bit Operating System, x64-based processor
After the program was written, 10 sets of processes were

gathered. These sets of processes were selected so that the
RR algorithms would face a variety different situations that
could occur in a group of processes. For example, some
groups had processes that all arrived at time 0, while others
had processes that arrived at different times. Some groups
had a small number of processes, such as 5, while others
had many processes, such as 30 or 10,000. A variety of
burst time sizes were used.

Each set of processes was run under each algorithm using
four different time quanta. The choice of time quanta for
each set of processes was standardized based on the burst
times of the processes in the set. The first time quantum
was the smallest number that would make the Standard
RR algorithm degenerate to the FCFS algorithm for that
set of processes. The second, third, and fourth time quanta
were three-fourths, one-half, and one-fourth of this number,
rounded to the nearest whole number. For example, if 20
was the smallest number that would make Standard RR
degenerate to FCFS for the set of processes, then the 4 time
quanta would be 5, 10, 15, and 20.

With 10 sets of processes and 4 time quanta per set,
this led to 40 different simulations. For each simulation
ran, the RR algorithms were ranked according their average
turnaround time using the fractional ranking method. The
same was done for the average waiting time and the number
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of context switches. The lowest value was ranked with a 1,
the next lowest value with a 2, and so on.

A Friedman statistical test was used to determine if the
algorithms differed in their rankings [5], [13]. The null and
alternative hypotheses were as follows:

Average Turnaround Time:

• H0: There are no algorithms which are ranked differ-
ently based on their average turnaround time compared
to the other algorithms.

• HA: There is at least one algorithm which is ranked
differently based on its average turnaround time com-
pared to at least one other algorithm.

Average Waiting Time:

• H0: There are no algorithms which are ranked differ-
ently based on their average waiting time compared to
the other algorithms.

• HA: There is at least one algorithm which is ranked
differently based on its average waiting time compared
to at least one other algorithm.

Number of Context Switches:

• H0: There are no algorithms which are ranked dif-
ferently based on their number of context switches
compared to the other algorithms.

• HA: There is at least one algorithm which is ranked
differently based on its number of context switches
compared to at least one other algorithm.

After determining whether the null hypotheses should be
accepted or rejected, the sum of the ranks and the mean
rank for each algorithm for each category was calculated.
The differences of the mean ranks between each algorithm
was calculated as well as the critical value for the difference
of the mean ranks in order to determine which algorithms’
rankings differed.

Table 2 shows the sum of ranks and mean ranks for the
RR algorithms for the average turnaround time. For any two
algorithms, the closer the sums and closer the averages, the
more closely the algorithms ranked. The Chi-squared (χ2)
value yielded by the Friedman test for the average turnaround
time was 57.08. The critical χ2 value at a 95% confidence
level for 5 degrees of freedom is 11.07. The differences of
the mean ranks and the critical value are shown in Table 3.
The critical value for the difference of mean ranks serves as
the cutoff line; any difference that is greater than the critical
value indicates that the two algorithms ranked differently.

Table 4 shows the sum of ranks and mean ranks for the
RR algorithms for the average waiting time. The χ2 value
yielded by the Friedman test for the average waiting time
was 53.78. The differences of the mean ranks and the critical
value are shown in Table 5.

Table 6 shows the sum of ranks and means rank for the
RR algorithms for the number of context switches. The χ2

value yielded by the Friedman test for the number of context
switches was 204.55. The differences of the mean ranks and
the critical value are shown in Table 7.

TABLE II. RANK SUMMARY FOR AVERAGE TURNAROUND TIME

RR Algorithm Sum of Ranks Mean Rank
Standard 201.5 5.04

AN 148 3.70
Adaptive 137 3.43
Efficient 68.5 1.71

Optimized 139.5 3.49
Priority-Based 142 3.55

TABLE III. DIFFERENCES OF THE MEAN RANKS FOR AVERAGE
TURNAROUND TIME

Standard AN Adaptive Efficient Optimized

AN 1.338* x x x x
Adaptive 1.613* 0.275 x x x
Efficient 3.325* 1.988* 1.713* x x

Optimized 1.550* 0.213 0.063 1.775* x
Priority-Based 1.488* 0.150 0.125 1.838* 0.063

Critical Value 0.581
*Value is greater than the critical value

TABLE IV. RANK SUMMARY FOR AVERAGE WAITING TIME

RR Algorithm Sum of Ranks Mean Rank
Standard 193.5 4.84

AN 149 3.73
Adaptive 149.5 3.74
Efficient 66 1.65

Optimized 132.7 3.32
Priority-Based 145.5 3.64

V. CONCLUSION REMARKS

A. Average Turnaround Time

Based on the χ2 result for the average turnaround time,
there is enough evidence to reject the null hypothesis for
the average turnaround time at the 95% confidence level
meaning that there must be at least one algorithm which is
rated differently. The results in Table 3 show that Efficient
RR and Standard RR ranked differently from the other algo-
rithms. Efficient RR will generally provide a better average
turnaround time than the other algorithms, and Standard RR
will generally provide a worse average turnaround time than
the other algorithms. The evidence suggests that that AN
RR, Adaptive RR, Optimized RR, and Priority-Based RR
do not perform substantially better or worse than each other
for the average turnaround time.

B. Average Waiting Time

Based on the χ2 result for the average waiting time, there
is enough evidence to reject the null hypothesis for the
average waiting time at the 95% confidence level meaning
that there must be at least one algorithm which is rated
differently. The results in Table 5 show that Efficient RR
and Standard RR ranked differently from the other algo-
rithms. Efficient RR will generally provide a better average
waiting time than the other algorithms, and Standard RR
will generally provide a worse average waiting time than
the other algorithms. The evidence suggests that that AN
RR, Adaptive RR, Optimized RR, and Priority-Based RR
do not perform substantially better or worse than each other
for the average waiting time.

C. Number of Contact Switches

Based on the χ2 result for the number of contact switches,
there is enough evidence to reject the null hypothesis for
the number of contact switches at the 95% confidence level
meaning that there must be at least one algorithm which is
rated differently. The results in Table 7 show that Standard
RR ranked differently from the other algorithms. Standard
RR will generally provide a worse number of contact
switches than the other algorithms. The evidence suggests
that that AN RR, Adaptive RR, Efficient RR, Optimized RR,
and Priority-Based RR do not perform substantially better or
worse than each other for the number of contact switches.
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TABLE V. DIFFERENCES OF THE MEAN RANKS FOR AVERAGE
WAITING TIME

Standard AN Adaptive Efficient Optimized

AN 1.113* x x x x
Adaptive 1.100* 0.013 x x x
Efficient 3.188* 2.075* 2.088* x x

Optimized 1.520* 0.408 0.420 1.668* x
Priority-Based 1.200* 0.087 0.100 1.988* 0.320

Critical Value 0.609
*Value is greater than the critical value

TABLE VI. RANK SUMMARY FOR NUMBER OF CONTEXT
SWITCHES

RR Algorithm Sum of Ranks Mean Rank
Standard 203 5.08

AN 135 3.38
Adaptive 152 3.80
Efficient 143.5 3.59

Optimized 142.5 3.56
Priority-Based 151 3.78

D. Summary
Looking at the ranking for the average turnaround time

and the average waiting time, Efficient RR performed better
than the other algorithms by a substantial lead. Even though
it performed so well, recall that large processes can suffer
from starvation under Efficient RR. This is a major drawback
to this algorithm because RR algorithms are supposed to
keep response time low [1] and give each process a fair share
of time to use the CPU. Even though it performed very well
for the average turnaround time and average waiting time, it
is not an ideal RR algorithm to use due to starvation.

While AN RR, Adaptive RR, Optimized RR, and Priority-
Based RR all are substantial improvements over Standard
RR, the evidence suggests that none of these four algorithms
are substantially better than each other. Any one of these
four algorithms would be equally valid choices for CPU
scheduling based on their performance relative to each other;
it just comes down to which is the most practical for a given
situation.
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