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Abstract—We study the performance of the numerical
method for solving the forward problem of the two-dimensional
Impedance Equation [15]. This numerical method is based upon
the elements of the modern Pseudoanalytic Function Theory.
Considering divide and conquer technique for constructing the
parallel algorithm, some sub process can be taking advantage by
processing them independently, we parallelize some processes
of the numerical method through CUDA technology, obtaining
considerable reduction of the temporal complexity. The pro-
cessing time of the posed method is evaluated comparing with
its sequential version and the speed-up rate of the parallel
algorithm respect to the sequential one posed in [15]. The
collection of experiments are displayed for illustrating its
effectiveness.

Index Terms—Algorithm, CUDA, Electrical Impedance To-
mography, Pseudoanalytic Functions Theory, Parrallel Process-
ing, Vekua Equation.

I. INTRODUCTION

THE Pseudoanalytic Function Theory [3] has been just
found to be an important tool for modern Mathematical

Physics, and in sequel, for different branches of Engineering.
Perhaps, beyond the original expectations that its main cre-
ators, professors L. Bers [3] and I. Vekua [20], could have
foreseen at the time they first published the foundations of
the theory.

The elements of the modern Pseudoanalytic Function
Theory [12], have been considered as an important tool
in Applied Mathematics and Theoretical Physics (see e.g.
[4], [12] and [18]). This tool has been successfully applied
for solving the forward problem of the two-dimensional
Impedance Equation [15]

div (σ grad u) = 0, (1)

where σ is the conductivity and u is the electric potential. It is
possible to approach the general solution of (1) in asymptotic
form, through the Taylor series in formal powers [3].

The detection of the relation between (1) in the plane,
and the Vekua equation [20], by V. Kravchenko [13], and
shortly after by K. Astala and L. Päivärinta [1], opened a
complete new path for constructing numerical solutions of
the forward problem corresponding to (1), based upon the
modern Pseudoanalytic Function Theory [3].

The most important fact of caring about efficiently solving
the forward problem for (1), is to use this problem as
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an approach to the solution of the Electrical Impedance
Tomography Problem (also called inverse problem). This
problem was widely exposed in plenty works, among which
[21] is one of the most important. In this sense, the results
posed in [13], and subsequently rediscovered in [1], are
indeed very significant, because they allowed to find out
the rink for approaching the general solution of the two-
dimensional Impedance Equation.

The main contribution of this work is to analyse the
performance of the numerical method and its sequential
algorithm posed in [15] versus the parallel algorithm to be
presented in this work. Employing this numerical method
we propose the design of a parallel algorithm using divide
and conquer technique [14] with CUDA technology, this
will help us to obtain an adequate balance between the
computational cost and accuracy. Then we examine some
specific examples, in order to illustrate a comparison of the
performance and effectiveness between the sequential and
parallel method. The conclusions contain the arguments that
justify the viability of employing this numerical method as
an approach for employing it in medical image [21] this is for
solving the Electrical Impedance Tomography Problem [6].
This work is organized as follows: In the second Section
, we will explain the mathematical tools necessaries for
the construction of the numerical method and algorithm
for the forward problem of the two-dimensional Impedance
Equation. In Section 3, we describe both algorithms. Then we
will show some experimental results of the implementation of
both algorithms employing different conductivity functions
and finally the conclusions of this work.

II. ELEMENTS OF PSEUDOANALYTIC FUNCTION THEORY
AND ITS RELATION WITH THE ELECTRICAL IMPEDANCE

EQUATION.

Let us consider the two-dimensional case of the Electrical
Impedance Equation:

div (σ grad u) = 0,

where u is the electric potential and σ is a separable-variables
non-vanishing function within a bounded domain Ω, with
boundary Γ, such that:

σ = σ1(x) · σ2(y). (2)

Introducing the following notations:

W =
√
σ∂xu− i

√
σ∂yu, p =

√
σ2(y)

σ1(x)
, (3)
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where i2 = −1, ∂x = ∂
∂x and ∂y = ∂

∂y ; the equation (1) can
be rewritten and transformed into a Vekua equation [20] of
the form:

∂zW −
∂zp

p
W = 0, (4)

where ∂z = ∂x + i∂y , and W represents the complex
conjugation of W : W = ReW − iImW .

The general solution of the equation (4) can be expressed
in terms of the Taylor series in formal powers [3]:

W =
∞∑
n=0

Z(n) (an, z0; z) . (5)

This is a generalization of the classical postulates of
Complex Analysis, that was mainly developed by L. Bers [3].
The following paragraphs contain a condensed description of
the material that will be needed for our further discussions.
The reader can find a complete and detailed explanation of
these postulates in [3] and [12].

A. Taylor Series in Formal Powers.

The formal power Z(0)
0 (a0, z0; z) with complex constant

coefficient a0, center at z0, depending upon z, formal expo-
nent 0, and corresponding to the generating pair (F0, G0); is
expressed as:

Z
(0)
0 (a0, z0; z) = λ0F0 + µ0G0;

where λ0 and µ0 are real constants such that

λ0F0(z0) + µ0G0(z0) = a0;

and
F0 = p, G0 =

i

p
.

where p possesses the form (3).
The formal powers with higher formal exponents n, are

defined by the recursive integral expressions:

Z
(n)
j0

(an, z0; z) = n

∫ z

z0

Z
(n−1)
j1

(a0, z0; z)d(Fj0
,Gj0

)z. (6)

where j0 = 0, 1 and j1 = 1, 0. This is, if j0 = 0 then
j1 = 1, and if j0 = 1 then j1 = 0. The integral expressions
in the right-hand side of (6) are what can be considered
antiderivatives in the sense of Bers [3]:∫ z

z0

Z
(n−1)
j1

(a0, z0; z)d(Fj0 ,Gj0 )z =

= Gj0Re
∫

Λ

F ∗j0Z
(n−1)
j1

(a0, z0; z)dz+

+Fj0Re
∫

Λ

G∗j0Z
(n−1)
j1

(a0, z0; z)dz.

Here, Λ is a rectifiable curve going from z0 upto z, and:

F1 =
√
σ, G1 =

i√
σ
.

whereas
F ∗j0 = −iFj0 , G∗j0 = −iGj0 ,

as well
F ∗j1 = −iFj1 , G∗j1 = −iGj1 .

A detailed description of the construction of the formal
powers can be found in [3] and [12]. Here we will only
remark the two fundamental properties for this work.

1)
lim
z→z0

Z(n)(an, z0; z) = an(z − z0)n. (7)

2) Let an = a′n + ia′′n, where a′n and a′′n are both real
constants. Thus

Z(n)(an, z0; z) =

= a′nZ
(n)(1, z0; z) + a′′nZ

(n)(i, z0; z). (8)

The absence of the sub index j0 and j1 indicates that the
properties are valid for all formal powers.

Notice the last statement establishes that any formal power
Z(n)(an, z0; z) can be approached by the linear combination
of Z(n)(1, z0; z) and Z(n)(i, z0; z), thus the numerical cal-
culations shall be exclusively performed to approach these
two classes of formal powers.

On the other hand, in [9] is shown the proof of complete-
ness of the set:{

Re Z(n)(1, z0; z)|Γ,Re Z(n)(i, z0; z)|Γ
}∞
n=0

, (9)

for approaching solutions of the forward Dirichlet boundary
value problem corresponding to the equation (1).

This is, given a non-vanishing function σ within a bounded
domain Ω, with boundary Γ, any boundary condition u|Γ can
be approached by the linear combination of the elements
belonging to (9), that are the real parts of the formal powers
with coefficients 1 and i, valued at the points belonging to
the boundary Γ:

u|Γ =

∞∑
n=0

c(1)
n Re Z(n)(1, z0; z)|Γ+

+
∞∑
n=0

c(i)n Re Z(n)(i, z0; z)|Γ, (10)

where c(1)
n and c(i)n are all real constant coefficients.

A final statement is in place before studying the numerical
method for approaching the elements of (9).

Employing the conjecture posed in [18], we can analyse
a variety of conductivity functions and domains in [17].
This conjecture establishes that any function σ, fully defined
within a domain Ω, can be considered at every single point, a
special separable-variables function for which j0 = j1, thus
it can be employed for numerically approaching the elements
of (9).

B. Numerical approaching of the formal powers.

This Section is dedicated to briefly explain the numerical
method for approaching integral expressions corresponding
to (6). Enclosing the modern Pseudoanalytic Function Theory
studied in [12], to the classical results of [3], we employ
the numerical method posed in [15], that is an improved
numerical method based onto a previous proposal [5]. The
most important advantages of the numerical method posed
in [15] unlike [5] is that possesses a higher degree of
accuracy and numerical stability. In this case we will only
expand procedure of the constructing the formal powers

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



with coefficients an = 1, since there is not any important
methodological variation when considering an = i.

Therefore, we will consider a collection of K + 1 points

{r [k]} , k = 0, 1, ...,K;

equidistantly located in a closed interval [0, 1]. If the interval
[0, 1] coincides with a radius R of the unit circle, whose
center is z0 = 0, with some specific angle θ ∈ [0, 2π), we
will obtain a collection of points in the plane:

{(x[k], y[k])} , k = 0, 1, ...K;

constructed as follows

x[k] = r[k] cos(θ); y[k] = r[k] sin(θ).

The formal powers over such radius R can be approached
employing the recursive expressions:

Z(n+1)[k] = AF [k]·

·Re
k∑
q=0

(
G∗[q]Z(n)[q] +G∗[q + 1]Z(n)[q + 1]

)
∆z[q]+

+ AG[k]·

·Re
k∑
q=0

(
F ∗[q]Z(n)[q] + F ∗[q + 1]Z(n)[q + 1]

)
∆z[q],

(11)
where

∆z[q] = x[q + 1]− x[q] + i (y[q + 1]− y[q]) ,

and A is a factor that ensures the numerical stability of the
method (for additional information see [5] and [15]).

Hereinafter, for briefness we will denote the operations
described in (11) with the following form:

Z(n)[k] = B
[
Z(n−1)[k]

]
.

III. DEVELOPMENT OF THE ALGORITHMS

In previous works, first in [4] was presented a numerical
method for constructing the so-called Taylor Series in formal
powers and its application to the two-dimensional case of
the electrical impedance equation (1), afterwards in [5] was
posed the simplified method for numerically solve equation
(1) and finally in [15] was presented the optimized numerical
method and its sequential algorithm for solving equation (1).

Thus, in this work we will describe the most important
characteristics of the algorithm presented in [15] and employ-
ing this algorithm as baseline we developed a parallel algo-
rithm using CUDA technology. For making a clear descrip-
tion of both the sequential [15] and the parallel algorithms,
in the next subsections we will summarize the programming
details including the pseudo code of the algorithms. For
constructing the solution for the forward problem of the two-
dimensional impedance equation we employed the following
parameters: N formal powers numerically approached, over
S number of radii, and considering K + 1 points per radius.

It is essential to remark that the numerical method was
fully developed in C, employing as graphic card an NVIDIA
R© GeForce R© GTX 770M GPU, this GPU posses 960 CUDA
cores is important to mention that with the evolution of
graphic cards will improve performance of the algorithms
including the speed up of memory and number of cores.
The processor Intel R© Core TM i7-4700MQ CPU @2.40GHz
2.40GHz.

A. Sequential Algorithm

As a measure of the efficiency of an algorithm, usually
are considered the resources consumed by the algorithm,
as memory and time. This has been developed to obtain
values that specify the evolution of the spending time and
memory, that is, depending on the size of the input values.
We will describe the algorithm posed in [15], this will give us
the values for making a comparison between this sequential
algorithm [15] an a new version for parallel processing.

In the Algorithm 1 to handle complex numbers in the nu-
merical method detailed in previous Section II, we employed
data type struct to manage real and imaginary part. If it
observes the Algorithm 1 it can be seen that is conformed
by a main process where the Taylor series in formal powers
(11) are calculated. Then in function Orthonormalization,
we apply the standard Gram-Schmidt Orthonormalization
Process for obtaining the following set

{us(l)}2Ns=0,

where we obtain a linear independent system of 2N + 1
vectors. After the orthonormalization process, we proceed
to approach the solution for the conductivity function σ
within a bounded domain Ω, with boundary Γ, any boundary
condition u|Γ as shown in equation (10). Finally we save the
results obtained, as the orthogonal system, coefficients and
the approach solution.

In order to test out the numerical steadiness and conver-
gence of the algorithm we calculate the Lebesgue measure
for introducing an error parameter E :

E =

(∫
Γ

(uc|Γ − uapp)2
dl

) 1
2

. (12)

where uapp represents the approached solution. This will help
us to compare with other works as [16] and verifying the
numerical stability of the algorithms.

B. Parallel Algorithm

About constructing the parallel algorithm for solving the
forward problem of the two-dimensional impedance equa-
tion we employed divide and conquer technique since is
a powerful tool for solving conceptually problems. This
technique consist on breaking the problem into sub-problems,
and solving the original problem by combining the solution
of those sub-problems. This technique is useful for parallel
algorithms, because can be adapted for execution in multi-
cores, this is, distinct sub-problems can be executed on
different cores.

In the design of the parallel algorithm for the forward
problem of the two-dimensional impedance equation, we
divide the sub-problems as shown in Algorithm 2, because
it is well known that not all the process can be executed
in parallel, but in one of the most significant functions
of the algorithm can be applied, the computation of the
values of coordinates and conductivities were obtained in
different CUDA cores, is being calculating the values of
every radii independently in the different cores. The main
advantage of having this parallel algorithm is decreasing the
time complexity considerably this while comparing with the
Algorithm 1.
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Algorithm 1 Sequential Algorithm for solving the forward
problem of the two-dimensional impedance equation
S (Number of radii)
N (Maximum number of Formal Powers)
K + 1 (Number of points per radius)
while s = 1→ S do

while n = 1→ N do
while q = 0→ K do

call Coordinates Operations
call Conductivities Calculations
call Generating Pairs
Z(n)[q] = B

[
Z(n−1)[q]

]
end while

end while
end while
call ORTHONORMALIZATION
call APPROACH BOUNDARY CONDITION
call LEBESGUE MEASURE
save ORTHOGONAL SYSTEM
save COEFFICIENTS

function ORTHONORMALIZATION
(Classical Gram-Schmidt Orthonormalization Process)

end function
function APPROACH BOUNDARY CONDITION∑N

n=0

(
αnu

(n) (1, 0, z) + βnu
(n) (i, 0, z)

)
end function
function LEBESGUE MEASURE

E =
(∫

Γ
(uc|Γ − uapp)2

dl
) 1

2

end function

One of the most significant differences between sequential
1 and parallel Algorithm 2 is that for the parallel one we
transformed the structs into arrays because while working
with CUDA we use arrays that can be easily passed to
the device global memory and accessed by each core. And
one of the main advantages of this method is that we can
greatly increase the parameters employed for the approach,
the maximum number of radii and maximum number of
points can be raised up to 100, 000 this is hard task for
the sequential algorithm 1 posed in [15], since the time
complexity is high. This advantage not only help us to
approximate the solution with a greater convergence but also
when considering the possibility of apply this numerical
method and algorithm to the solution of the inverse or
electrical impedance tomography problem.

IV. EXPERIMENTAL RESULTS

We will perform a characterization of the numerical
method and algorithms, using as domain the unitary circle,
and a variety of conductivity functions. This characterization
employs the optimized method, first exposed in [15] and then
in [16], using the Pseudoanalytic Function Theory, and taking
into account that we can analyse any conductivity function,
approaching the solution for the Dirichlet boundary value
forward problem.

In this work, we will empathize performance of the time
complexity in the sequential and parallel algorithms for
comparing its effectiveness with the results obtained in [16]
when analysing the unitary disk. We will use conductivity

Algorithm 2 Parallel Algorithm for solving the forward
problem of the two-dimensional impedance equation
S (Number of radii)
N (Maximum number of Formal Powers)
K + 1 (Number of points per radius)
call NUMERICAL BERS OPERATIONS
call FORMAL POWER APPROACHER
call ORTHONORMALIZATION
call APPROACH BOUNDARY CONDITION
call LEBESGUE MEASURE
save ORTHOGONAL SYSTEM
save COEFFICIENTS

function NUMERICAL BERS OPERATIONS
for q = 0→ K in parallel do

call Coordinates Operations
call Conductivities Calculations
call Generating Pairs

end for
end in parallel
end function
function FORMAL POWER APPROACHER
for s = 1→ S do

for n = 1→ N do
for q = 0→ K do
Z(n)[q] = B

[
Z(n−1)[q]

]
end for

end for
end for
end function
function ORTHONORMALIZATION

(Classical Gram-Schmidt Orthonormalization Process)
end function
function APPROACH BOUNDARY CONDITION∑N

n=0

(
αnu

(n) (1, 0, z) + βnu
(n) (i, 0, z)

)
end function
function LEBESGUE MEASURE

E =
(∫

Γ
(uc|Γ − uapp)2

dl
) 1

2

end function

functions with exact representation, namely, we will exam-
ine exponential, Lorentzian and a geometrical distribution
constructed with concentric circles.

For this experimental results, we will employ the Algo-
rithm 1 and Algorithm 2 and making variations in the number
of formal powers N , number of radii S and number of points
K will be fixed both in 1000.

A. Exponential Conductivity Function Case

Considering a non-separable variables exponential conduc-
tivity function with the following form

σ = eαxy, (13)

where α represents a coefficient that is used to change
the behaviour of the function, for this case α = 5, this
conductivity function is represented in Figure 1. And the
boundary condition imposed is given in the next expression:

u|Γ = e−αxy. (14)
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Fig. 1: Exponential Conductivity Function

TABLE 1: Brief relation of the time complexity in both algorithms
with an exponential conductivity function

Formal Powers Time Sequential Time Parallel
N t (seconds) t (seconds)

5 446.3 3.261

10 816.2 3.841

15 1187.342 4.615

20 1567.3 5.391

25 1924.43 6.215

30 2302.0 7.044

35 2688.15 7.794

40 3050.5 8.742

because it is an exact solution of (1), as appointed in [16].
As can be seen in Table 1 the difference in the execution

of both algorithms it is remarkable that parallel algorithm
has the advantage without loosing accuracy.

B. Lorentzian Conductivity Function Case

For this case we propose a conductivity function with the
form:

σ =
(
(x+ dx)2 + Lc

)−1 ·
(
(y + dy)2 + Lc

)−1
, (15)

where dx and dy represent the displacements over the x-axis
and y-axis respectively, and Lc denotes a real constant. In
Figure 2 is displayed this Lorentzian conductivity function.

We will imposed the boundary condition [18]:

u|Γ =
1

3
(x+ dx)3 +

1

3
(y + dy)3

+Lc(x+ dx + y + dy); (16)

since it is an exact solution of (1). In this case we will
develop the experiment with Lc = 0.5 and in 2 the results
are shown with displacement in axis, but in 3 we displayed
x = 0.5 and y = 0.5.

In this case we can observe that as it was expected the best
results in time complexity are displayed while employing the
parallel algorithm. In Table 2 we have no displacement in the
conductivity function, but in Table 3 we displaced x = 0.5
and y = 0.5, this cases are important because it can be
observed that in Table 3 the time complexity decrease in
comparison with the one without displacement since there
are more operations that can be executed independently.

Fig. 2: Lorentzian Conductivity Function

TABLE 2: Brief relation of the time complexity in both algorithms
with a Lorentzian conductivity function with no displasment in the

axis
Formal Powers Time Sequential Time Parallel

N t (seconds) t (seconds)

5 448.2 3.209

10 813.57 3.59

15 1197.05 4.329

20 1569.81 5.109

25 1943.99 5.992

30 2317.1 6.728

35 2689.09 7.511

40 3026.92 8.35

TABLE 3: Brief relation of the time complexity in both algorithms
with a Lorentzian conductivity function with displacement x = 0.5

and = 0.5 in the axis
Formal Powers Time Sequential Time Parallel

N t (seconds) t (seconds)

5 450.34 3.199

10 824.81 3.631

15 1210.84 4.542

20 1564.96 5.33

25 1946.94 6.203

30 2320.72 7.026

35 2691.31 7.851

40 3069.09 8.706

C. Geometrical Conductivity: Concentric Circles

For this case, the conductivity function is composed as
follows: one disk with radius r1 = 0.2 representing σ =
100, the ring delimited by r2 = 0.4 and r1 possessing a
conductivity σ = 30, another ring between r3 = 0.6 and
r2 having σ = 20, whereas the one within r4 = 0.8 and
r3 exhibits σ = 15. Finally, the remaining value within the
boundary is σ = 10. The boundary condition is given by the
following expression

u|Γ =
1

3
(x3 + y3) + 0.5(x+ y). (17)

The results are summarized in Table 4.
This case was selected because in [16] was presented as

an interesting case for verifying the numerical stability and
convergence of the method. In Table 4 we can verify again
that with the parallel algorithm we obtained a significant
decrease in the time complexity.
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Fig. 3: Geometrical conductivity within a non-smooth domain.
Combination of a disk and concentric rings.

TABLE 4: Brief relation of the time complexity in both algorithms
with a geometrical conductivity distribution constructed with con-

centric circles
Formal Powers Time Sequential Time Parallel

N t (seconds) t (seconds)

5 449.48 3.592

10 825.57 3.918

15 1199.95 4.687

20 1572.79 5.446

25 1928.5 6.061

30 2322.39 7.053

35 2653.13 7.846

40 3001.47 8.746

V. CONCLUSIONS

The construction of the numerical method and algorithms
for approaching the solution for the forward problem of
the two-dimensional impedance equation, is an important
contribution to the Electrical Impedance Tomography theory.
This is asserted by considering that the examples presented
in this work, could well pose a difficult challenge if analysed
with classical numerical methods, as the Finite Element
variations are (see e.g. [9]).

In this sense, this numerical method and algorithms can be
employed for analysing physical conductivity distributions,
since no variations are needed for examining those cases
when the exact mathematical expressions are unknown [18].
Furthermore, the results suggest that an adequately balance
between the numerical accuracy, steadiness and the compu-
tational cost has been achieved. Even though that when using
the parallel Algorithm 2 we have as advantage that we can
obtain a better approximation to the solution because this
algorithm give us the possibility of increasing significantly
the parameters of number of points and number of radii.
While employing the parallel Algorithm 2 we notice that
time complexity reduced considerable, without provoking
loss of precision or accuracy. Another important thing that
was observed is that the time complexity is proportional to
the complexity of the conductivity function.

The development of this parallel algorithm enable us
to continue with the hard due of applying this algorithm
in the solution of the Electrical Impedance Tomography
problem, because this reduction of time will allow us to study
more complex conductivity functions and analyse different
domains (smooth and non-smooth). When applying this algo-
rithm in medical image will be needed to have accuracy with
low time complexity. Beside, many characteristics discussed
along these pages might be subjects of further works.
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